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Outline

1 We start with the classical constructions of the Toeplitz algebra
and its two multidimensional versions: the non-commutative and
the commutative.

2 For each, a certain quotient of this algebra will be shown to admit
interesting virtues.

3 Possible generalizations will be discussed, leading to our
construction:
Cuntz-Pimsner algebras in the setting of subproduct systems.

4 We will demonstrate the construction by examples, including the
original Cuntz-Pimsner algebra.

5 Some features of it will be presented.
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The classical Toeplitz algebra

Consider the Hilbert space `2 = `2(Z+) and the unilateral shift
S ∈ B(`2) which maps (x1, x2, x3, . . .) to (0, x1, x2, x3, . . .).
S is an isometry. The classical Toeplitz algebra is
T := C∗(S) ⊆ B(`2).

An alternative approach:
Recall that L2(T) is generated by {zn : n ∈ Z}, and that
H2(T) ⊆ L2(T) is generated by

{
zn : n ∈ Z+

}
H2(T) � `2 by zn

↔ en

For f ∈ C(T), consider the Toeplitz operator Tf ∈ B(H2(T))
defined by g 7→ ProjH2(T)(fg)

Then S is (unitarily equivalent) to Tz , and so T is (unitarily
equivalent) to C∗(Tz) ⊆ B(H2(T))
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The classical Toeplitz algebra

Theorem
Denote by K the compacts over H2(T). Then

T =
{
Tf : f ∈ C(T)

}
⊕K.

Corollary

T /K � C(T)

Recall that C(T) is the “universal C∗-algebra generated by a unitary”:
if U is an arbitrary unitary, there is a representation π : C(T)→ C∗(U)

with z 7→ U.
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The multidimensional setting

Fix d ∈N.
Instead of `2(Z+) = C ⊕ C ⊕ C ⊕ . . ., consider the Fock space

Fd :=
⊕
n∈Z+

(
Cd

)⊗n
= C ⊕ Cd

⊕

(
Cd

)⊗2
⊕ . . .

Instead of S, consider the shifts S1, . . . ,Sd ∈ B(Fd) defined by

Si :
(
Cd

)⊗n
3 η 7→ ei ⊗ η ∈

(
Cd

)⊗(n+1)
.

These are isometries with orthogonal ranges.
Instead of T , consider the algebra Td := C∗(S1, . . . ,Sd) ⊆ B(Fd).
S1S∗1 + . . .+ SdS∗d is the projection onto Fd 	 C. In particular,
I − (S1S∗1 + . . .+ SdS∗d) is compact.
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The multidimensional setting

Definition
The Cuntz algebra Od is the universal C∗-algebra generated by d
isometries V1, . . . ,Vd with orthogonal ranges such that
V1V ∗1 + . . .+ VdV ∗d = I.

So if W1, . . . ,Wd are isometries with orthogonal ranges (over an
arbitrary Hilbert space) such that W1W ∗

1 + . . .+ WdW ∗

d = I, then there
is a representation π : Od → C∗(W1, . . . ,Wd) with π(Vi) = Wi for all i.

Theorem
Denote by K the compacts over Fd . Then K ⊆ Td and

Td/K � Od .
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The commutative multidimensional setting

Goal
Change last construction to yield C(∂Bd).
The problem: the shifts S1, . . . ,Sd don’t commute.

Definition
If H is a Hilbert space, its 2-fold symmetric tensor product is

Hs2 := H⊗2
	 span {x ⊗ y − y ⊗ x : x , y ∈ H} .

Hsn is defined similarly for all n.

The characterizing property of Hsn is that for all x1, . . . , xn ∈ H and
every permutation σ ∈ Sn,

ProjHsn (xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(n)) = ProjHsn (x1 ⊗ x2 ⊗ · · · ⊗ xn).
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The commutative multidimensional setting

We now choose H := Cd .

Instead of Fd :=
⊕

n∈Z+

(
Cd

)⊗n
consider the Drury-Arveson space

F
Sym
d :=

⊕
n∈Z+

(
Cd

)sn
= C ⊕ Cd

⊕

(
Cd

)s2
⊕ . . .

Instead of S1, . . . ,Sd ∈ B(Fd), consider the symmetric shifts
SSym

1 , . . . ,SSym
d ∈ B(F

Sym
d ) defined by

SSym
i :

(
Cd

)sn
3 η 7→ Proj

(Cd)
s(n+1)(ei ⊗ η) ∈

(
Cd

)s(n+1)
.

These are not isometries, but they commute:
SSym

i SSym
j = SSym

j SSym
i .

Instead of Td , consider the algebra
T

Sym
d := C∗(SSym

1 , . . . ,SSym
d ) ⊆ B(F

Sym
d ).
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The commutative multidimensional setting

Theorem (W. Arveson, 1998)

Denote by K the compacts over F Sym
d . Then K ⊆ T Sym

d and

T
Sym
d /K � C(∂Bd).

Universality:
C(∂Bd) is the universal C∗-algebra generated by d normal commuting
operators V1(= Mz1), . . . ,Vd(= Mzd ) such that V1V ∗1 + . . .+ VdV ∗d = I.
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More general settings?

The process
Fock space { shifts { Toeplitz algebra { quotient of Toeplitz with an
interesting universal property.

Possible generalizations
1 The infinite-dimensional version of the last example

problem: K * T Sym
∞ !

2 Replace the commutation relation by other polynomial constraints

not difficult to construct (along the lines of the commutative setting)
but very difficult to “handle”

3 Fock spaces whose direct summands are not Hilbert spaces

Hilbert C∗-modules
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A toy case: the infinite-dim. commutative setting

1 Construct F Sym
∞ by replacing Cd by `2 in

F
Sym
d = C ⊕ Cd

⊕

(
Cd

)s2
⊕ . . ..

2 Define the shifts SSym
1 ,SSym

2 ,SSym
3 , . . . appropriately. They

commute!
3 T

Sym
∞ is generated by SSym

1 ,SSym
2 ,SSym

3 , . . . in B(F
Sym
∞ ).

What could replace K as the ideal the we “mod out”?
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A toy case: the infinite-dim. commutative setting

Write Qn for the projection of F Sym
∞ onto its nth direct summand.

Let
I :=

{
S ∈ T Sym

∞ : lim
n→∞
‖SQn‖ = 0

}
.

I is an ideal!
The generalized Cuntz-Pimsner algebra OSym

∞ is T Sym
∞ /I.

Theorem (V.)

O
Sym
∞ � C(B), where B is the closed unit ball of `2 with the Tychonoff

topology. (Question: where did the “∂” go?)

As before, C(B) is universal in the suitable sense.
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Hilbert C ∗-modules and C ∗-correspondences1

Intuition
Hilbert C∗-modules generalize Hilbert spaces by replacing the scalars
C by an arbitrary C∗-algebra.

Definitions
Let M denote a C∗-algebra. A (right) Hilbert C∗-module over M is a
right M -module E with a map 〈·, ·〉 : E × E →M (“rigging”) such that:

1 〈ζ, ζ〉 ≥ 0 in M , with equality⇔ ζ = 0
2 〈·, ·〉 is linear in the second variable and

〈
ζ, η · a

〉
=

〈
ζ, η

〉
a, a ∈M

3
〈
ζ, η

〉∗ =
〈
η, ζ

〉
and such that E is complete w.r.t the norm ‖ζ‖ := ‖〈ζ, ζ〉M ‖

1/2.

We will call E a C∗-correspondence if it is also a left M -module s.t.〈
a · ζ, η

〉
=

〈
ζ,a∗ · η

〉
.

1Henceforth, we omit some details for convenience...
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Examples

1 M = C, E = H (in particular, E = Cd)
2 M is any C∗-algebra, α is an endomorphism of M , E = M as

sets, 〈a,b〉 = a∗b, right multiplication is standard multiplication,
and left given by

a · ζ = α(a)ζ

3 X is a compact Hausdorff space, M = C(X), E = C(X ,H),

〈f ,g〉 (x) :=
〈
f(x),g(x)

〉
H (∀f ,g ∈ E, x ∈ X)

4 Every quiver (directed graph) possesses an associated
C∗-correspondence
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Tensor products

Suppose that E,F are C∗-correspondences over M .

The bimodule structure enables one to define the (internal) tensor
product C∗-correspondence

E ⊗ F

that is M -balanced:

(ζ · a) ⊗ η = ζ ⊗ (a · η)

and with rigging given by〈
ζ1 ⊗ η1, ζ2 ⊗ η2

〉
E⊗F :=

〈
η1, 〈ζ1, ζ2〉E · η2

〉
F .
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Subproduct systems

The direct summands of our generalized Fock space will constitute a
subproduct system.

Easy fact

If H is a Hilbert space, then Hs(n+m)
⊆ Hsn

⊗Hsm for all n,m.

Definition (O. M. Shalit and B. Solel, 2009)
A subproduct system over M is a sequence X = (X(n))n∈Z+

of
C∗-correspondences over M = X(0) s.t.

X(n + m) ⊆ X(n) ⊗ X(m)

for all n,m.
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Examples

Product systems
X(n) = E⊗n for some C∗-correspondence E over M .

The prototype: M = C, E = Cd

SSPd (the symmetric subproduct system), d ∈N

X(n) =
(
Cd

)sn
.

SSP∞ (the infinite-dimensional symmetric subproduct system)

X(n) =
(
`2

)sn
. Here dim X(n) is infinite for all n ∈N.

P ∈ Md , Pij ≥ 0 for all i, j, no all-zero columns
X(n) is the C∗-correspondence of the “support” quiver of the matrix Pn.
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The Toeplitz algebra for subproduct systems

Let X = (X(n))n∈Z+
be a subproduct system.

Setting E := X(1), we have X(n) ⊆ E⊗n.

Instead of Fd =
⊕

n∈Z+

(
Cd

)⊗n
or F Sym

d =
⊕

n∈Z+

(
Cd

)sn
,

consider

FX :=
⊕
n∈Z+

X(n) = M ⊕ X(1) ⊕ X(2) ⊕ X(3) ⊕ . . .

Instead of S1, . . . ,Sd ∈ B(Fd) or SSym
1 , . . . ,SSym

d ∈ B(F
Sym
d ),

consider

ϕ∞(a) ∈ B(FX ), η 7→ a · η (a ∈M , η ∈ X(n)),

S(ζ) ∈ B(FX ), η 7→ ProjX(n+1)(ζ ⊗ η) (ζ ∈ X(1), η ∈ X(n)).

The Toeplitz algebra T (X) is the C∗-subalgebra of B(FX )
generated by the operators ϕ∞(·), S(·).
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The Cuntz-Pimsner algebra for subproduct systems

What could replace K as the ideal the we “mod out”?
Write Qn ∈ B(FX ) for the projection onto the nth direct summand,
X(n).
Define

I :=
{
S ∈ T (X) : lim

n→∞
‖SQn‖ = 0

}
.

Then I E T (X) and T (X) ∩K(FX ) ⊆ I (“generalized compacts”).

Definition (V.)
The generalized Cuntz-Pimsner algebra O(X) of X is T (X)/I.
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Specific case: product systems

Consider first the case X(n) = E⊗n.
It reduces to the well-known construction of Pimsner (1995):

I = T (E) ∩K(FE)

This algebra has many interesting universal properties:

Examples

Of course, O(Cd) = Od , d ∈N.
M is a unital C∗-algebra, α ∈ Aut M , E := αM {
O(E) � M oα Z.
This could be generalized further to crossed products of Hilbert
bimodules.
G is a finite graph of d vertices, E is the graph correspondence of
G (with M = Cd) { O(E) is the Cuntz-Krieger algebra of G.
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Specific case: product systems — gauge invariance

We are still in the case X(n) = E⊗n.

The Toeplitz algebra T (E) has a gauge action: for λ ∈ T there is
αλ ∈ Aut(T (E)) with

ϕ∞(a) 7→ ϕ∞(a) S(ζ) 7→ λS(ζ).

An ideal J E T (E) is called gauge invariant if αλ(J) = J for all λ.

The gauge-invariant uniqueness theorem (Katsura, 2007)
The ideal I = T (E) ∩K(FE) is the largest among ideals J of T (E)
s.t.:

1 ϕ∞(M ) ∩J = {0}.
2 J is gauge invariant.
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Gauge-invariant uniqueness theorem? No!

Unfortunately, we were not able to extend the gauge-invariant
uniqueness theorem to general subproduct systems.

Example
The Toeplitz algebra of SSP2 does not admit a largest ideal which does
not contain the unit I, and which is gauge invariant.

Sketch of proof.
Suppose that such ideal P E T (SSP2) exists.

1 P is largest { K ⊆ P
2 0→ K→ T (SSP2)→ C(∂B2)

3 P/K has a clear structure as an ideal of C(∂B2)

Now it is easy to find a larger ideal with the desired properties. �

We do have a partial substitute in terms of essential representations of
T (X).
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Families of examples

1 The X(n)’s are all finite-dimensional Hilbert spaces⇒ I = K

X(n) =
(
Cd

)⊗n

X(n) =
(
Cd

)sn

For every subshift Λ, a subproduct system XΛ can be associated so
that O(XΛ) is the C∗-algebra attached to Λ by K. Matsumoto
Generally: subproduct systems associated with polynomial
constraints

2 Qn ∈ T (X) for all n⇒ I =
〈
Qn : n ∈ Z+

〉
Example: the subproduct system of P ∈ Md with Pij ≥ 0 for all i, j
and no all-zero columns
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Morita equivalence

Definition (P. S. Muhly and B. Solel (2000))
Let E,F be C∗-correspondences over A ,B. E is strongly Morita
equivalent to F if A is ME to B via an equivalence bimodule M, and
there exists an isomorphism W : M ⊗ F → E ⊗M. Notation: E SME

∼ M F .

If E SME
∼ M F , define isomorphisms Wn : M ⊗ F⊗n

→ E⊗n
⊗M by

W1 := W and Wn := (IE ⊗Wn−1)(W ⊗ IF⊗(n−1)).

Definition (V.)
Subproduct systems X ,Y are strongly Morita equivalent if
X(1)

SME
∼ M Y(1) and

Wn(M ⊗ Y(n)) = X(n) ⊗M

for all n.
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Morita equivalence (cont.)

The following generalizes a theorem of Muhly and Solel (2000) for
product systems.

Theorem (V.)
If X is strongly Morita equivalent to Y, then:

1 T (X) is Morita equivalent to T (Y) as C∗-algebras
2 The Rieffel correspondence of T (X) ∼ T (Y) carries I(X) to I(Y).

Therefore O(X) is Morita equivalent to O(Y).

This is another evidence that our definition of the Cuntz-Pimsner
algebra for subproduct systems is “natural”.
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More open questions

1 Is there a “strong” universality characterization of O(X) ?
2 Determining the ideal structure, nuclearity and exactness of O(X).
3 In the spirit of Cuntz (1977), Pimsner used an “extension of

scalars” method to find a C∗-algebra that is naturally isomorphic to
O(E), and for which there is a semi-split exact sequence with the
Toeplitz algebra2.
Could this be done in our context?

4 Is there a relation between O(X) and C∗env(T+(X))?
Different cases have very different answers:

C∗env(T+(E)) = O(E),

but
C∗env(T+(SSPd)) = T (SSPd) (d ∈N).

We do not know what C∗env(T+(SSP∞)) is.
2Pimsner used this to obtain a KK -theoretical six-term exact sequence.
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Thank you for listening!
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