Covariant Representations of Subproduct Systems

From harmonic analysis of Hilbert space contractions to modern research

Ami Viselter

Technion

IMU Winter Meeting
31.12.2010

Contractions

Notation

Let \mathcal{H} denote a complex Hilbert space throughout.

Definition

A contraction is an operator $T \in B(\mathcal{H})$ with $\|T\| \leq 1$.
There are plentiful contractions!

Examples

Examples

(1) Every (orthogonal) projection is of norm 1
(2) $K \subseteq \overline{\mathbb{D}}, \mathcal{H}:=L^{2}(K), T: f(z) \mapsto z f(z)$
(3) Direct sums: if $T_{\alpha} \in B\left(H_{\alpha}\right)$ is a contraction for all $\alpha \in I$, then $\bigoplus_{\alpha \in I} T_{\alpha}$ is a contraction over $\bigoplus_{\alpha \in I} \mathcal{H}_{\alpha}$.

Important class of contractions-isometries

An operator $V \in B(\mathcal{H})$ is a isometry if $\|V x\|=\|x\|$ for all $x \in \mathcal{H}$;

- equivalently: $(V x, V y)=(x, y)$ for all $x, y \in \mathcal{H}$;
- equivalently: $V^{*} V=I$

A surjective isometry is called a unitary

- equivalently: $V^{*} V=I=V V^{*}$

Isometries

Constructing isometries is easy

Let $\left(e_{\alpha}\right)_{\alpha \in I}$ be an orthonormal base of \mathcal{H}, and let $\left(f_{\alpha}\right)_{\alpha \in I}$ be an orthonormal system in \mathcal{H} (not necessarily a base!). There exists a unique bounded operator $V \in B(\mathcal{H})$ with

$$
V: e_{\alpha} \mapsto f_{\alpha}
$$

This operator is an isometry.

Example

Let $\mathcal{H}:=\ell_{2}(\mathbb{N})=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \ldots$
Consider the standard base $\left(b_{n}\right)_{\mathbb{N}}$ where $b_{n}=(0, \ldots, 0,1,0, \ldots)$. The (unilateral) shift operator $S \in B(\mathcal{H})$ is defined by

$$
S: b_{n} \mapsto b_{n+1}
$$

S is evidently not unitary!

Operator algebras \& C*-algebras

Definition

A (concrete) operator algebra is a norm-closed subalgebra of some $B(\mathcal{H})$.

Definition

A C*-algebra is a Banach algebra with involution such that

$$
\left\|A^{*} A\right\|=\|A\|^{2}
$$

Theorem (Gelfand-Naimark-Segal)

Every C^{*}-algebra "sits" in $B(\mathcal{H})$ for a suitable Hilbert space \mathcal{H}

The universality of the shift

Let $V \in B(\mathcal{H})$ be an isometry.
The Wold decomposition (von Neumann, 1929; Halmos, 1961)
There exist a unitary $U \in B\left(\mathcal{H}_{1}\right)$ and a cardinal \mathfrak{n} such that

$$
V \cong S^{(\mathfrak{n})} \oplus U
$$

Particularly, $\mathcal{H} \cong \bigoplus_{0 \leq \mathfrak{m}<\mathfrak{n}} \ell_{2}(\mathbb{N}) \oplus \mathcal{H}_{1}$.

The universality of the shift (cont.)

Theorem (Von Neumann's inequality (1951); later Sz.-Nagy-Foiaș)

Let T be a contraction.
For every polynomial $p=p(z)$ we have

$$
\|p(T)\| \leq\|p(S)\| .
$$

Could you guess what is $\|p(S)\|$?

Theorem

Let V be an isometry.
For every polynomial $p=p(z, w)$ in two noncommutative variables we have

$$
\left\|p\left(V, V^{*}\right)\right\| \leq\left\|p\left(S, S^{*}\right)\right\|
$$

The universality of the shift (cont.)

Consider $\operatorname{Alg}(S), C^{*}(S) \subseteq B\left(\ell_{2}(\mathbb{N})\right)$.
\(\left.\left.$$
\begin{array}{|c|c|}\hline T \in B(\mathcal{H}) \text { a contraction } & V \in B(\mathcal{H}) \text { an isometry } \\
\hline \hline \operatorname{Alg} T \subseteq B(\mathcal{H}) & C^{*}(V) \subseteq B(\mathcal{H}) \\
\hline \text { Question: } \exists \text { ? } \pi: \operatorname{Alg} S \rightarrow \mathrm{Alg} T & \text { Question: } \exists ? \pi: C^{*}(S) \rightarrow C^{*}(V) \\
\text { with } S \mapsto T ? & \text { with } S \mapsto V ?\end{array}
$$ \right\rvert\, $$
\begin{array}{c}\text { Yes! Consider } \\
\text { Yes! Consider } p(S) \mapsto p(T) \text { for } \\
\text { every polynomial } p(z)\end{array}
$$ \begin{array}{c}p\left(S, S^{*}\right) \mapsto p\left(V, V^{*}\right) for every

polynomial p(z, w)\end{array}\right]\)| Since $\\|p(T)\\| \leq\\|p(S)\\|$, this |
| :---: |
| map is well defined, and it |
| extends to a norm-decreasing |
| unital homomorphism from Alg S |
| to Alg T. | | Since $\left\\|p\left(V, V^{*}\right)\right\\| \leq\left\\|p\left(S, S^{*}\right)\right\\|$, |
| :---: |
| this map is well defined, and it |
| extends to a $*$-homomorphism |
| from $C^{*}(S)$ to $C^{*}(V)$. |

$C^{*}(S)$ is called the Toeplitz algebra
$\operatorname{Alg}(S) \cong$ the disc algebra $A(\mathbb{D})(\subseteq C(\overline{\mathbb{D}}))$.

Tensor products of Hilbert spaces

Let \mathcal{H}, \mathcal{K} be Hilbert spaces.

Definition

The tensor product $\mathcal{H} \otimes \mathcal{K}$ is the completion of the algebraic tensor product of \mathcal{H} and \mathcal{K} (over \mathbb{C}) with the inner product

$$
\left(x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right)_{\mathcal{H} \otimes \mathcal{K}}=\left(x_{1}, x_{2}\right)_{\mathcal{H}} \cdot\left(y_{1}, y_{2}\right)_{\mathcal{K}} .
$$

If $\left(e_{\alpha}\right)_{\alpha \in I},\left(f_{\beta}\right)_{\beta \in J}$ are bases for \mathcal{H}, \mathcal{K}, respectively, then $\left(e_{\alpha} \otimes f_{\beta}\right)_{(\alpha, \beta) \in I \times J}$ is a base for $\mathcal{H} \otimes \mathcal{K}$.

If $C \in B(\mathcal{H})$ and $D \in B(\mathcal{K})$, there exists a unique operator $C \otimes D \in B(\mathcal{H} \otimes \mathcal{K})$ with

$$
(C \otimes D)(x \otimes y)=(C x) \otimes(D y)
$$

Multidimensional shift operators

Let $d \in \mathbb{N}$ be given. Consider \mathbb{C}^{d} with the standard base $\left\{e_{1}, \ldots, e_{d}\right\}$.

- The Fock space is the Hilbert space

$$
\mathcal{F}_{d}:=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\mathbb{C}^{d}\right)^{\otimes n}=\mathbb{C} \oplus \mathbb{C}^{d} \oplus\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right) \oplus\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}\right) \oplus \ldots
$$

- For $1 \leq i \leq d$, consider the shift operator

$$
S_{i} \in B\left(\mathcal{F}_{d}\right)
$$

of "left tensoring by e_{i} ": it maps an element $x \in\left(\mathbb{C}^{d}\right)^{\otimes n}$ to $e_{i} \otimes x \in\left(\mathbb{C}^{d}\right)^{\otimes(n+1)}$.

- The operators S_{1}, \ldots, S_{d} are isometries with orthogonal ranges.
- The sum $S_{1} S_{1}^{*}+\ldots+S_{d} S_{d}^{*}$ is a projection onto the subspace $\bigoplus_{n \in \mathbb{N}}\left(\mathbb{C}^{d}\right)^{\otimes n}$ of \mathcal{F}_{d}.
In particular, $S_{1} S_{1}^{*}+\ldots+S_{d} S_{d}^{*}$ is a contraction.

The universality of the multidimensional shift

Recall that the "simple" shift S was the "universal" isometry.

- A row contraction is a family $T_{1}, \ldots, T_{d} \in B(\mathcal{H})$ such that $T_{1} T_{1}^{*}+\ldots+T_{d} T_{d}^{*}$ is a contraction.
Consider a row contraction of isometries $V_{1}, \ldots, V_{d}{ }^{1}$.

Theorem (G. Popescu, 1989)

There exist isometries $U_{1}, \ldots, U_{d} \in B\left(\mathcal{H}_{1}\right)$ with $U_{1} U_{1}^{*}+\ldots+U_{d} U_{d}^{*}=I_{\mathcal{H}_{1}}$ and a cardinal \mathfrak{n} such that

$$
V_{i} \cong S_{i}^{(\mathfrak{n})} \oplus U_{i}
$$

Particularly, $\mathcal{H} \cong \bigoplus_{0 \leq \mathfrak{m}<\mathfrak{n}} \mathcal{F}_{d} \oplus \mathcal{H}_{1}$.
${ }^{1} V_{1}, \ldots, V_{d}$ necessarily have orthogonal ranges

The universality of the multidimensional shift (cont.)

Theorem (G. Popescu, 1991)

Let T_{1}, \ldots, T_{d} be a row contraction.
For every polynomial $p=p\left(z_{1}, \ldots, z_{d}\right)$ in d noncommutative variables we have

$$
\left\|p\left(T_{1}, \ldots, T_{d}\right)\right\| \leq\left\|p\left(S_{1}, \ldots, S_{d}\right)\right\|
$$

Theorem (G. Popescu, 1995)

Let V_{1}, \ldots, V_{d} be a row contraction of isometries.
For every polynomial $p=p\left(z_{1}, w_{1}, \ldots, z_{d}, w_{d}\right)$ in $2 d$ noncommutative variables we have

$$
\left\|p\left(V_{1}, V_{1}^{*}, \ldots, V_{d}, V_{d}^{*}\right)\right\| \leq\left\|p\left(S_{1}, S_{1}^{*}, \ldots, S_{d}, S_{d}^{*}\right)\right\|
$$

The universality of the multidimensional shift (cont.)

Corollary

The map

$$
S_{i} \mapsto T_{i} \quad(1 \leq i \leq d)
$$

extends to a norm-decreasing unital homomorphism
$\operatorname{Alg}\left(S_{1}, \ldots, S_{d}\right) \rightarrow \operatorname{Alg}\left(T_{1}, \ldots, T_{d}\right)$.

Corollary

The map

$$
S_{i} \mapsto V_{i} \quad(1 \leq i \leq d)
$$

extends to a *-homomorphism $C^{*}\left(S_{1}, \ldots, S_{d}\right) \rightarrow C^{*}\left(V_{1}, \ldots, V_{d}\right)$. The algebra $C^{*}\left(S_{1}, \ldots, S_{d}\right)$ is called the d-Toeplitz algebra.

What about the converse?

If $\pi: C^{*}\left(S_{1}, \ldots, S_{d}\right) \rightarrow B(\mathcal{H})$ is a $*$-homomorphism, define $V_{i}:=\pi\left(S_{i}\right)$. Then V_{1}, \ldots, V_{d} is a row contraction of isometries.

Constrained row contractions

Again, $d \in \mathbb{N}$ and T_{1}, \ldots, T_{d} is a row contraction.

- We wish to find a "universal object" for commuting row contractions:

$$
T_{i} T_{j}=T_{j} T_{i}
$$

- More generally: if \mathcal{Q} is a set of homogeneous polynomials of d noncommuting variables, which object is "universal" for row contractions with

$$
q\left(T_{1}, \ldots, T_{d}\right)=0 \quad \text { for all } q \in \mathcal{Q} ?
$$

(take $\mathcal{Q}=\left\{z_{i} z_{j}-z_{j} z_{i}: 1 \leq i, j \leq d\right\}$ for the commuting example).

- The shifts S_{1}, \ldots, S_{d} are no good-for example, they don't commute.
- So how can we make them commute? That is, how can we make

$$
e_{1} \otimes e_{2} \otimes x \text { be "equal" to } e_{2} \otimes e_{1} \otimes x \text { for all } x \in\left(\mathbb{C}^{d}\right)^{\otimes n} ?
$$

The symmetric subproduct system

- For all $n \geq 2$, let $Y(n) \subseteq\left(\mathbb{C}^{d}\right)^{\otimes n}$ be generated by all differences of the form

$$
z_{1} \otimes \cdots \otimes z_{n}-z_{\pi(1)} \otimes \cdots \otimes z_{\pi(n)}
$$

where $z_{1} \ldots, z_{n} \in \mathbb{C}^{d}$ and π is a permutation of $\{1, \ldots, n\}$.

- Set $X(n):=Y(n)^{\perp}$. Write p_{n} for the projection of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ onto $X(n)$. Ex.: $d=2 \Longrightarrow X(2)=\operatorname{span}\left\{e_{1} \otimes e_{1}, e_{2} \otimes e_{2}, e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right\}$.
- Consider the symmetric Fock space

$$
\mathcal{F}_{d}^{\text {Symm }}:=\mathbb{C} \oplus \mathbb{C}^{d} \oplus X(2) \oplus X(3) \oplus \ldots \subseteq \mathcal{F}_{d}
$$

- For $1 \leq i \leq d$, consider also the symmetric shift

$$
S_{i}^{\text {Symm }} \in B\left(\mathcal{F}_{d}^{\text {Symm }}\right)
$$

defined by "left tensoring by e_{i} " and then "projecting": it maps an element $x \in X(n)$ to $p_{n+1}\left(e_{i} \otimes x\right) \in X(n+1)$.

- Now the shifts do commute: $S_{i}^{\text {Symm }} S_{j}^{\text {Symm }}=S_{j}^{\text {Symm }} S_{i}^{\text {Symm }}$ for all i, j !

Universality of the symmetric shifts

Theorem (Arveson, 1998)

Let T_{1}, \ldots, T_{d} be a row contraction of commuting operators.
Then the map

$$
S_{i}^{\text {Symm }} \mapsto T_{i}
$$

extends to a norm-decreasing unital homomorphism
$\operatorname{Alg}\left(S_{1}^{\text {Symm }}, \ldots, S_{d}^{\text {Symm }}\right) \rightarrow \operatorname{Alg}\left(T_{1}, \ldots, T_{d}\right)$.

What about $*$-homomorphisms of the C^{*}-algebra $C^{*}\left(S_{1}^{\text {Symm }}, \ldots, S_{d}^{\text {Symm }}\right)$?

Universality of the symmetric shifts (cont.)

Theorem (Arveson, 1998)

Let V_{1}, \ldots, V_{d} be row contraction of commuting operators in $B(\mathcal{H})$.
There exists a $*$-homomorphism $\pi: C^{*}\left(S_{1}^{\text {Symm }}, \ldots, S_{d}^{\text {Symm }}\right) \rightarrow B(\mathcal{H})$ with $\pi\left(S_{i}^{\text {Symm }}\right)=V_{i}$

if and only if

there exist normal commuting operators $U_{1}, \ldots, U_{d} \in B\left(\mathcal{H}_{1}\right)$ with $U_{1} U_{1}^{*}+\ldots+U_{d} U_{d}^{*}=\mathcal{I}_{\mathcal{H}_{1}}$ and a cardinal \mathfrak{n} such that

$$
V_{i} \cong\left(S_{i}^{\text {Symm }}\right)^{(\mathfrak{n})} \oplus U_{i}
$$

General subproduct systems

Definition

A subproduct system is a sequence $X=(X(n))_{n \in \mathbb{Z}_{+}}$such that:

- $X(0)=\mathbb{C}, X(1)=\mathbb{C}^{d}$ and $X(n)$ is a subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}, n \geq 2$
- $X(n+m) \subseteq X(n) \otimes X(m)$
- The X-Fock space: $\mathcal{F}_{X}:=X(0) \oplus X(1) \oplus X(2) \oplus \ldots \subseteq \mathcal{F}_{d}$.
- For $1 \leq i \leq d$, the X-shift

$$
S_{i}^{X} \in B\left(\mathcal{F}_{X}\right)
$$

is defined by "left tensoring by e_{i} " and then "projecting": it maps an element $x \in X(n)$ to $p_{n+1}\left(e_{i} \otimes x\right) \in X(n+1)$.
Trivial example: $X(n)=\left(\mathbb{C}^{d}\right)^{\otimes n}$ (product system).
Another example: the symmetric subproduct system from before

General subproduct systems (cont.)

- Given a set \mathcal{Q} of homogeneous polynomials of d noncommuting variables, there exists a subproduct system $X=X_{\mathcal{Q}}$ such that

$$
q\left(S_{1}^{X}, \ldots, S_{d}^{X}\right)=0
$$

for all $q \in \mathcal{Q}$, and-

- this equality holds "only" for $q \in \mathcal{Q}$.

Definition

Let X be as above. A row contraction T_{1}, \ldots, T_{d} which satisfies

$$
q\left(T_{1}, \ldots, T_{d}\right)=0
$$

for all $q \in \mathcal{Q}$ is called a contractive covariant representation of X.

Universality of the X-shift

Theorem (G. Popescu, 2006)

Let T_{1}, \ldots, T_{d} be a contractive covariant representation of X.
Then the map

$$
S_{i}^{X} \mapsto T_{i}
$$

extends to a norm-decreasing unital homomorphism $\operatorname{Alg}\left(S_{1}^{X}, \ldots, S_{d}^{X}\right) \rightarrow \operatorname{Alg}\left(T_{1} \ldots, T_{d}\right)$.

What about $C^{*}\left(S_{1}^{X}, \ldots, S_{d}^{X}\right)$?

Universality of the X-shift (cont.)

Let V_{1}, \ldots, V_{d} be a contractive covariant representation of X.

- Define a linear map $V(\cdot):\left(\mathbb{C}^{d}\right)^{\otimes n} \rightarrow B(\mathcal{H})$ (suppressing the n) by

$$
V\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right):=V_{\alpha_{1}} \cdots V_{\alpha_{n}}
$$

- Let

$$
A_{n}:=\sum_{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{1, \ldots, d\}^{n}} V\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right) V\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right)^{*} .
$$

Then $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of positive operators (?!). It thus admits a strong limit, A.
Call $\left(V_{1}, \ldots, V_{d}\right)$ a relative isometry if for every $n \in \mathbb{N}$:
(1) A_{n} is a projection
(2) $\left(I-A_{1}\right) V(x)^{*} V(x)\left(I-A_{1}\right)=\left\|p_{n}(x)\right\|\left(I-A_{1}\right)$ for all $x \in\left(\mathbb{C}^{d}\right)^{\otimes n}$.

Universality of the X-shift (cont.)

- Fix $n \in \mathbb{N}$, and choose a base $x_{1}, \ldots, x_{k_{n}}$ for $X(n) \subseteq\left(\mathbb{C}^{d}\right)^{\otimes n}$.
- Define $B_{n}: \mathcal{H} \rightarrow X(n) \otimes \mathcal{H}$ by $B_{n} h:=\sum_{k=1}^{k_{n}} x_{k} \otimes V\left(x_{k}\right)^{*} h$.

Theorem (V., 2010)

Let X be a subproduct system and $V_{1} \ldots, V_{d}$ be a contractive covariant representation of X. Assume that
(1) $\left(V_{1}, \ldots, V_{d}\right)$ is relatively isometric.
(2) For all $n \in \mathbb{N}, x \in X(n)$ and $h \in \mathcal{H}$,

$$
\lim _{\ell \rightarrow \infty}\left\|\left(p_{\ell} \otimes A\right)\left(x \otimes B_{\ell-n} h\right)\right\|_{X(\ell) \otimes \mathcal{H}}=\|V(x) h\|_{\mathcal{H}}
$$

Then there exists a $*$-homomorphism $\pi: C^{*}\left(S_{1}^{X}, \ldots, S_{d}^{X}\right) \rightarrow B(\mathcal{H})$ with $\pi\left(S_{i}^{X}\right)=V_{i}$.

Universality of the X-shift (cont.)

Theorem (cont.)

Moreover, there exist a *-homomorphism $\pi_{1}: C^{*}\left(S_{1}^{X}, \ldots, S_{d}^{X}\right) \rightarrow B\left(\mathcal{H}_{1}\right)$ and a cardinal \mathfrak{n} such that-upon defining $U_{i}:=\pi_{1}\left(S_{i}^{X}\right)$ we have $U_{1} U_{1}^{*}+\ldots+U_{d} U_{d}^{*}=I_{\mathcal{H}_{1}}$ and

$$
V_{i} \cong\left(S_{i}^{X}\right)^{(\mathfrak{n})} \oplus U_{i} .
$$

What about necessity?

- The relative isometricity condition is always necessary
- The second condition is necessary in the two prototype cases-
- row contraction of isometries V_{1}, \ldots, V_{d}
- the symmetric case Arveson
- In general?

Construction of subproduct systems

General notation:

- For $1 \leq \alpha_{1}, \ldots, a_{n} \leq d$, let $e_{\alpha}:=e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}} \in\left(\mathbb{C}^{d}\right)^{\otimes n}$.
- For $q \in \mathbb{C}\left\langle z_{1}, \ldots, z_{d}\right\rangle$, say $q(z)=\sum c_{\alpha} z^{\alpha}$, let $q(e):=\sum c_{\alpha} e_{\alpha} \in \mathcal{F}_{d}$. Fix a subset $\mathcal{Q} \subseteq \mathbb{C}\left\langle z_{1}, \ldots, z_{d}\right\rangle$ of homogeneous polynomials.
- Define $\mathcal{I}:=\langle\mathcal{Q}\rangle \unlhd \mathbb{C}\left\langle z_{1}, \ldots, z_{d}\right\rangle$, and let $\mathcal{I}^{(n)}$ denote the set of all homogeneous polynomials of degree n in \mathcal{I}.
- The subproduct system is constructed as follows:

$$
Y_{\mathcal{I}}(n):=\left\{q(e): q \in \mathcal{I}^{(n)}\right\} \quad \text { and } \quad X_{\mathcal{I}}(n):=\left(\mathbb{C}^{d}\right)^{\otimes n} \ominus Y_{\mathcal{I}}(n)
$$

Proposition (O. M. Shalit and B. Solel, 2009)

(1) The mapping $\mathcal{I} \mapsto X_{\mathcal{I}}$ is a bijection between all (proper) homogeneous ideals and all subproduct systems.
(2) As promised: given $q \in \mathbb{C}\left\langle z_{1}, \ldots, z_{d}\right\rangle$, we have

$$
q\left(S_{1}^{X}, \ldots, S_{d}^{X}\right)=0 \quad \Longleftrightarrow \quad q \in \mathcal{I} .
$$

Epilogue: the general setting

- Let \mathscr{M} be a C^{*}-algebra. A Hilbert C^{*}-module over \mathscr{M} is a (complete) right \mathscr{M}-module with an \mathscr{M}-valued "inner product" (rigging).
- A Hilbert C^{*}-module over \mathscr{M} with a certain type of left \mathscr{M}-action is called a C^{*}-correspondence.
- Let E be a C^{*}-correspondence. The "full" Fock space is

$$
\mathcal{F}(E)=\mathscr{M} \oplus E \oplus E^{\otimes 2} \oplus E^{\otimes 3} \oplus \ldots
$$

- (Full) shifts are defined by "left tensoring".
- The universality of the full shifts was established by M. V. Pimsner (1995) and P. S. Muhly \& B. Solel (1998).
- Everything else can also be defined in this context: subproduct systems, covariant representations, the shift operators, the Toeplitz algebra, ...
- Universality properties of the subproduct system shifts (V.).

Thank you for listening!

