Covariant Representations of Subproduct Systems From harmonic analysis of Hilbert space contractions to modern research

Ami Viselter

Technion

IMU Winter Meeting 31.12.2010

Ami Viselter (Technion)

Subproduct systems

IMU Winter Meeting 1 / 26

Notation

Let $\mathcal H$ denote a complex Hilbert space throughout.

Definition

A contraction is an operator $T \in B(\mathcal{H})$ with $||T|| \leq 1$.

There are plentiful contractions!

Examples

Examples

• Every (orthogonal) projection is of norm 1

• Direct sums: if $T_{\alpha} \in B(H_{\alpha})$ is a contraction for all $\alpha \in I$, then $\bigoplus_{\alpha \in I} T_{\alpha}$

is a contraction over $\bigoplus_{\alpha \in I} \mathcal{H}_{\alpha}$.

Important class of contractions—isometries

An operator $V \in B(\mathcal{H})$ is a *isometry* if ||Vx|| = ||x|| for all $x \in \mathcal{H}$;

- equivalently: (Vx, Vy) = (x, y) for all $x, y \in \mathcal{H}$;
- equivalently: $V^*V = I$

A surjective isometry is called a *unitary*

• equivalently:
$$V^*V = I = VV^*$$

lsometries

Constructing isometries is easy

Let $(e_{\alpha})_{\alpha \in I}$ be an orthonormal base of \mathcal{H} , and let $(f_{\alpha})_{\alpha \in I}$ be an orthonormal system in \mathcal{H} (not necessarily a base!). There exists a unique bounded operator $V \in B(\mathcal{H})$ with

$$V: e_{\alpha} \mapsto f_{\alpha}.$$

This operator is an isometry.

Example

Let $\mathcal{H} := \ell_2(\mathbb{N}) = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus ...$ Consider the standard base $(b_n)_{\mathbb{N}}$ where $b_n = (0, ..., 0, 1, 0, ...)$. The *(unilateral) shift operator* $S \in B(\mathcal{H})$ is defined by

$$S: b_n \mapsto b_{n+1}.$$

S is evidently not unitary!

Ami Viselter (Technion)

Definition

A (concrete) operator algebra is a norm-closed subalgebra of some $B(\mathcal{H})$.

Definition

A C*-algebra is a Banach algebra with involution such that

 $||A^*A|| = ||A||^2$.

Theorem (Gelfand-Naimark-Segal)

Every C*-algebra "sits" in $B(\mathcal{H})$ for a suitable Hilbert space \mathcal{H}

Let $V \in B(\mathcal{H})$ be an isometry.

The Wold decomposition (von Neumann, 1929; Halmos, 1961)

There exist a unitary $U \in B(\mathcal{H}_1)$ and a cardinal \mathfrak{n} such that

 $V\cong S^{(\mathfrak{n})}\oplus U.$

Particularly, $\mathcal{H} \cong \bigoplus_{0 \leq \mathfrak{m} < \mathfrak{n}} \ell_2(\mathbb{N}) \oplus \mathcal{H}_1.$

Theorem (Von Neumann's inequality (1951); later Sz.-Nagy-Foiaș)

Let T be a contraction. For every polynomial p = p(z) we have

 $||p(T)|| \le ||p(S)||$.

Could you guess what is $\|p(S)\|$?

Theorem

Let V be an isometry.

For every polynomial p = p(z, w) in two noncommutative variables we have

 $||p(V, V^*)|| \le ||p(S, S^*)||.$

イロト イポト イヨト イヨト

The universality of the shift (cont.)

Consider Alg(S), $C^*(S) \subseteq B(\ell_2(\mathbb{N}))$.

$\mathcal{T}\in B(\mathcal{H})$ a contraction	$V\in B(\mathcal{H})$ an isometry
$T \in B(Tt)$ a contraction	$v \in D(n)$ all isometry
$Alg\ T\subseteq B(\mathcal{H})$	${\mathcal C}^*(V)\subseteq B({\mathcal H})$
Question: $\exists ?\pi : Alg S \rightarrow Alg T$	Question: $\exists ?\pi: C^*(S) \to C^*(V)$
with $S \mapsto T$?	with $S \mapsto V$?
Yes! Consider $p(S) \mapsto p(T)$ for	Yes! Consider
every polynomial $p(z)$	$p(S,S^*)\mapsto p(V,V^*)$ for every
	polynomial $p(z, w)$
Since $\ p(T)\ \le \ p(S)\ $, this	Since $\ p(V, V^*)\ \le \ p(S, S^*)\ $,
map is well defined, and it	this map is well defined, and it
extends to a norm-decreasing	extends to a *-homomorphism
unital homomorphism from Alg S	from $C^*(S)$ to $C^*(V)$.
to Alg <i>T</i> .	

 $C^*(S)$ is called the *Toeplitz algebra* Alg $(S) \cong$ the disc algebra $A(\mathbb{D}) (\subseteq C(\overline{\mathbb{D}})).$

8 / 26

Image: Image:

Let \mathcal{H}, \mathcal{K} be Hilbert spaces.

Definition

The *tensor product* $\mathcal{H} \otimes \mathcal{K}$ is the completion of the algebraic tensor product of \mathcal{H} and \mathcal{K} (over \mathbb{C}) with the inner product

$$(x_1 \otimes y_1, x_2 \otimes y_2)_{\mathcal{H} \otimes \mathcal{K}} = (x_1, x_2)_{\mathcal{H}} \cdot (y_1, y_2)_{\mathcal{K}}.$$

If $(e_{\alpha})_{\alpha \in I}$, $(f_{\beta})_{\beta \in J}$ are bases for \mathcal{H} , \mathcal{K} , respectively, then $(e_{\alpha} \otimes f_{\beta})_{(\alpha,\beta) \in I \times J}$ is a base for $\mathcal{H} \otimes \mathcal{K}$.

If $C \in B(\mathcal{H})$ and $D \in B(\mathcal{K})$, there exists a unique operator $C \otimes D \in B(\mathcal{H} \otimes \mathcal{K})$ with

$$(C \otimes D)(x \otimes y) = (Cx) \otimes (Dy).$$

Multidimensional shift operators

Let $d \in \mathbb{N}$ be given. Consider \mathbb{C}^d with the standard base $\{e_1, \ldots, e_d\}$. • The *Fock space* is the Hilbert space

$$\mathcal{F}_d := \bigoplus_{n \in \mathbb{Z}_+} (\mathbb{C}^d)^{\otimes n} = \mathbb{C} \oplus \mathbb{C}^d \oplus (\mathbb{C}^d \otimes \mathbb{C}^d) \oplus (\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d) \oplus \dots$$

• For $1 \leq i \leq d$, consider the shift operator

$$S_i \in B(\mathcal{F}_d)$$

of "left tensoring by e_i ": it maps an element $x \in (\mathbb{C}^d)^{\otimes n}$ to $e_i \otimes x \in (\mathbb{C}^d)^{\otimes (n+1)}$.

- The operators S_1, \ldots, S_d are isometries with orthogonal ranges.
- The sum $S_1S_1^* + \ldots + S_dS_d^*$ is a projection onto the subspace $\bigoplus_{n \in \mathbb{N}} (\mathbb{C}^d)^{\otimes n}$ of \mathcal{F}_d . In particular, $S_1S_1^* + \ldots + S_dS_d^*$ is a contraction.

Recall that the "simple" shift S was the "universal" isometry.

• A row contraction is a family $T_1, \ldots, T_d \in B(\mathcal{H})$ such that $T_1T_1^* + \ldots + T_dT_d^*$ is a contraction.

Consider a row contraction of isometries V_1, \ldots, V_d^{-1} .

Theorem (G. Popescu, 1989)

There exist isometries $U_1, \ldots, U_d \in B(\mathcal{H}_1)$ with $U_1U_1^* + \ldots + U_dU_d^* = I_{\mathcal{H}_1}$ and a cardinal \mathfrak{n} such that

$$V_i \cong S_i^{(\mathfrak{n})} \oplus U_i$$

Particularly, $\mathcal{H} \cong \bigoplus_{0 \leq \mathfrak{m} < \mathfrak{n}} \mathcal{F}_d \oplus \mathcal{H}_1.$

 ${}^{1}V_{1}, \ldots, V_{d}$ necessarily have orthogonal ranges Ami Viselter (Technion) Subproduct systems

Theorem (G. Popescu, 1991)

Let T_1, \ldots, T_d be a row contraction. For every polynomial $p = p(z_1, \ldots, z_d)$ in d noncommutative variables we have

$$\|p(T_1,...,T_d)\| \le \|p(S_1,...,S_d)\|.$$

Theorem (G. Popescu, 1995)

Let V_1, \ldots, V_d be a row contraction of isometries. For every polynomial $p = p(z_1, w_1, \ldots, z_d, w_d)$ in 2d noncommutative variables we have

$$\|p(V_1, V_1^*, \ldots, V_d, V_d^*)\| \le \|p(S_1, S_1^*, \ldots, S_d, S_d^*)\|.$$

The universality of the multidimensional shift (cont.)

Corollary

The map

$$S_i \mapsto T_i \qquad (1 \leq i \leq d)$$

extends to a norm-decreasing unital homomorphism $Alg(S_1, \ldots, S_d) \rightarrow Alg(T_1, \ldots, T_d).$

Corollary

The map

$$S_i \mapsto V_i \qquad (1 \leq i \leq d)$$

extends to a *-homomorphism $C^*(S_1, \ldots, S_d) \to C^*(V_1, \ldots, V_d)$. The algebra $C^*(S_1, \ldots, S_d)$ is called the d-Toeplitz algebra.

What about the converse?

If $\pi : C^*(S_1, \ldots, S_d) \to B(\mathcal{H})$ is a *-homomorphism, define $V_i := \pi(S_i)$. Then V_1, \ldots, V_d is a row contraction of isometries. Again, $d \in \mathbb{N}$ and T_1, \ldots, T_d is a row contraction.

• We wish to find a "universal object" for *commuting* row contractions:

$$T_i T_j = T_j T_i.$$

 More generally: if Q is a set of homogeneous polynomials of d noncommuting variables, which object is "universal" for row contractions with

$$q(T_1,\ldots,T_d)=0$$
 for all $q\in \mathcal{Q}$?

(take $\mathcal{Q} = \{z_i z_j - z_j z_i : 1 \leq i, j \leq d\}$ for the commuting example).

- The shifts S_1, \ldots, S_d are no good—for example, they don't commute.
- So how can we make them commute? That is, how can we make

$$e_1\otimes e_2\otimes x$$
 be "equal" to $e_2\otimes e_1\otimes x$ for all $x\in (\mathbb{C}^d)^{\otimes n}$?

The symmetric subproduct system

For all n ≥ 2, let Y(n) ⊆ (C^d)^{⊗n} be generated by all differences of the form

$$z_1 \otimes \cdots \otimes z_n - z_{\pi(1)} \otimes \cdots \otimes z_{\pi(n)}$$

where $z_1 \ldots, z_n \in \mathbb{C}^d$ and π is a permutation of $\{1, \ldots, n\}$.

- Set $X(n) := Y(n)^{\perp}$. Write p_n for the projection of $(\mathbb{C}^d)^{\otimes n}$ onto X(n). Ex.: $d = 2 \Longrightarrow X(2) = \operatorname{span} \{e_1 \otimes e_1, e_2 \otimes e_2, e_1 \otimes e_2 + e_2 \otimes e_1\}$.
- Consider the symmetric Fock space

$$\mathcal{F}_d^{\mathrm{Symm}} := \mathbb{C} \oplus \mathbb{C}^d \oplus X(2) \oplus X(3) \oplus \ldots \subseteq \mathcal{F}_d.$$

• For $1 \le i \le d$, consider also the symmetric shift

$$S_i^{\mathrm{Symm}} \in B(\mathcal{F}_d^{\mathrm{Symm}})$$

defined by "left tensoring by e_i " and then "projecting": it maps an element $x \in X(n)$ to $p_{n+1}(e_i \otimes x) \in X(n+1)$. • Now the shifts do commute: $S_i^{\text{Symm}} S_i^{\text{Symm}} = S_i^{\text{Symm}} S_i^{\text{Symm}}$ for all i, j!

Theorem (Arveson, 1998)

Let T_1, \ldots, T_d be a row contraction of commuting operators. Then the map

 $S_i^{\mathrm{Symm}} \mapsto T_i$

extends to a norm-decreasing unital homomorphism $Alg(S_1^{Symm}, \ldots, S_d^{Symm}) \rightarrow Alg(T_1, \ldots, T_d).$

What about *-homomorphisms of the C*-algebra $C^*(S_1^{\text{Symm}}, \ldots, S_d^{\text{Symm}})$?

16 / 26

イロト イポト イヨト イヨト 二日

Theorem (Arveson, 1998)

Let V_1, \ldots, V_d be row contraction of commuting operators in $B(\mathcal{H})$. There exists a *-homomorphism $\pi : C^*(S_1^{\text{Symm}}, \ldots, S_d^{\text{Symm}}) \to B(\mathcal{H})$ with $\pi(S_i^{\text{Symm}}) = V_i$

if and only if

there exist <u>normal commuting</u> operators $U_1, \ldots, U_d \in B(\mathcal{H}_1)$ with $U_1U_1^* + \ldots + U_dU_d^* = \mathcal{I}_{\mathcal{H}_1}$ and a cardinal \mathfrak{n} such that

$$V_i \cong (S_i^{\mathrm{Symm}})^{(\mathfrak{n})} \oplus U_i.$$

Ami Viselter (Technion)

▶ non comm Wold

Definition

A subproduct system is a sequence $X = (X(n))_{n \in \mathbb{Z}_+}$ such that:

- X(0) = C, X(1) = C^d and X(n) is a subspace of (C^d)^{⊗n}, n ≥ 2
 X(n + m) ⊆ X(n) ⊗ X(m)
- The X-Fock space: $\mathcal{F}_X := X(0) \oplus X(1) \oplus X(2) \oplus \ldots \subseteq \mathcal{F}_d.$
- For $1 \le i \le d$, the X-shift

$$S_i^X \in B(\mathcal{F}_X)$$

is defined by "left tensoring by e_i " and then "projecting": it maps an element $x \in X(n)$ to $p_{n+1}(e_i \otimes x) \in X(n+1)$.

Trivial example: $X(n) = (\mathbb{C}^d)^{\otimes n}$ (product system). Another example: the symmetric subproduct system from before

18 / 26

General subproduct systems (cont.)

• Given a set Q of homogeneous polynomials of d noncommuting variables, there exists a subproduct system $X = X_Q$ such that

$$q(S_1^X,\ldots,S_d^X)=0$$

for all $q \in Q$, and—

• this equality holds "only" for $q \in \mathcal{Q}$.

Definition

Let X be as above. A row contraction T_1, \ldots, T_d which satisfies

$$q(T_1,\ldots,T_d)=0$$

for all $q \in Q$ is called a *contractive covariant representation* of X.

Theorem (G. Popescu, 2006)

Let T_1, \ldots, T_d be a contractive covariant representation of X. Then the map

 $S_i^X \mapsto T_i$

extends to a norm-decreasing unital homomorphism $Alg(S_1^X, \ldots, S_d^X) \rightarrow Alg(T_1 \ldots, T_d).$

What about
$$C^*(S_1^X,\ldots,S_d^X)$$
?

20 / 26

Universality of the X-shift (cont.)

Let V_1, \ldots, V_d be a contractive covariant representation of X.

• Define a linear map $V(\cdot): \left(\mathbb{C}^d
ight)^{\otimes n} o B(\mathcal{H})$ (suppressing the n) by

$$V(e_{\alpha_1}\otimes\cdots\otimes e_{\alpha_n}):=V_{\alpha_1}\cdots V_{\alpha_n}.$$

Let

$$A_n := \sum_{(\alpha_1,...,\alpha_n) \in \{1,...,d\}^n} V(e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n}) V(e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n})^*.$$

Then $\{A_n\}_{n=1}^{\infty}$ is a decreasing sequence of positive operators (?!). It thus admits a *strong* limit, A.

Call (V_1, \ldots, V_d) a *relative isometry* if for every $n \in \mathbb{N}$:

• A_n is a projection

②
$$(I - A_1)V(x)^*V(x)(I - A_1) = \|p_n(x)\|(I - A_1)$$
 for all $x \in (ℂ^d)^{\otimes n}$

Universality of the X-shift (cont.)

- Fix $n \in \mathbb{N}$, and choose a base x_1, \ldots, x_{k_n} for $X(n) \subseteq (\mathbb{C}^d)^{\otimes n}$.
- Define $B_n: \mathcal{H} \to X(n) \otimes \mathcal{H}$ by $B_nh := \sum_{k=1}^{k_n} x_k \otimes V(x_k)^*h$.

Theorem (V., 2010)

Let X be a subproduct system and $V_1 \dots, V_d$ be a contractive covariant representation of X. Assume that

1 (V_1, \ldots, V_d) is relatively isometric.

2) For all
$$n \in \mathbb{N}$$
, $x \in X(n)$ and $h \in \mathcal{H}$,

$$\lim_{\ell\to\infty}\|(p_\ell\otimes A)(x\otimes B_{\ell-n}h)\|_{X(\ell)\otimes\mathcal{H}}=\|V(x)h\|_{\mathcal{H}}.$$

Then there exists a *-homomorphism $\pi : C^*(S_1^X, \ldots, S_d^X) \to B(\mathcal{H})$ with $\pi(S_i^X) = V_i$.

< □ > < □ > < □ > < □ > < □ > < □ >

3

Theorem (cont.)

Moreover, there exist a *-homomorphism $\pi_1 : C^*(S_1^X, \ldots, S_d^X) \to B(\mathcal{H}_1)$ and a cardinal \mathfrak{n} such that—upon defining $U_i := \pi_1(S_i^X)$ we have $U_1U_1^* + \ldots + U_dU_d^* = I_{\mathcal{H}_1}$ and

$$V_i \cong (S_i^X)^{(\mathfrak{n})} \oplus U_i.$$

What about necessity?

- The relative isometricity condition is always necessary
- The second condition is necessary in the two prototype cases—
 - row contraction of isometries V_1,\ldots,V_d
 - the symmetric case Arveson
- In general?

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

3

Construction of subproduct systems

General notation:

• For
$$1 \leq lpha_1, \dots, a_n \leq d$$
, let $e_lpha := e_{lpha_1} \otimes \dots \otimes e_{lpha_n} \in (\mathbb{C}^d)^{\otimes n}$

• For
$$q\in\mathbb{C}\,\langle z_1,\ldots,z_d
angle$$
, say $q(z)=\sum c_lpha z^lpha$, let $q(e):=\sum c_lpha e_lpha\in\mathcal{F}_d$.

Fix a subset $\mathcal{Q} \subseteq \mathbb{C} \langle z_1, \ldots, z_d \rangle$ of homogeneous polynomials.

- Define \$\mathcal{I} := \langle \mathcal{Q} \rangle \vec \langle \langle z_1, ..., z_d \rangle, and let \$\mathcal{I}^{(n)}\$ denote the set of all homogeneous polynomials of degree \$n\$ in \$\mathcal{I}\$.
- The subproduct system is constructed as follows:

$$Y_{\mathcal{I}}(n):=\left\{q(e):q\in\mathcal{I}^{(n)}
ight\}$$
 and $X_{\mathcal{I}}(n):=(\mathbb{C}^d)^{\otimes n}\ominus Y_{\mathcal{I}}(n).$

Proposition (O. M. Shalit and B. Solel, 2009)

O The mapping *I* → *X_I* is a bijection between all (proper) homogeneous ideals and all subproduct systems.

2 As promised: given $q \in \mathbb{C} \langle z_1, \ldots, z_d \rangle$, we have

$$q(S_1^X,\ldots,S_d^X)=0 \quad \Longleftrightarrow \quad q\in\mathcal{I}.$$

Ami Viselter (Technion)

Epilogue: the general setting

- Let *M* be a *C**-algebra. A *Hilbert C**-*module* over *M* is a (complete) right *M*-module with an *M*-valued "inner product" (rigging).
- A Hilbert C*-module over *M* with a certain type of left *M*-action is called a C*-correspondence.
- Let E be a C*-correspondence. The "full" Fock space is

 $\mathcal{F}(E) = \mathscr{M} \oplus E \oplus E^{\otimes 2} \oplus E^{\otimes 3} \oplus \dots$

- (Full) shifts are defined by "left tensoring".
- The universality of the full shifts was established by M. V. Pimsner (1995) and P. S. Muhly & B. Solel (1998).
- Everything else can also be defined in this context: subproduct systems, covariant representations, the shift operators, the Toeplitz algebra, ...
- Universality properties of the subproduct system shifts (V.).

Thank you for listening!

æ

26 / 26