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@ We start with the classical constructions of the Toeplitz algebra
and its two multidimensional versions: the non-commutative and
the commutative.

@ For each, a certain quotient of this algebra will be shown to admit
interesting virtues.

© Possible generalizations will be discussed, leading to our
construction:
Cuntz-Pimsner algebras in the setting of subproduct systems.

© We will demonstrate the construction by examples, including the
original Cuntz-Pimsner algebra.

© Some features of it will be presented.
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The classical Toeplitz algebra

@ Consider the Hilbert space ¢» = {»(Z.) and the unilateral shift
S € B(¢2) which maps (x1, X2, X3, ...) to (0, X1, X2, X3, .. .).

@ S is anisometry. The classical Toeplitz algebra is
T = C*(S) € B(£2).

An alternative approach:

@ Recall that L2(T) is generated by {z" : n € Z}, and that
H?(T) c L?(T) is generated by {z" : n€ Z}

@ H3(T) =t by 2" & e

@ For f € C(T), consider the Toeplitz operator T € B(H?(T))
defined by g = Proj Hzm(fg)

@ Then S is (unitarily equivalent) to T,, and so 7 is (unitarily
equivalent) to C*(T) € B(H?(T))
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The classical Toeplitz algebra

Denote by K the compacts over H>(T). Then

T =(T;: fe C(T)} oK.

T /K = C(T)

Recall that C(T) is the “universal C*-algebra generated by a unitary”:
if U is an arbitrary unitary, there is a representation  : C(T) — C*(U)
with z — U.
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The multidimensional setting

Fix d € N.
@ Instead of (p(Z+) =Ca®CaCa..., consider the Fock space

Fa= P ()" =coc?o(c?) o...
neZ,

@ Instead of S, consider the shifts Sy, ..., Sy € B(¥4) defined by

]
S;: (Cd)®n 3N e®ne (Cd)®(n+ ) .

These are isometries with orthogonal ranges.
@ Instead of 7, consider the algebra 74 := C*(Sy, ..., Sq) € B(F4).

@ 515] +...+ 545 is the projection onto 4 © C. In particular,
I=(S1S; +...+ S4S;) is compact.
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The multidimensional setting

Definition

The Cuniz algebra Oy is the universal C*-algebra generated by d
isometries V4, ..., V4 with orthogonal ranges such that
ViVi+...+ VgVy=1

So if Wy,..., Wy are isometries with orthogonal ranges (over an
arbitrary Hilbert space) such that Wy Wy + ... + WyW, = |, then there
is a representation t : Og — C*(Wj, ..., Wy) with (V;) = W, for all i.

Denote by K the compacts over 4. Then K C 74 and

Td/]K = Od.
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The commutative multidimensional setting

Change last construction to yield C(dBy).
The problem: the shifts Sy, ..., Sq don’t commute.

Definition
If I is a Hilbert space, its 2-fold symmetric tensor product is

| A\

H®2 .= H®2 ospan{x®@y -y ®x: X,y € H}.

H®" is defined similarly for all n.

The characterizing property of :®" is that for all x4, ..., x, € 3 and
every permutation o € Sy,

Projg{@n (Xo(1) ® X5(2) ®---® Xa(n)) = Projg{©,,(x1 ®Xo®: - ® Xn).
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The commutative multidimensional setting

We now choose K := C.
d ®n .
@ Instead of ¥4 := EBHGL (C ) consider the Drury-Arveson space

Fm = EB (Cd)©n —CoC% (Cd)©2 o...

neZ+

@ Instead of Sy, ..., Sq € B(¥4), consider the symmetric shifts

SY™,..., 8™ e B(F,"™) defined by

S ®n . ®(n+1)
S; ym (Cd) ER Pro](Cd)@m-u(e,- ®n) € (Cd) .
These are not isometries, but they commute:
Sym oSym ~ oQSym QSym
S, Sj = Sj. S7.
@ Instead of 74, consider the algebra

Sym <7 aSym Sym Sym
TI™ = C(SP™,...,87™) < B(FS™).
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The commutative multidimensional setting

Theorem (W. Arveson, 1998)

Denote by K the compacts over F. jym. Then K C T jym and

T5™ /K = C(9Bg)-

Universality:

C(dBy) is the universal C*-algebra generated by d normal commuting
operators Vi(= My,),..., Va(= M) such that Vi Vi + ...+ VgV = 1.
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More general settings?

The process

Fock space ~» shifts ~ Toeplitz algebra ~»> quotient of Toeplitz with an
interesting universal property.

Possible generalizations

@ The infinite-dimensional version of the last example
e problem: K ¢ 7™
© Replace the commutation relation by other polynomial constraints

e not difficult to construct (along the lines of the commutative setting)
e but very difficult to “handle”

© Fock spaces whose direct summands are not Hilbert spaces

e Hilbert C*-modules
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A toy case: the infinite-dim. commutative setting

@ Construct F22™ by replacing C9 by £, in
Sym ®2
FSm=CoCle(CY) ...
@ Define the shifts S;*™
commute!
Sym . Sym AQSym ASym . Sym
Q@ 7™ is generated by 57, 5™, S, .. in B(FJ™).

, Sgym, S,iym, ... appropriately. They

What could replace K as the ideal the we “mod out”?
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A toy case: the infinite-dim. commutative setting

@ Write Q, for the projection of F2'™ onto its nth direct summand.
@ Let
I:= {s eTI™: lim [1SQull = 0}.

@ 7 is anideal!
@ The generalized Cuntz-Pimsner algebra Offm is Tiym/f.

OZ™ = C(B), where B is the closed unit ball of £, with the Tychonoff
topology. (Question: where did the “9” go?)

As before, C(B) is universal in the suitable sense.
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Hilbert C*-modules and C*-correspondences’

Intuition

Hilbert C*-modules generalize Hilbert spaces by replacing the scalars
C by an arbitrary C*-algebra.

Definitions

Let .# denote a C*-algebra. A (right) Hilbert C*-module over .# is a
right .#Z-module E with a map (:,-) : E X E — .# (“rigging”) such that:

@ (,0)=0in.#, with equality & L =0
@ () islinear in the second variable and ((,n-a) =((,nya, a € .#
Q {Lm =m0

and such that E is complete w.r.t the norm ||{]| := |KC, O 4II'/2.

| \

We will call E a C*-correspondence if it is also a left .Z-module s.t.

(a-gny=(ga -n.

"Henceforth, we omit some details for convenience...

N,
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@ .# =C, E = K (in particular, E = C9)

@ .# is any C*-algebra, a is an endomorphism of .#, E = .# as
sets, (a, b) = a*b, right multiplication is standard multiplication,
and left given by

a-C=a(a)

© X is a compact Hausdorff space, .# = C(X), E = C(X, H),

(f,) (x) = <f(X),g(X)>g{ (Vf,ge E, x € X)

© Every quiver (directed graph) possesses an associated
C*-correspondence

Ami Viselter (Technion, Israel) Cuntz-Pimsner algebras Beer Sheva, 2011 14/27



Tensor products

Suppose that E, F are C*-correspondences over ./Z .

The bimodule structure enables one to define the (internal) tensor
product C*-correspondence
E®F

that is .#-balanced:

(C-a)en=C®(a-n)
and with rigging given by

(C1®11,02®12)er = (M1,{C1, C2)E * 12)E -
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Subproduct systems

The direct summands of our generalized Fock space will constitute a
subproduct system.

If 3 is a Hilbert space, then H®("+mM) ¢ HO" @ HOM for all n, m. \

Definition (O. M. Shalit and B. Solel, 2009)

A subproduct system over ./ is a sequence X = (X(n)),cz, of
C*-correspondences over .# = X(0) s.t.

X(n+ m) C X(n)® X(m)

for all n, m.
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Product systems

X(n) = E®" for some C*-correspondence E over .Z .
@ The prototype: .# = C, E = C¢

SSP4 (the symmetric subproduct system), d € N
X(n) = ()",

SSP,, (the infinite-dimensional symmetric subproduct system)

X(n) = (52)©n. Here dim X(n) is infinite for all n € IN.

P € My, P; > 0 for all i, j, no all-zero columns

X(n) is the C*-correspondence of the “support” quiver of the matrix P".
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The Toeplitz algebra for subproduct systems

Let X = (X(n))nez, be a subproduct system.
@ Setting E := X(1), we have X(n) € E®".
®n S ®n
® Instead of 74 = P, () or 7™ = Pz, (€9)
consider

Fx = P X(n) =4 o X(1) @ X(2)® X(3) ...

nez.

o Instead of Sy,..., Sy € B(Fq) or S'™,..., 8™ ¢ B(Tsym),
consider
P(a) € B(Fx), ne—a-n (a€.#,neX(n)),
S(C) € B(Fx),  nm Projy, y(C®n)  (Ce X(1),1e€X(n)).

@ The Toeplitz algebra 77 (X) is the C*-subalgebra of B(Fx)
generated by the operators g (-), S(-).
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The Cuntz-Pimsner algebra for subproduct systems

What could replace K as the ideal the we “mod out”?

@ Write Q, € B(Fx) for the projection onto the nth direct summand,
X(n).

@ Define
I {s T(X): lim 1SQnl = o}.
Then 7 < 7 (X) and 7 (X) N K(Fx) € I (“generalized compacts”).
Definition (V.)
The generalized Cuntz-Pimsner algebra O(X) of X is 7(X)/Z.
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Specific case: product systems

Consider first the case X(n) = E®".
@ It reduces to the well-known construction of Pimsner (1995):
o I =T(E)nK(TE)
@ This algebra has many interesting universal properties:

@ Of course, O(C%) = Oy, d € N.

@ ./ is a unital C*-algebra, o« € Aut . #, E .= . ~
OE) = 4 x, Z.

@ This could be generalized further to crossed products of Hilbert
bimodules.

@ G is a finite graph of d vertices, E is the graph correspondence of
G (with .# = C9) ~» O(E) is the Cuntz-Krieger algebra of G.
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Specific case: product systems — gauge invariance

We are still in the case X(n) = E®".

The Toeplitz algebra 7 (E) has a gauge action: for A € T there is
ay € Aut(7(E)) with

Po(a@) = po(a@)  S(C) = AS(0).
Anideal J < 7 (E) is called gauge invariantif ay(J) = J for all A.

The gauge-invariant uniqueness theorem (Katsura, 2007)

The ideal 7 = 7 (E) N ‘K(FE) is the largest among ideals J of 7 (E)
s.t.:

Q ¢ (#)NT = {0}.
© J is gauge invariant.
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Gauge-invariant uniqueness theorem? No!

Unfortunately, we were not able to extend the gauge-invariant
unigueness theorem to general subproduct systems.

Example

The Toeplitz algebra of SSP, does not admit a largest ideal which does
not contain the unit /, and which is gauge invariant.

Sketch of proof.

Suppose that such ideal # < 7(SSP») exists.
@ Pislargest~ KC P
Q@ 0> K — 7(SSP2) - C(dBy)
© P/K has a clear structure as an ideal of C(dB>)
Now it is easy to find a larger ideal with the desired properties. O

v

We do have a partial substitute in terms of essential representations of
T (X).
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Families of examples

@ The X(n)’s are all finite-dimensional Hilbert spaces = 7 = K
o X(n) = (c¢)™
o X(n) = (c?)*"
e For every subshift A, a subproduct system X, can be associated so
that O(Xx) is the C*-algebra attached to A by K. Matsumoto

e Generally: subproduct systems associated with polynomial
constraints

Q@ QeT(X)foraln=7={(Q,:neZ,)
Example: the subproduct system of P € My with P; > 0 for all i, j
and no all-zero columns
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Morita equivalence

Definition (P. S. Muhly and B. Solel (2000))

Let E, F be C*-correspondences over o, . E is strongly Morita
equivalent to F if o7 is ME to # via an equivalence bimodule M, and

there exists an isomorphism W : M® F — E ® M. Notation: E SMEM F.

It E X\ F, define isomorphisms W, : M® F®" — E®1 @ M by
W1 = W and Wn = (IE ® Wn_1)(W® IF@(H71)).

Definition (V.)

Subproduct systems X, Y are strongly Morita equivalent if
x(1) ™Fy Y(1) and

W,(M® Y(n)) = X(n) ® M

for all n.

v

Ami Viselter (Technion, Israel) Cuntz-Pimsner algebras Beer Sheva, 2011 24 /27



Morita equivalence (cont.)

The following generalizes a theorem of Muhly and Solel (2000) for
product systems.

If X is strongly Morita equivalent to Y, then:
@ 7 (X) is Morita equivalent to 7 (Y) as C*-algebras

@ The Rieffel correspondence of 7 (X) ~ T (Y) carries I(X) to I(Y).
Therefore O(X) is Morita equivalent to O(Y).

This is another evidence that our definition of the Cuntz-Pimsner
algebra for subproduct systems is “natural”.
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More open questions

@ Is there a “strong” universality characterization of O(X) ?

@ Determining the ideal structure, nuclearity and exactness of O(X).

© In the spirit of Cuntz (1977), Pimsner used an “extension of
scalars” method to find a C*-algebra that is naturally isomorphic to
O(E), and for which there is a semi-split exact sequence with the
Toeplitz algebra?.
Could this be done in our context?

Q Is there a relation between O(X) and C;,, (7 (X))?
Different cases have very different answers:

Cenv(7+(E)) = O(E),
but
C;nv( ( SPd)) T(SSPd) (d € N)
We do not know what C;,,,(7+(SSP)) is

2Pimsner used this to obtain a KK-theoretical six-term exact sequence.
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Thank you for listening!
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