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Contractions

Notation

Let H denote a complex Hilbert space throughout.

De�nition

A contraction is an operator T ∈ B(H) with ‖T‖ ≤ 1.

There are plentiful contractions!
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Examples

Examples

1 Every (orthogonal) projection is of norm 1

2 K ⊆ D, H := L2(K ), T : f (z) 7→ zf (z)

3 Direct sums: if Tα ∈ B(Hα) is a contraction for all α ∈ I , then
⊕
α∈I

Tα

is a contraction over
⊕
α∈I
Hα.

Important class of contractions�isometries

An operator V ∈ B(H) is a isometry if ‖Vx‖ = ‖x‖ for all x ∈ H;
equivalently: (Vx ,Vy) = (x , y) for all x , y ∈ H;
equivalently: V ∗V = I

A surjective isometry is called a unitary

equivalently: V ∗V = I = VV ∗
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Isometries

Constructing isometries is easy

Let (eα)α∈I be an orthonormal base of H,
and let (fα)α∈I be an orthonormal system in H (not necessarily a base!).

There exists a unique bounded operator V ∈ B(H) with

V : eα 7→ fα.

This operator is an isometry.

Example

Let H := `2(N) = C⊕ C⊕ C⊕ . . .
Consider the standard base (bn)N where bn = (0, . . . , 0, 1, 0, . . .). The
(unilateral) shift operator S ∈ B(H) is de�ned by

S : bn 7→ bn+1.

S is evidently not unitary!
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Operator algebras & C
∗-algebras

De�nition

A (concrete) operator algebra is a norm-closed subalgebra of some B(H).

De�nition

A C ∗-algebra is a Banach algebra with involution such that

‖A∗A‖ = ‖A‖2 .

Theorem (Gelfand-Naimark-Segal)

Every C ∗-algebra �sits� in B(H) for a suitable Hilbert space H
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The universality of the shift

Let V ∈ B(H) be an isometry.

The Wold decomposition (von Neumann, 1929; Halmos, 1961)

There exist a unitary U ∈ B(H1) and a cardinal n such that

V ∼= S (n) ⊕ U.

Particularly, H ∼=
⊕

0≤m<n
`2(N)⊕H1.
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The universality of the shift (cont.)

Theorem (Von Neumann's inequality (1951); later Sz.-Nagy�Foia³)

Let T be a contraction.

For every polynomial p = p(z) we have

‖p(T )‖ ≤ ‖p(S)‖ .

Could you guess what is ‖p(S)‖?

Theorem

Let V be an isometry.

For every polynomial p = p(z ,w) in two noncommutative variables we have

‖p(V ,V ∗)‖ ≤ ‖p(S , S∗)‖ .
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The universality of the shift (cont.)

Consider Alg(S),C ∗(S) ⊆ B(`2(N)).

T ∈ B(H) a contraction V ∈ B(H) an isometry

AlgT ⊆ B(H) C ∗(V ) ⊆ B(H)
Question: ∃?π : Alg S → AlgT

with S 7→ T?

Question: ∃?π : C ∗(S)→ C ∗(V )
with S 7→ V ?

Yes! Consider p(S) 7→ p(T ) for
every polynomial p(z)

Yes! Consider

p(S , S∗) 7→ p(V ,V ∗) for every
polynomial p(z ,w)

Since ‖p(T )‖ ≤ ‖p(S)‖, this
map is well de�ned, and it

extends to a norm-decreasing

unital homomorphism from Alg S

to AlgT .

Since ‖p(V ,V ∗)‖ ≤ ‖p(S , S∗)‖,
this map is well de�ned, and it

extends to a ∗-homomorphism

from C ∗(S) to C ∗(V ).

C ∗(S) is called the Toeplitz algebra

Alg(S) ∼= the disc algebra A(D) (⊆ C (D)).
Ami Viselter (Technion) Subproduct systems IMU Winter Meeting 8 / 26



Tensor products of Hilbert spaces

Let H,K be Hilbert spaces.

De�nition

The tensor product H⊗K is the completion of the algebraic tensor

product of H and K (over C) with the inner product

(x1 ⊗ y1, x2 ⊗ y2)H⊗K = (x1, x2)H · (y1, y2)K.

If (eα)α∈I , (fβ)β∈J are bases for H, K, respectively, then (eα ⊗ fβ)(α,β)∈I×J
is a base for H⊗K.

If C ∈ B(H) and D ∈ B(K), there exists a unique operator

C ⊗ D ∈ B(H⊗K) with

(C ⊗ D)(x ⊗ y) = (Cx)⊗ (Dy).
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Multidimensional shift operators

Let d ∈ N be given. Consider Cd with the standard base {e1, . . . , ed}.
The Fock space is the Hilbert space

Fd :=
⊕
n∈Z+

(Cd )⊗n = C⊕ Cd ⊕ (Cd ⊗ Cd )⊕ (Cd ⊗ Cd ⊗ Cd )⊕ . . .

For 1 ≤ i ≤ d , consider the shift operator

Si ∈ B(Fd )

of �left tensoring by ei �: it maps an element x ∈ (Cd )⊗n to

ei ⊗ x ∈ (Cd )⊗(n+1).

The operators S1, . . . , Sd are isometries with orthogonal ranges.

The sum S1S
∗
1
+ . . .+ SdS

∗
d is a projection onto the subspace⊕

n∈N(Cd )⊗n of Fd .

In particular, S1S
∗
1
+ . . .+ SdS

∗
d is a contraction.

Ami Viselter (Technion) Subproduct systems IMU Winter Meeting 10 / 26



The universality of the multidimensional shift

Recall that the �simple� shift S was the �universal� isometry.

A row contraction is a family T1, . . . ,Td ∈ B(H) such that

T1T
∗
1
+ . . .+ TdT

∗
d is a contraction.

Consider a row contraction of isometries V1, . . . ,Vd
1.

Theorem (G. Popescu, 1989)

There exist isometries U1, . . . ,Ud ∈ B(H1) with U1U
∗
1
+ . . .+ UdU

∗
d = IH1

and a cardinal n such that

Vi
∼= S

(n)
i ⊕ Ui .

Particularly, H ∼=
⊕

0≤m<n
Fd ⊕H1. d=1

1
V1, . . . ,Vd necessarily have orthogonal ranges
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The universality of the multidimensional shift (cont.)

Theorem (G. Popescu, 1991)

Let T1, . . . ,Td be a row contraction.

For every polynomial p = p(z1, . . . , zd ) in d noncommutative variables we

have

‖p(T1, . . . ,Td )‖ ≤ ‖p(S1, . . . , Sd )‖ .

Theorem (G. Popescu, 1995)

Let V1, . . . ,Vd be a row contraction of isometries.

For every polynomial p = p(z1,w1, . . . , zd ,wd ) in 2d noncommutative

variables we have

‖p(V1,V
∗
1 , . . . ,Vd ,V

∗
d )‖ ≤ ‖p(S1, S∗1 , . . . , Sd , S

∗
d )‖ .

d=1
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The universality of the multidimensional shift (cont.)

Corollary

The map

Si 7→ Ti (1 ≤ i ≤ d)

extends to a norm-decreasing unital homomorphism

Alg(S1, . . . , Sd )→ Alg(T1, . . . ,Td ).

Corollary

The map

Si 7→ Vi (1 ≤ i ≤ d)

extends to a ∗-homomorphism C ∗(S1, . . . , Sd )→ C ∗(V1, . . . ,Vd ).
The algebra C ∗(S1, . . . , Sd ) is called the d-Toeplitz algebra.

What about the converse?

If π : C ∗(S1, . . . , Sd )→ B(H) is a ∗-homomorphism, de�ne Vi := π(Si ).
Then V1, . . . ,Vd is a row contraction of isometries.
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Constrained row contractions

Again, d ∈ N and T1, . . . ,Td is a row contraction.

We wish to �nd a �universal object� for commuting row contractions:

TiTj = TjTi .

More generally: if Q is a set of homogeneous polynomials of d

noncommuting variables, which object is �universal� for row

contractions with

q(T1, . . . ,Td ) = 0 for all q ∈ Q?

(take Q = {zizj − zjzi : 1 ≤ i , j ≤ d} for the commuting example).

The shifts S1, . . . , Sd are no good�for example, they don't commute.

So how can we make them commute? That is, how can we make

e1 ⊗ e2 ⊗ x be "equal" to e2 ⊗ e1 ⊗ x for all x ∈ (Cd )⊗n ?
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The symmetric subproduct system

For all n ≥ 2, let Y (n) ⊆ (Cd )⊗n be generated by all di�erences of the

form

z1 ⊗ · · · ⊗ zn − zπ(1) ⊗ · · · ⊗ zπ(n)

where z1 . . . , zn ∈ Cd and π is a permutation of {1, . . . , n}.
Set X (n) := Y (n)⊥. Write pn for the projection of (Cd )⊗n onto X (n).
Ex.: d = 2 =⇒ X (2) = span {e1 ⊗ e1, e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1} .
Consider the symmetric Fock space

FSymmd := C⊕ Cd ⊕ X (2)⊕ X (3)⊕ . . . ⊆ Fd .

For 1 ≤ i ≤ d , consider also the symmetric shift

SSymmi ∈ B(FSymmd )

de�ned by �left tensoring by ei � and then �projecting�: it maps an

element x ∈ X (n) to pn+1(ei ⊗ x) ∈ X (n + 1).

Now the shifts do commute: SSymmi SSymmj = SSymmj SSymmi for all i , j!
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Universality of the symmetric shifts

Theorem (Arveson, 1998)

Let T1, . . . ,Td be a row contraction of commuting operators.

Then the map

SSymmi 7→ Ti

extends to a norm-decreasing unital homomorphism

Alg(SSymm
1

, . . . , SSymmd )→ Alg(T1, . . . ,Td ).
non comm

What about ∗-homomorphisms of the C ∗-algebra C ∗(SSymm
1

, . . . , SSymmd )?
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Universality of the symmetric shifts (cont.)

Theorem (Arveson, 1998)

Let V1, . . . ,Vd be row contraction of commuting operators in B(H).

There exists a ∗-homomorphism π : C ∗(SSymm
1

, . . . , SSymmd )→ B(H) with
π(SSymmi ) = Vi

if and only if

there exist normal commuting operators U1, . . . ,Ud ∈ B(H1) with
U1U

∗
1
+ . . .+ UdU

∗
d = IH1 and a cardinal n such that

Vi
∼= (SSymmi )(n) ⊕ Ui .

non comm Wold
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General subproduct systems

De�nition

A subproduct system is a sequence X = (X (n))n∈Z+ such that:

X (0) = C, X (1) = Cd and X (n) is a subspace of (Cd )⊗n, n ≥ 2

X (n +m) ⊆ X (n)⊗ X (m)

The X-Fock space: FX := X (0)⊕ X (1)⊕ X (2)⊕ . . . ⊆ Fd .

For 1 ≤ i ≤ d , the X-shift

SX
i ∈ B(FX )

is de�ned by � left tensoring by ei � and then �projecting�: it maps an

element x ∈ X (n) to pn+1(ei ⊗ x) ∈ X (n + 1).

Trivial example: X (n) = (Cd )⊗n (product system).

Another example: the symmetric subproduct system from before
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General subproduct systems (cont.)

Given a set Q of homogeneous polynomials of d noncommuting

variables, there exists a subproduct system X = XQ such that

q(SX
1 , . . . , S

X
d ) = 0

for all q ∈ Q, and�
this equality holds �only� for q ∈ Q.

De�nition

Let X be as above. A row contraction T1, . . . ,Td which satis�es

q(T1, . . . ,Td ) = 0

for all q ∈ Q is called a contractive covariant representation of X .
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Universality of the X -shift

Theorem (G. Popescu, 2006)

Let T1, . . . ,Td be a contractive covariant representation of X .

Then the map

SX
i 7→ Ti

extends to a norm-decreasing unital homomorphism

Alg(SX
1
, . . . , SX

d )→ Alg(T1 . . . ,Td ).

What about C ∗(SX
1
, . . . , SX

d )?
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Universality of the X -shift (cont.)

Let V1, . . . ,Vd be a contractive covariant representation of X .

De�ne a linear map V (·) :
(
Cd
)⊗n → B(H) (suppressing the n) by

V (eα1 ⊗ · · · ⊗ eαn) := Vα1 · · ·Vαn .

Let

An :=
∑

(α1,...,αn)∈{1,...,d}n
V (eα1 ⊗ · · · ⊗ eαn)V (eα1 ⊗ · · · ⊗ eαn)

∗.

Then {An}∞n=1
is a decreasing sequence of positive operators (?!).

It thus admits a strong limit, A.

Call (V1, . . . ,Vd ) a relative isometry if for every n ∈ N:
1 An is a projection

2 (I − A1)V (x)∗V (x)(I − A1) = ‖pn(x)‖ (I − A1) for all x ∈
(
Cd
)⊗n

.
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Universality of the X -shift (cont.)

Fix n ∈ N, and choose a base x1, . . . , xkn for X (n) ⊆
(
Cd
)⊗n

.

De�ne Bn : H → X (n)⊗H by Bnh :=
∑kn

k=1
xk ⊗ V (xk)

∗h.

Theorem (V., 2010)

Let X be a subproduct system and V1 . . . ,Vd be a contractive covariant

representation of X . Assume that

1 (V1, . . . ,Vd ) is relatively isometric.

2 For all n ∈ N, x ∈ X (n) and h ∈ H,

lim
`→∞

‖(p` ⊗ A)(x ⊗ B`−nh)‖X (`)⊗H = ‖V (x)h‖H .

Then there exists a ∗-homomorphism π : C ∗(SX
1
, . . . , SX

d )→ B(H) with
π(SX

i ) = Vi .
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Universality of the X -shift (cont.)

Theorem (cont.)

Moreover, there exist a ∗-homomorphism π1 : C
∗(SX

1
, . . . , SX

d )→ B(H1)
and a cardinal n such that�upon de�ning Ui := π1(S

X
i )�

we have U1U
∗
1
+ . . .+ UdU

∗
d = IH1 and

Vi
∼= (SX

i )(n) ⊕ Ui .

What about necessity?

The relative isometricity condition is always necessary

The second condition is necessary in the two prototype cases�

row contraction of isometries V1, . . . ,Vd
the symmetric case Arveson

In general?
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Construction of subproduct systems

General notation:

For 1 ≤ α1, . . . , an ≤ d , let eα := eα1 ⊗ · · · ⊗ eαn ∈ (Cd )⊗n.

For q ∈ C 〈z1, . . . , zd 〉, say q(z) =
∑

cαz
α, let q(e) :=

∑
cαeα ∈ Fd .

Fix a subset Q ⊆ C 〈z1, . . . , zd 〉 of homogeneous polynomials.

De�ne I := 〈Q〉 E C 〈z1, . . . , zd 〉, and let I(n) denote the set of all

homogeneous polynomials of degree n in I.
The subproduct system is constructed as follows:

YI(n) :=
{
q(e) : q ∈ I(n)

}
and XI(n) := (Cd )⊗n 	 YI(n).

Proposition (O. M. Shalit and B. Solel, 2009)

1 The mapping I 7→ XI is a bijection between all (proper) homogeneous

ideals and all subproduct systems.

2 As promised: given q ∈ C 〈z1, . . . , zd 〉, we have

q(SX
1 , . . . , S

X
d ) = 0 ⇐⇒ q ∈ I.
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Epilogue: the general setting

Let M be a C ∗-algebra. A Hilbert C ∗-module over M is a (complete)

right M -module with an M -valued �inner product� (rigging).

A Hilbert C ∗-module over M with a certain type of left M -action is

called a C ∗-correspondence.

Let E be a C ∗-correspondence. The �full� Fock space is

F(E ) = M ⊕ E ⊕ E⊗2 ⊕ E⊗3 ⊕ . . .

(Full) shifts are de�ned by �left tensoring�.

The universality of the full shifts was established by M. V. Pimsner

(1995) and P. S. Muhly & B. Solel (1998).

Everything else can also be de�ned in this context: subproduct

systems, covariant representations, the shift operators, the Toeplitz

algebra, ...

Universality properties of the subproduct system shifts (V.).
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Thank you for listening!
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