
Generalized Widder Theorem via fractional moments

This talk is about the first chapter of my thesis.

The classical problem of representability as the Laplace transform: when may a function

f : (0,∞)→ R be represented in the form

(∀x > 0) f(x) =

∫ ∞
−∞

e−xtdµ(t),

where µ is a positive Borel measure over R?

Widder’s Theorem: if and only if f is continuous and of positive type.

Definition 1. A function f : (0,∞) → R is of positive type if for every sequence

x1, . . . , xn ∈ (0,∞) and a sequence c1, . . . , cn of complex numbers,

n∑
i=1

n∑
j=1

cicjf(xi + xj) ≥ 0.

Widder’s result was generalized to the multidimensional case by Akhiezer (1965), Dev-

inatz (1955) and Shucker (1984).

Suppose now that we want to limit the support of the representing measure.

Devinatz characterized the functions representable as the multidimensional Laplace trans-

form, when the support of the representing measure is contained in some multidimensional

box.

The Paley-Wiener-Schwartz Theorem enables one to characterize those functions whose

representing measure’s support lies in a given convex set.

Question: What about more general sets?

The moment problem: given a sequence (γn)∞n=0 of real numbers, to find a necessary and

sufficient condition for the existence of a Borel measure µ such that

(n = 0, 1, 2, . . .) γn =

∫
tndµ.

The domain of integration might be either R (the Hamburger moment problem), [0,∞)

(Stieltjes) or a finite interval (Hausdorff).
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Definition 2. A sequence (γn)∞n=0 is called positive semi-definite if for every finite sequence

c0, . . . , cn of complex numbers,

n∑
i=0

n∑
j=0

cicjγi+j ≥ 0.

Theorem 3. The sequence (γn)∞n=0 is a Hamburger moment sequence iff it is positive

semi-definite.

Sketch of proof of sufficiency: we define a semi-inner product space over the space of all

finite complex sequences by

((αn)∞n=0, (βn)∞n=0) :=
∞∑
i=0

∞∑
j=0

αiβjγi+j.

It is indeed a semi-inner product since γ is positive semi-definite. We make this space an

inner product space by dividing by the ”null space”

N := {(αn)∞n=0 : (α, α) = 0} .

This inner product space is, in turn, completed, and we obtain a complex Hilbert space.

Then, the operator of right shift

T (α0, α1, α2, . . .) := (0, α0, α1, α2, . . .)

is an (unbounded) symmetric operator, with a selfadjoint extension S =
∫

R tE(dt). Finally,

if e = (1, 0, 0, . . . ...), then for every n = 0, 1, 2, . . .,

γn = (T ne, e) = (Sne, e) =

∫
R
tn(E(dt)e, e)

and one may take (E(·)e, e) to be µ. �

In the n-dimensional moment problem, γ is now a multi-sequence (γα)α∈Zn
+

, and the

method we have just described doesn’t work.

The solution: Putinar and Vasilescu used a method of dimensional extension to solve the

multidimensional moment problem. In their paper, the moment problem is translated to

the problem of representation of a certain linear functional over an algebra of functions.
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The bonus in their method is that it enables them to characterize moment sequences, whose

representing measures support lies in a given semi-algebraic set.

Fractional moments:

Fix n ∈ N. Denote by Pn the algebra of all complex polynomials with n real variables,

and by Qn the the complex algebra of all ”fractional polynomials” of positive rational

exponents and n variables. That is, Qn is the set of all of the functions in the form

Rn
+ 3 t 7→

∑
α∈Qn

+
aαt

α, where the aα’s are complex, and differ from zero only for a finite

number of indices α.

Let R be an algebra of complex functions, such that f ∈ R for all f ∈ R (that is,

R is selfadjoint). We say that a linear functional Λ over R is positive semi-definite if

Λ(|f |2) ≥ 0 for each f ∈ R. When this is the case, one can define the semi-inner product

(f, g) := Λ(fg). Thus, if N =
{
f ∈ R : Λ(|f |2) = 0

}
, then R/N is an inner-product

space. Hence, its completion, H, is a complex Hilbert space.

Let A be a subsemigroup of Qn
+. A family of complex numbers δ = (δα)A induces

the linear functional Lδ over the subalgebra of Qn generated by {tα : α ∈ A}, defined by

Lδ(t
α) = δα for all α ∈ A. We say that δ is positive semi-definite if the functional Lδ is

positive semi-definite.

Fix p1, . . . , pm ∈ Qn. For this fixed set of polynomials, let θp : Rn
+ → C be defined as

θp(t) := (1 + t21 + . . .+ t2n + p1(t)
2 + . . .+ pm(t)2)−1.

We denote by R the complex algebra generated by Qn and the function θp.

Theorem 4. Let Λ be a positive semi-definite functional overR. Then there exists a unique

representing measure for Λ, whose support is contained in Rn
+. Moreover, if Λ(pk |r|2) ≥ 0

for all r ∈ R, 1 ≤ k ≤ m, then the support of that (unique) measure is a subset of⋂m
k=1 p

−1
k (R+).

A set of the form
⋂m
k=1 p

−1
k (R+) is called a semi-algebraic set.
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Sketch of proof: Let H be the Hilbert generated by Λ. For 1 ≤ i ≤ n, 1 ≤ j ≤ m, we

define the operators Ti, Pj over R/N by

Ti : r +N 7→ tir +N , Pj : r +N 7→ pjr +N .

Let B be the operator B := T 2
1 + . . . T 2

n + P 2
1 + . . . + P 2

m. Then B : R/N → R/N is a

positive operator, since for all r ∈ R, (Br, r) =
∑n

i=1 Λ(|tir|2) +
∑m

j=1 Λ(|pjr|2) ≥ 0, by

the positivity of Λ. Moreover, I +B is bijective, since for all r ∈ R, (I +B)u = r for some

u ∈ R if and only if u = θpr. Therefore, B is essentially selfadjoint. Thus, the operators

Ti and Pj are essentially selfadjoint for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Moreover, the selfadjoint

operators A1 := T1, . . . , An := Tn commute, and thus have a joint resolution of the identity,

E. We used here the following propositions:

Proposition 5. Let A be a positive densely defined operator in H, such that AD(A) ⊆

D(A). Suppose that I + A is bijective on D(A). Then A is essentially selfadjoint.

Proposition 6. Let T1, . . . , Tn be symmetric operators in H. Assume that there exist

a dense linear space D ⊆ ∩nj,k=1D(TjTk) such that TjTkx = TkTjx for all x ∈ D, j 6= k,

j, k = 1, . . . , n. If the operator (T 2
1 + · · ·+T 2

n)|D is essentially selfadjoint, then the operators

T1, . . . , Tn are essentially selfadjoint, and their canonical closures T1, . . . , Tn commute.

We return to the proof. As a result, for all r ∈ R,

Λ(r) = (r +N , 1 +N ) =

∫
Rn

+

r(t)(E(dt)(1 +N ), 1 +N )︸ ︷︷ ︸
µ

.

Assume now that Λ(pk |r|2) ≥ 0 for all r ∈ R and 1 ≤ k ≤ m. This condition is

equivalent to the operators P1, . . . , Pm being positive. Thus, for all such k, Pk is a positive

selfadjoint operator. Hence, E is supported by p−1
k (R+). Consequently, E is supported by

∩mk=1p
−1
k (R+)

Definition 7. Let γ = (γα)α∈Rn
+

be a family of non-negative numbers.

(1) We say that γ is continuous if the function α 7→ γα is continuous (as a function

from Rn
+ to R+).
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(2) We say that γ is an (n-dimensional) fractional moments family if there exists a

positive Borel measure, µ, over Rn
+, such that

(∀α ∈ Rn
+) γα =

∫
Rn

+

tαdµ.

Note that this is equivalent to the (multidimensional) Laplace representation

(∀α ∈ Rn
+) γα =

∫
Rn

e−α·sdν(s)

obtained by the change of variable ti = e−si .

Theorem 8. Let γ = (γα)α∈Rn
+

be a continuous family of non-negative numbers. Let

p1, . . . , pm ∈ Qn, pk(t) =
∑

ξ∈Ik akξt
ξ (Ik ⊆ Qn

+ is finite) for k = 1, 2, . . . ,m. Then γ

is a fractional moments family with a representing measure whose support is a subset of

∩mk=1p
−1
k (R+) if and only if there exists a positive semi-definite family

δ = (δ(α,β))(α,β)∈Qn
+×Z+

that satisfies:

(1) δ(α,0) = γα for all α ∈ Qn
+.

(2) δ(α,β) = δ(α,β+1) +
∑n

j=1 δ(α+2ej ,β+1) +
∑m

k=1

∑
ξ,η∈Ik akξakηδ(α+ξ+η,β+1) for all (α, β) ∈

Qn
+ × Z+.

(3) The families
(∑

ξ∈Ik akξδ(α+ξ,β)

)
(α,β)∈Qn

+×Z+

are positive semi-definite for all k =

1, . . . ,m.

Moreover, the representing measure of γ (with the properties mentioned above) is unique if

and only if the family δ is unique.

Sketch of proof:

Necessity. Assume that γ is a fractional moments family with a representing measure µ,

whose support is a subset of E := ∩mk=1p
−1
k (R+). We define the family δ by

(∀(α, β) ∈ Qn
+ × Z+) δ(α,β) :=

∫
E

tαθp(t)
βdµ.
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Then δ is a positive semi-definite family, that satisfies (1). (2) is a result of the obvious

equality ∫
E

(
θp(t)(1 + t21 + . . .+ t2n + p1(t)

2 + . . . pm(t)2)− 1
)
tαθp(t)

βdµ = 0,

which is true for all α ∈ Qn
+, β ∈ Z+. Finally, (3) is true since∫

E

pk(t) |p(t, θp(t))|2 dµ ≥ 0

for all p ∈ Q̃n :=< Qn,P >, 1 ≤ k ≤ m.

Sufficiency. Let δ be as in the theorem’s statement, and the algebra R be the one defined

before the last theorem. We define the linear functional Λ over R by

Λ(r) = Lδ(p)

for all r ∈ R, where Lδ is the linear functional induced by δ over Q̃n, and p ∈ Q̃n is such

that r(t) = p(t, θp(t)) for all t ∈ Rn
+.

Then Λ is well-defined by (2), and it is positive semi-definite, and Λ(pk |r|2) ≥ 0 for all

r ∈ R, 1 ≤ k ≤ m by (3). We then use Theorem 4 and Lebesgue’s Dominated Convergence

Theorem.

As a concrete demonstration, we have the following immediate corollary of Theorem 8.

Corollary 9. Denote F := {t ∈ R2
+ : t21 ≤ t2}. In order for a continuous 2-dimensional

family (γα)α∈R2
+

of non-negative numbers to be representable in the form

γα =

∫
F

tαdµ

where µ is a non-negative measure over F , it is necessary and sufficient that there exist a

positive semi-definite family (δ(α,β))(α,β)∈Q2
+×Z+

, such that the following conditions hold:

(1) δ(α,0) = γα for all α ∈ Q2
+.

(2) δ(α,β) = δ(α,β+1) + δ(α+2e1,β+1) + 2δ(α+2e2,β+1) + δ(α+4e1,β+1) − 2δ(α+2e1+e2,β+1) for all

(α, β) ∈ Q2
+ × Z+.

(3) The family
(
δ(α+e2,β) − δ(α+2e1,β)

)
(α,β)∈Q2

+×Z+
is positive semi-definite.


