Cuntz-Pimsner algebras for subproduct systems

Ami Viselter

Technion, Israel

Function Theory and Operator Theory: Infinite Dimensional and Free Settings

Ben-Gurion University, June 27, 2011

Outline

(1) We start with the classical constructions of the Toeplitz algebra and its two multidimensional versions: the non-commutative and the commutative.
(2) For each, a certain quotient of this algebra will be shown to admit interesting virtues.
(3) Possible generalizations will be discussed, leading to our construction:
Cuntz-Pimsner algebras in the setting of subproduct systems.
(1) We will demonstrate the construction by examples, including the original Cuntz-Pimsner algebra.
(0) Some features of it will be presented.

The classical Toeplitz algebra

- Consider the Hilbert space $\ell_{2}=\ell_{2}\left(\mathbb{Z}_{+}\right)$and the unilateral shift $S \in B\left(\ell_{2}\right)$ which maps $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ to $\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$.
- S is an isometry. The classical Toeplitz algebra is $\mathcal{T}:=C^{*}(S) \subseteq B\left(\ell_{2}\right)$.
An alternative approach:
- Recall that $L^{2}(\mathbb{T})$ is generated by $\left\{z^{n}: n \in \mathbb{Z}\right\}$, and that $H^{2}(\mathbb{T}) \subseteq L^{2}(\mathbb{T})$ is generated by $\left\{z^{n}: n \in \mathbb{Z}_{+}\right\}$
- $H^{2}(\mathbb{T}) \cong \ell_{2}$ by $z^{n} \leftrightarrow e_{n}$
- For $f \in C(\mathbb{T})$, consider the Toeplitz operator $T_{f} \in B\left(H^{2}(\mathbb{T})\right)$ defined by $g \mapsto \operatorname{Proj}_{H^{2}(\mathbb{T})}(f g)$
- Then S is (unitarily equivalent) to T_{z}, and so \mathcal{T} is (unitarily equivalent) to $C^{*}\left(T_{z}\right) \subseteq B\left(H^{2}(\mathbb{T})\right)$

The classical Toeplitz algebra

Theorem

Denote by \mathbb{K} the compacts over $H^{2}(\mathbb{T})$. Then

$$
\mathcal{T}=\left\{T_{f}: f \in C(\mathbb{T})\right\} \oplus \mathbb{K} .
$$

Corollary

$$
\mathcal{T} / \mathbb{K} \cong C(\mathbb{T})
$$

Recall that $C(\mathbb{T})$ is the "universal C^{*}-algebra generated by a unitary": if U is an arbitrary unitary, there is a representation $\pi: C(\mathbb{T}) \rightarrow C^{*}(U)$ with $z \mapsto U$.

The multidimensional setting

Fix $d \in \mathbb{N}$.

- Instead of $\ell_{2}\left(\mathbb{Z}_{+}\right)=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \ldots$, consider the Fock space

$$
\mathcal{F}_{d}:=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\mathbb{C}^{d}\right)^{\otimes n}=\mathbb{C} \oplus \mathbb{C}^{d} \oplus\left(\mathbb{C}^{d}\right)^{\otimes 2} \oplus \ldots
$$

- Instead of S, consider the shifts $S_{1}, \ldots, S_{d} \in B\left(\mathcal{F}_{d}\right)$ defined by

$$
S_{i}:\left(\mathbb{C}^{d}\right)^{\otimes n} \ni \eta \mapsto e_{i} \otimes \eta \in\left(\mathbb{C}^{d}\right)^{\otimes(n+1)}
$$

These are isometries with orthogonal ranges.

- Instead of \mathcal{T}, consider the algebra $\mathcal{T}_{d}:=C^{*}\left(S_{1}, \ldots, S_{d}\right) \subseteq B\left(\mathcal{F}_{d}\right)$.
- $S_{1} S_{1}^{*}+\ldots+S_{d} S_{d}^{*}$ is the projection onto $\mathcal{F}_{d} \ominus \mathbb{C}$. In particular, $I-\left(S_{1} S_{1}^{*}+\ldots+S_{d} S_{d}^{*}\right)$ is compact.

The multidimensional setting

Definition

The Cuntz algebra O_{d} is the universal C^{*}-algebra generated by d isometries V_{1}, \ldots, V_{d} with orthogonal ranges such that $V_{1} V_{1}^{*}+\ldots+V_{d} V_{d}^{*}=I$.

So if W_{1}, \ldots, W_{d} are isometries with orthogonal ranges (over an arbitrary Hilbert space) such that $W_{1} W_{1}^{*}+\ldots+W_{d} W_{d}^{*}=I$, then there is a representation $\pi: O_{d} \rightarrow C^{*}\left(W_{1}, \ldots, W_{d}\right)$ with $\pi\left(V_{i}\right)=W_{i}$ for all i.

Theorem

Denote by \mathbb{K} the compacts over \mathcal{F}_{d}. Then $\mathbb{K} \subseteq \mathcal{T}_{d}$ and

$$
\mathcal{T}_{d} / \mathbb{K} \cong O_{d}
$$

The commutative multidimensional setting

Goal

Change last construction to yield $C\left(\partial B_{d}\right)$.
The problem: the shifts S_{1}, \ldots, S_{d} don't commute.

Definition

If \mathcal{H} is a Hilbert space, its 2 -fold symmetric tensor product is

$$
\mathcal{H}^{(๑ 2}:=\mathcal{H}^{\otimes 2} \ominus \overline{\operatorname{span}}\{x \otimes y-y \otimes x: x, y \in \mathcal{H}\} .
$$

$\mathcal{H}^{\circledR n}$ is defined similarly for all n.
The characterizing property of $\mathcal{H}^{(\Omega n}$ is that for all $x_{1}, \ldots, x_{n} \in \mathcal{H}$ and every permutation $\sigma \in S_{n}$,

$$
\operatorname{Proj}_{\mathcal{H} \Theta n}\left(x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(n)}\right)=\operatorname{Proj}_{\mathcal{H} ® n}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}\right) .
$$

The commutative multidimensional setting

We now choose $\mathcal{H}:=\mathbb{C}^{d}$.

- Instead of $\mathcal{F}_{d}:=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\mathbb{C}^{d}\right)^{\otimes n}$ consider the Drury-Arveson space

$$
\mathcal{F}_{d}^{\text {Sym }}:=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\mathbb{C}^{d}\right)^{® n}=\mathbb{C} \oplus \mathbb{C}^{d} \oplus\left(\mathbb{C}^{d}\right)^{® 2} \oplus \ldots
$$

- Instead of $S_{1}, \ldots, S_{d} \in B\left(\mathcal{F}_{d}\right)$, consider the symmetric shifts $S_{1}^{\text {Sym }}, \ldots, S_{d}^{\text {Sym }} \in B\left(\mathcal{F}_{d}^{\text {Sym }}\right)$ defined by

$$
S_{i}^{\text {Sym }}:\left(\mathbb{C}^{d}\right)^{® n} \ni \eta \mapsto \operatorname{Proj}_{\left(\mathbb{C}^{d}\right)^{\Theta(n+1)}}\left(e_{i} \otimes \eta\right) \in\left(\mathbb{C}^{d}\right)^{\bigotimes(n+1)} .
$$

These are not isometries, but they commute: $S_{i}^{\text {Sym }} S_{j}^{\text {Sym }}=S_{j}^{\text {Sym }} S_{i}^{\text {Sym }}$.

- Instead of \mathcal{T}_{d}, consider the algebra

$$
\mathcal{T}_{d}^{\text {Sym }}:=C^{*}\left(S_{1}^{\text {Sym }}, \ldots, S_{d}^{\text {Sym }}\right) \subseteq B\left(\mathcal{F}_{d}^{\text {Sym }}\right) .
$$

The commutative multidimensional setting

Theorem (W. Arveson, 1998)

Denote by \mathbb{K} the compacts over $\mathcal{F}_{d}^{\text {Sym }}$. Then $\mathbb{K} \subseteq \mathcal{T}_{d}^{\text {Sym }}$ and

$$
\mathcal{T}_{d}^{\text {Sym }} / \mathbb{K} \cong C\left(\partial B_{d}\right)
$$

Universality:
$C\left(\partial B_{d}\right)$ is the universal C^{*}-algebra generated by d normal commuting operators $V_{1}\left(=M_{z_{1}}\right), \ldots, V_{d}\left(=M_{z_{d}}\right)$ such that $V_{1} V_{1}^{*}+\ldots+V_{d} V_{d}^{*}=I$.

More general settings?

The process

Fock space \leadsto shifts \leadsto Toeplitz algebra \leadsto quotient of Toeplitz with an interesting universal property.

Possible generalizations

(1) The infinite-dimensional version of the last example

- problem: $\mathbb{K} \nsubseteq \mathcal{T}_{\infty}^{\text {Sym }}$!
(2) Replace the commutation relation by other polynomial constraints
- not difficult to construct (along the lines of the commutative setting)
- but very difficult to "handle"
(3) Fock spaces whose direct summands are not Hilbert spaces
- Hilbert C^{*}-modules

A toy case: the infinite-dim. commutative setting

(1) Construct $\mathcal{F}_{\infty}^{\text {Sym }}$ by replacing \mathbb{C}^{d} by ℓ_{2} in $\mathcal{F}_{d}^{\mathrm{Sym}}=\mathbb{C} \oplus \mathbb{C}^{d} \oplus\left(\mathbb{C}^{d}\right)^{® 2} \oplus \ldots$.
(2) Define the shifts $S_{1}^{\text {Sym }}, S_{2}^{\text {Sym }}, S_{3}^{\text {Sym }}, \ldots$ appropriately. They commute!
(3) $\mathcal{T}_{\infty}^{\text {Sym }}$ is generated by $S_{1}^{\mathrm{Sym}}, S_{2}^{\mathrm{Sym}}, S_{3}^{\mathrm{Sym}}, \ldots$ in $B\left(\mathcal{F}_{\infty}^{\mathrm{Sym}}\right)$.

What could replace \mathbb{K} as the ideal the we "mod out"?

A toy case: the infinite-dim. commutative setting

- Write Q_{n} for the projection of $\mathcal{F}_{\infty}^{\text {Sym }}$ onto its nth direct summand.
- Let

$$
I:=\left\{S \in \mathcal{T}_{\infty}^{\text {Sym }}: \lim _{n \rightarrow \infty}\left\|S Q_{n}\right\|=0\right\} .
$$

- I is an ideal!
- The generalized Cuntz-Pimsner algebra $O_{\infty}^{\text {Sym }}$ is $\mathcal{T}_{\infty}^{\text {Sym }} / \mathcal{I}$.

Theorem (V.)

$O_{\infty}^{\text {Sym }} \cong C(B)$, where B is the closed unit ball of ℓ_{2} with the Tychonoff topology. (Question: where did the " ∂ " go?)

As before, $C(B)$ is universal in the suitable sense.

Hilbert C^{*}-modules and C^{*}-correspondences ${ }^{1}$

Intuition

Hilbert C^{*}-modules generalize Hilbert spaces by replacing the scalars \mathbb{C} by an arbitrary C^{*}-algebra.

Definitions

Let \mathscr{M} denote a C^{*}-algebra. A (right) Hilbert C^{*}-module over \mathscr{M} is a right \mathscr{M}-module E with a map $\langle\cdot, \cdot\rangle: E \times E \rightarrow \mathscr{M}$ ("rigging") such that:
(1) $\langle\zeta, \zeta\rangle \geq 0$ in \mathscr{M}, with equality $\Leftrightarrow \zeta=0$
(2) $\langle\cdot, \cdot\rangle$ is linear in the second variable and $\langle\zeta, \eta \cdot a\rangle=\langle\zeta, \eta\rangle a, a \in \mathscr{M}$
(3) $\langle\zeta, \eta\rangle^{*}=\langle\eta, \zeta\rangle$
and such that E is complete w.r.t the norm $\|\zeta\|:=\left\|\langle\zeta, \zeta\rangle_{\mathscr{M}}\right\|^{1 / 2}$.
We will call E a C^{*}-correspondence if it is also a left \mathscr{M}-module s.t.

$$
\langle a \cdot \zeta, \eta\rangle=\left\langle\zeta, a^{*} \cdot \eta\right\rangle
$$

${ }^{1}$ Henceforth, we omit some details for convenience...

Examples

(1) $\mathscr{M}=\mathbb{C}, E=\mathcal{H}$ (in particular, $E=\mathbb{C}^{d}$)
(2) \mathscr{M} is any C^{*}-algebra, α is an endomorphism of $\mathscr{M}, E=\mathscr{M}$ as sets, $\langle a, b\rangle=a^{*} b$, right multiplication is standard multiplication, and left given by

$$
a \cdot \zeta=\alpha(a) \zeta
$$

(3) X is a compact Hausdorff space, $\mathscr{M}=C(X), E=C(X, \mathcal{H})$,

$$
\langle f, g\rangle(x):=\langle f(x), g(x)\rangle_{\mathcal{H}} \quad(\forall f, g \in E, x \in X)
$$

(4) Every quiver (directed graph) possesses an associated C^{*}-correspondence

Tensor products

Suppose that E, F are C^{*}-correspondences over \mathscr{M}.
The bimodule structure enables one to define the (internal) tensor product C^{*}-correspondence

$$
E \otimes F
$$

that is \mathscr{M}-balanced:

$$
(\zeta \cdot a) \otimes \eta=\zeta \otimes(a \cdot \eta)
$$

and with rigging given by

$$
\left\langle\zeta_{1} \otimes \eta_{1}, \zeta_{2} \otimes \eta_{2}\right\rangle_{E \otimes F}:=\left\langle\eta_{1},\left\langle\zeta_{1}, \zeta_{2}\right\rangle_{E} \cdot \eta_{2}\right\rangle_{F} .
$$

Subproduct systems

The direct summands of our generalized Fock space will constitute a subproduct system.

Easy fact

If \mathcal{H} is a Hilbert space, then $\mathcal{H}^{(()}(n+m) \subseteq \mathcal{H}^{(5 n} \otimes \mathcal{H}^{(5 m}$ for all n, m.

Definition (O. M. Shalit and B. Solel, 2009)

A subproduct system over \mathscr{M} is a sequence $X=(X(n))_{n \in \mathbb{Z}_{+}}$of C^{*}-correspondences over $\mathscr{M}=X(0)$ s.t.

$$
X(n+m) \subseteq X(n) \otimes X(m)
$$

for all n, m.

Examples

Product systems

$X(n)=E^{\otimes n}$ for some C^{*}-correspondence E over \mathscr{M}.

- The prototype: $\mathscr{M}=\mathbb{C}, E=\mathbb{C}^{d}$
SSP_{d} (the symmetric subproduct system), $d \in \mathbb{N}$
$X(n)=\left(\mathbb{C}^{d}\right)^{\circledR n}$.
SSP $_{\infty}$ (the infinite-dimensional symmetric subproduct system)
$X(n)=\left(\ell_{2}\right)^{\circledR n}$. Here $\operatorname{dim} X(n)$ is infinite for all $n \in \mathbb{N}$.

$P \in M_{d}, P_{i j} \geq 0$ for all i, j, no all-zero columns

$X(n)$ is the C^{*}-correspondence of the "support" quiver of the matrix P^{n}.

The Toeplitz algebra for subproduct systems

Let $X=(X(n))_{n \in \mathbb{Z}_{+}}$be a subproduct system.

- Setting $E:=X(1)$, we have $X(n) \subseteq E^{\otimes n}$.
- Instead of $\mathcal{F}_{d}=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\mathbb{C}^{d}\right)^{\otimes n}$ or $\mathcal{F}_{d}^{\text {Sym }}=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\mathbb{C}^{d}\right)^{\text {®n }}$, consider

$$
\mathcal{F}_{X}:=\bigoplus_{n \in \mathbb{Z}_{+}} X(n)=\mathscr{M} \oplus X(1) \oplus X(2) \oplus X(3) \oplus \ldots
$$

- Instead of $S_{1}, \ldots, S_{d} \in B\left(\mathcal{F}_{d}\right)$ or $S_{1}^{\text {Sym }}, \ldots, S_{d}^{\text {Sym }} \in B\left(\mathcal{F}_{d}^{\text {Sym }}\right)$, consider

$$
\begin{array}{rlr}
\varphi_{\infty}(a) \in B\left(\mathcal{F}_{X}\right), & \eta \mapsto a \cdot \eta & (a \in \mathscr{M}, \eta \in X(n)), \\
S(\zeta) \in B\left(\mathcal{F}_{X}\right), & \eta \mapsto \operatorname{Proj}_{X(n+1)}(\zeta \otimes \eta) & (\zeta \in X(1), \eta \in X(n)) .
\end{array}
$$

- The Toeplitz algebra $\mathcal{T}(X)$ is the C^{*}-subalgebra of $B\left(\mathcal{F}_{X}\right)$ generated by the operators $\varphi_{\infty}(\cdot), S(\cdot)$.

The Cuntz-Pimsner algebra for subproduct systems

What could replace \mathbb{K} as the ideal the we "mod out"?

- Write $Q_{n} \in B\left(\mathcal{F}_{X}\right)$ for the projection onto the nth direct summand, $X(n)$.
- Define

$$
I:=\left\{S \in \mathcal{T}(X): \lim _{n \rightarrow \infty}\left\|S Q_{n}\right\|=0\right\} .
$$

Then $I \unlhd \mathcal{T}(X)$ and $\mathcal{T}(X) \cap \mathcal{K}\left(\mathcal{F}_{X}\right) \subseteq I$ ("generalized compacts").

Definition (V.)

The generalized Cuntz-Pimsner algebra $O(X)$ of X is $\mathcal{T}(X) / \mathcal{I}$.

Specific case: product systems

Consider first the case $X(n)=E^{\otimes n}$.

- It reduces to the well-known construction of Pimsner (1995):
- $\mathcal{I}=\mathcal{T}(E) \cap \mathcal{K}\left(\mathcal{F}_{E}\right)$
- This algebra has many interesting universal properties:

Examples

- Of course, $O\left(\mathbb{C}^{d}\right)=O_{d}, d \in \mathbb{N}$.
- \mathscr{M} is a unital C^{*}-algebra, $\alpha \in$ Aut $\mathscr{M}, E:={ }_{\alpha} \mathscr{M} \leadsto$
$O(E) \cong \mathscr{M} \rtimes_{\alpha} \mathbb{Z}$.
- This could be generalized further to crossed products of Hilbert bimodules.
- G is a finite graph of d vertices, E is the graph correspondence of G (with $\left.\mathscr{M}=\mathbb{C}^{d}\right) \sim O(E)$ is the Cuntz-Krieger algebra of G.

Specific case: product systems - gauge invariance

We are still in the case $X(n)=E^{\otimes n}$.
The Toeplitz algebra $\mathcal{T}(E)$ has a gauge action: for $\lambda \in \mathbb{T}$ there is $\alpha_{\lambda} \in \operatorname{Aut}(\mathcal{T}(E))$ with

$$
\varphi_{\infty}(a) \mapsto \varphi_{\infty}(a) \quad S(\zeta) \mapsto \lambda S(\zeta)
$$

An ideal $\mathcal{J} \unlhd \mathcal{T}(E)$ is called gauge invariant if $\alpha_{\lambda}(\mathcal{J})=\mathcal{J}$ for all λ.

The gauge-invariant uniqueness theorem (Katsura, 2007)

The ideal $\mathcal{I}=\mathcal{T}(E) \cap \mathcal{K}\left(\mathcal{F}_{E}\right)$ is the largest among ideals \mathcal{J} of $\mathcal{T}(E)$ s.t.:
(1) $\varphi_{\infty}(\mathscr{M}) \cap \mathcal{J}=\{0\}$.
(2) \mathcal{J} is gauge invariant.

Gauge-invariant uniqueness theorem? No!

Unfortunately, we were not able to extend the gauge-invariant uniqueness theorem to general subproduct systems.

Example

The Toeplitz algebra of SSP_{2} does not admit a largest ideal which does not contain the unit l, and which is gauge invariant.

Sketch of proof.

Suppose that such ideal $\mathcal{P} \unlhd \mathcal{T}\left(\mathrm{SSP}_{2}\right)$ exists.
(1) \mathcal{P} is largest $\leadsto \mathbb{K} \subseteq \mathcal{P}$
(2) $0 \rightarrow \mathbb{K} \rightarrow \mathcal{T}\left(\mathrm{SSP}_{2}\right) \rightarrow C\left(\partial B_{2}\right)$
(3) \mathcal{P} / \mathbb{K} has a clear structure as an ideal of $C\left(\partial B_{2}\right)$

Now it is easy to find a larger ideal with the desired properties.
We do have a partial substitute in terms of essential representations of $\mathcal{T}(X)$.

Families of examples

(1) The $X(n)$'s are all finite-dimensional Hilbert spaces $\Rightarrow \mathcal{I}=\mathbb{K}$

- $X(n)=\left(\mathbb{C}^{d}\right)^{\otimes n}$
- $X(n)=\left(\mathbb{C}^{d}\right)^{\text {®n }}$
- For every subshift Λ, a subproduct system X_{Λ} can be associated so that $O\left(X_{\Lambda}\right)$ is the C^{*}-algebra attached to \wedge by K . Matsumoto
- Generally: subproduct systems associated with polynomial constraints
(2) $Q_{n} \in \mathcal{T}(X)$ for all $n \Rightarrow \mathcal{I}=\left\langle Q_{n}: n \in \mathbb{Z}_{+}\right\rangle$

Example: the subproduct system of $P \in M_{d}$ with $P_{i j} \geq 0$ for all i, j and no all-zero columns

Morita equivalence

Definition (P. S. Muhly and B. Solel (2000))

Let E, F be C^{*}-correspondences over \mathscr{A}, \mathscr{B}. E is strongly Morita equivalent to F if \mathscr{A} is ME to \mathscr{B} via an equivalence bimodule M , and there exists an isomorphism $W: M \otimes F \rightarrow E \otimes M$. Notation: $E \stackrel{S M E}{\sim}{ }_{M} F$.

If $E \stackrel{\text { SME }}{\sim}{ }_{M} F$, define isomorphisms $W_{n}: M \otimes F^{\otimes n} \rightarrow E^{\otimes n} \otimes M$ by $W_{1}:=W$ and $W_{n}:=\left(I_{E} \otimes W_{n-1}\right)\left(W \otimes I_{F^{\otimes(n-1)}}\right)$.

Definition (V.)

Subproduct systems X, Y are strongly Morita equivalent if $X(1) \stackrel{\text { SME }}{\sim}{ }_{M} Y(1)$ and

$$
W_{n}(M \otimes Y(n))=X(n) \otimes M
$$

for all n.

Morita equivalence (cont.)

The following generalizes a theorem of Muhly and Solel (2000) for product systems.

Theorem (V.)

If X is strongly Morita equivalent to Y, then:
(1) $\mathcal{T}(X)$ is Morita equivalent to $\mathcal{T}(Y)$ as C^{*}-algebras
(2) The Rieffel correspondence of $\mathcal{T}(X) \sim \mathcal{T}(Y)$ carries $\mathcal{I}(X)$ to $\mathcal{I}(Y)$. Therefore $O(X)$ is Morita equivalent to $O(Y)$.

This is another evidence that our definition of the Cuntz-Pimsner algebra for subproduct systems is "natural".

More open questions

(1) Is there a "strong" universality characterization of $O(X)$?
(2) Determining the ideal structure, nuclearity and exactness of $O(X)$.
(3) In the spirit of Cuntz (1977), Pimsner used an "extension of scalars" method to find a C^{*}-algebra that is naturally isomorphic to $O(E)$, and for which there is a semi-split exact sequence with the Toeplitz algebra ${ }^{2}$.
Could this be done in our context?
(4) Is there a relation between $O(X)$ and $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$?

Different cases have very different answers:

$$
C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(E)\right)=O(E)
$$

but

$$
C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}\left(\mathrm{SSP}_{d}\right)\right)=\mathcal{T}\left(\mathrm{SSP}_{d}\right) \quad(d \in \mathbb{N})
$$

We do not know what $C_{\text {env }}^{*}\left(\mathcal{T}_{+}\left(\operatorname{SSP}_{\infty}\right)\right)$ is.

[^0]
Thank you for listening!

[^0]: ${ }^{2}$ Pimsner used this to obtain a KK-theoretical six-term exact sequence.

