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Abstract. We consider local symmetric semigroups of Hilbert space operators. For an

open semigroup S in some topological group and a dense subsemigroup S′ of S, these

are semigroups of unbounded selfadjoint operators (H(t))t∈S′ that admit local continuous

extensions to open subsets of S. We study the possibility to continuously extend H(·)
to a semigroup of selfadjoint operators defined for all t ∈ S in several settings. Integral

representation formulae for the extended semigroups (H(t))t∈S by means of real characters

of S are established. Our proofs rely on graph limits of selfadjoint operators, commutativity

of unbounded operators and semigroup techniques, among others.

Introduction

The research of semigroups of operators in Hilbert space began with the pioneering work

of Hille [16, 17] and Sz.-Nagy [27] on the spectral representation of real-indexed semigroups

of bounded selfadjoint operators. They proved that such a semigroup (T (t))t>0 possessed a

positive selfadjoint operator A so that T (t) = At for all t > 0. The natural generalization to

unbounded selfadjoint operators, due to Devinatz [5], followed, stimulating a series of further

advances. From this point, however, the road split, and the theory advanced in two, rather

distinct, directions.

Several works dealt with semigroups of more general operators, symmetric in some sense,

but with indices still in R. Nussbaum [32] analyzed semigroups of densely defined symmetric

operators, for which the semigroup property holds on a common, dense domain. Fröhlich

[12] and Klein and Landau [24] considered local semigroups (T (t))t≥0 of symmetric operators

that need not be densely defined. This means that for every x in a dense linear subspace,

T (t)x is defined only when t belongs to a small enough interval [0, ε(x)), depending upon x.

They proved the spectral representation T (t)x = etHx was satisfied by a suitable selfadjoint
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operator H. These results had many applications, and in particular, an impact on mathe-

matical physics. Further progress in this direction includes extensions to multidimensional

Euclidean spaces (see Nussbaum [33] and Shucker [39]) and to semigroups whose indices do

not necessarily belong to a neighborhood of zero (see the author’s recent paper [44]).

Other works were concerned with semigroups of unbounded operators with indices in a

more general set. The foundations were laid by Phillips [34], who demonstrated how the

theory of Abelian von Neumann algebras might be employed to obtain the Stone Represen-

tation Theorem for groups of unitary operators when the group involved was any locally

compact Abelian one. Following in his footsteps, Nussbaum utilized this method to prove

a representation theorem for semigroups of selfadjoint operators with indices in a locally

compact group, first for bounded operators [29], then for unbounded ones [30]. Given a full

semigroup S in a locally compact group and a semigroup (T (t))t∈S of selfadjoint operators,

Nussbaum proved the existence of a spectral measure E(·) over the space Ŝ of real con-

tinuous characters of S satisfying T (t) =
∫
Ŝ
χ(t)E(dχ). Ionescu Tulcea [21] showed that a

similar theorem holds for semigroups of unbounded normal operators. Related results in-

clude papers of Ressel and Ricker [37, 38], where an integral representation is established

for semigroups of normal operators over non-topological semigroups; and a recent memoir

of Glöckner [14], in which pertinent questions are addressed.

In this paper we study semigroups of operators that are general in both aspects. Let S

be an open semigroup in a topological group G. Our basic assumption is that (H(t)) is a

semigroup of unbounded selfadjoint operators defined for t in a dense subsemigroup S′ of

S, which is additionally “locally defined”; that is, for each x in a dense linear subspace D of

H, the function t 7→ H(t)x extends continuously to a suitable arbitrarily small open subset

U(x) of S. Our objective is to examine the possibility to extend (H(t)) to a semigroup of

selfadjoint operators defined for all t ∈ S that is continuous as a function of t in some sense,

and to establish for the extended semigroup a spectral representation, as close as possible to

the ones mentioned above.

When tackling such a problem, it is but natural to consult the theory of convergence of

nets of operators. The operators we consider are, nonetheless, unbounded, in which case

convergence is a far more complicated and subtle issue. Of all contributions to the subject

that were known to us, we found useful the theory of graph limits of selfadjoint operators

developed by Glimm and Jaffe [13]. Our fundamental idea is to amalgamate graph limits

with commutativity of operators. This, in combination with the Abelian von Neumann
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algebras approach of Phillips and Nussbaum, together with other techniques, enables us to

provide an answer to the proposed question in several contexts.

The analysis is carried out under two Standing Hypotheses. The first is the most general

we could put together to meet our requirements. It considers semigroups of operators with

indices ranging over an open semigroup in an arbitrary topological group G. In the second

one, a stronger integral representation is obtained by means of restricting G to the class of

locally compact groups, and the incorporation of an additional analytic condition. The last

section is dedicated to a comparison of our results to similar ones in the literature.

Spectral commutativity (abbreviated to “commutativity”) of unbounded normal operators

in Hilbert space is a key component of our discussion. The readers are assumed to be familiar

with the elements of this field, which may be found in [31, 35, 43].

1. Preliminaries

Throughout this paper H denotes an arbitrary complex Hilbert space, and B(H) stands

for the algebra of bounded linear operators on H.

We begin with a brief self-contained account of the theory of Abelian von Neumann alge-

bras and algebras of unbounded operators. The interested reader is referred to the original

papers listed below and to [22, Ch. 5] for more details.

Let R be an Abelian C∗-algebra of bounded operators over H. The well-known Gelfand-

Neumark Theorem states that R is isometrically isomorphic to C(M), the algebra of all

complex valued continuous functions over the structure space M of R, which is a compact

Hausdorff space. For A ∈ R, let Â(·) denote its corresponding element of C(M).

In [41], Stone investigates the space CR(X) of continuous real functions over a completely

regular topological space X that satisfies the property that every non-void subset of CR(X)

which has an upper bound has a least upper bound. Suppose now that R is an Abelian von

Neumann algebra. Then this property is indeed satisfied by X = M in view of [11, Theorem

1.1], the Gelfand-Neumark Theorem and the fact that if A,B ∈ R are selfadjoint, then

A ≤ B if and only if Â ≤ B̂. Since every compact Hausdorff space is completely regular, we

infer that M has some important properties, including (cf. [41, Theorem 12]):

(1) The clopen subsets of M form a basis for it (i.e., M is zero-dimensional).

(2) The closure of every open set in M is clopen (i.e., M is extremally disconnected).
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Hence, every Borel subset B of M possesses a unique clopen set B∗ that differs from B by a

set of first category (cf., for example, [11, §2]). Therefore, we can construct a regular spectral

measure over the Borel algebra of M in the following manner: for each Borel set B in M,

let ÊB denote the characteristic function of B∗. Since B∗ is clopen, ÊB ∈ C(M). Let EB

be its corresponding operator in R. EB is evidently an orthogonal projection. The family

(EB) forms a regular spectral measure over M, and for each A ∈ R, A =
∫
M
Â(M)EdM , the

integral converging in the norm topology (cf. [11, §4]).

In [11], Fell and Kelley expand the algebra R to an algebra of unbounded operators R, by

means of expanding first the algebra C(M) to unbounded functions. We proceed to describe

their method. Let C(M) be the set of all continuous functions from M to C∪ {∞} that are

∞ only on a nowhere dense set.

Theorem 1.1 ([11, p. 594], [28, p. 219]). C(M) is an algebra when we define, for f, g ∈
C(M), f + g and fg to be the unique continuous functions in C(M) that agree with the sum

and product of f and g, respectively, except on a set of first category (see [11, Theorem 2.2]).

It is easily seen that the equations (f+g)(M) = f(M)+g(M) and (fg)(M) = f(M)g(M)

hold whenever the right side makes sense by usual arithmetics.

Given f ∈ C(M) we define the normal (perhaps unbounded) operator Nf :=
∫
M
f(M)EdM

(as usual, D(Nf ) =
{
x ∈ H :

∫
M
|f(M)|2 (EdMx, x) <∞

}
). Let R :=

{
Nf : f ∈ C(M)

}
. So

R ⊆ R and C(M) ⊆ C(M). The following theorem demonstrates the connection between

the two expansions:

Theorem 1.2 ([11, Theorems 3.4 and 3.5]). The algebra C(M) is isomorphic to R in the

sense that N∗f = Nf and Nf+g, Nfg equal Nf +Ng, NfNg, respectively, for all f, g ∈ C(M).

Moreover, Nf ∈ R is invertible if and only if f−1(0) is nowhere dense, and in this case

(Nf )
−1 = Nf−1.

As a direct corollary, every two operators in R commute (spectrally) as unbounded normal

operators, that is, their spectral measures commute.

Remark 1.3. Suppose that f ∈ C(M) and Nf is selfadjoint (equivalently, f(M) ∈ R for every

M ∈ M for which f(M) is finite). By applying [11, Theorem 2.2] on f with the compact

space Y := R = R]{+∞,−∞} (the extended real numbers) instead of C∪{∞}, we deduce

that f can be regarded as a continuous function from M to R, that is, when the two infinities
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are topologically distinguished. To avoid confusion, we shall always use the signed version

+∞ of the positive infinity when in the context of R.

Proposition 1.4. If f, g ∈ C(M) are such that f−1(0) ∩ g−1(∞) = Ø, then Nfg = NfNg.

The proof follows routinely from Theorems 1.1 and 1.2, and so its details are omitted.

We continue by introducing the topic of graph limits (see [13, 35, 36]). Various theories

have been developed regarding convergence of unbounded selfadjoint operators (e.g. [9, 23,

35]). The deficiency in most theorems that fall into this category is that they require the

limit operator to be selfadjoint in advance. This is problematic when we do not have a

preliminary grasp of this operator. A partial “solution” is given below in the form of graph

limits. The importance of the following Proposition 1.6 is that it provides (relatively easily

verified) conditions under which the graph limit of a net of selfadjoint operators exists, and

is itself selfadjoint. Moreover, it supplies us with information on its resolvent.

Definition 1.5. Let (Aj)J be a net of operators over H. We say that (x, y) ∈ H ×H is in

the (strong) graph limit Γs∞ of (Aj)J if there exists a net (xj)J , xj ∈ D(Aj) for all j ∈ J ,

such that xj −→
J
x and Ajxj −→

J
y. If Γs∞ is the graph of an operator A, we say that A is the

strong graph limit of the net (Aj)J , and write A = s. g-limJ Aj.

As indicated in the definition, the graph limit of a net of operators need not necessarily be

the graph of an operator. The next result is the strong graph limits version of [36, Theorem

X.63] for nets instead of sequences.

Proposition 1.6. Let (Aj)J be a net of selfadjoint operators that satisfy:

(1) Ds
∞ :=

{
x ∈ H : (∃y ∈ H) (x, y) ∈ Γs∞

}
is dense in H.

(2) There exist (bounded) operators R± such that R(±i;Aj)→ R± strongly.

Then Γs∞ is the graph of a (densely defined) selfadjoint operator A = s. g-limJ Aj, which

satisfies R(±i;A) = R±.

Proof. The methods of [35, Theorem VIII.27] can be employed almost verbatim to establish

that Γs∞ is the graph of a (densely defined) symmetric operator A.

It is therefore sufficient to prove that ±i ∈ ρ(A) and R(±i;A) = R±. Let x ∈ H. For all

j ∈ J , denote yj := R(±i;Aj)x, that is, x = (±iI −Aj)yj. Since yj → R±x by (2), we have

Ajyj → ±iR±x− x. Thus R±x ∈ D(A) and AR±x = ±iR±x− x, hence (±iI − A)R± = I.
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As A is symmetric, the operators ±iI−A are injective. From the last equality, they are also

surjective, and so R(±i;A) = R±, as desired. �

The most fundamental case in which Ds
∞ is dense is when (Aj)J converges strongly on

a dense linear subspace of H. But even this is generally not sufficient for Condition (2)

of Proposition 1.6 to hold. However, if one additionally assumes that the operators (Aj)J

commute pairwise, then this condition is satisfied indeed.

Theorem 1.7. Let (Aj)J be a net of pairwise commuting selfadjoint operators that admit a

dense linear subspace D of H such that D ⊆
⋂
j∈J D(Aj), and limJ Ajx exists for every x

in D. Then the conditions of Proposition 1.6 are satisfied, and s. g-limJ Aj commutes with

Aj for every j ∈ J .

Proof. We assert that the conditions of Proposition 1.6 hold. As mentioned above, the

theorem’s assumptions yield easily that Condition (1) is satisfied. As for Condition (2), let

j1, j2 ∈ J be given. Since Aj1 , Aj2 commute, we have

R(i;Aj1)x−R(i;Aj2)x = R(i;Aj1)R(i;Aj2)(Aj2 − Aj1)x (1.1)

for all x ∈ D(Aj1) ∩ D(Aj2). This is true, in particular, when x ∈ D. Fix such x. Since

limJ Ajx exists, the net (Ajx)j∈J is a Cauchy net. Thus, since ‖R(i;Aj)‖ ≤ 1 for all j ∈ J
(the operators (Aj)J being selfadjoint), the net (R(i;Aj)x)j∈J is also Cauchy by virtue of

(1.1). As already stated, the family {R(i;Aj) : j ∈ J } is uniformly bounded and D is dense,

whence (R(i;Aj)y)j∈J is a Cauchy net for all y ∈ H. Therefore, the net (R(i;Aj))j∈J

converges strongly to a bounded operator R+. Similarly, (R(−i;Aj))j∈J converges strongly

to R−. From Proposition 1.6, A := s. g-limJ Aj is a (well-defined) selfadjoint operator, and

R(±i;A) = R±. For every two indices j, j′ ∈ J , R(i;Aj)R(i;Aj′) = R(i;Aj′)R(i;Aj) due to

the commutativity of Aj, Aj′ . Hence R(i;Aj)R(i;A) = R(i;A)R(i;Aj), thus A commutes

with Aj. �

2. First hypothesis

The term “semigroup of unbounded operators” can have several different meanings. The

following is our definition. See §5 for comparison with others.

Definition 2.1. Let (S, ·) be a semigroup. A family (H(t))t∈S of (generally unbounded)

selfadjoint operators is called a semigroup of selfadjoint operators over S if for every t, s ∈ S,
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the operators H(t) and H(s) commute, and

H(t)H(s) = H(ts). (2.1)

An immediate implication of the definition is that

H(ts) = H(t)H(s) = H(s)H(t) = H(st) (2.2)

for all t, s ∈ S, even though S is not required to be Abelian.

Let G be a topological group with identity e (all topological spaces are tacitly assumed to

be Hausdorff throughout). We shall henceforth assume that S is an open semigroup in G

that admits a dense subsemigroup S′, which may be written as S′ = S ∩G′ for a suitable

subgroup G′ of G.

The purpose of this work is to study various settings in which a semigroup of selfadjoint

operators over S′ that is also locally defined in S may be extended “continuously” to a

semigroup of selfadjoint operators over S. Our first such setting is the next hypothesis,

where A′ is to be intuitively understood as topologically “small” (on first reading, take

A′ = {e}).

Standing Hypothesis 2.2. Suppose that A′ ⊆ S ∩ G′ is a semigroup, and (H(t))S′∪A′ is

a semigroup of selfadjoint operators that is “locally defined” in the sense that there exists a

dense linear subspace D of H satisfying:

(I) For every x ∈ D there exists an open neighborhood V (x) of A′ in G, such that

if U(x) := V (x) ∩ S, then x ∈ D(H(t)) for all t ∈ U(x) ∩ S′ and the function

U(x) ∩S′ 3 t 7→ H(t)x extends to a continuous function on U(x).

Assume moreover that:

(II) There exists a countable subset D of S′∪A′ for which the equality
⋂
t∈S′∪A′ D(H(t)) =⋂

t∈DD(H(t)) is satisfied.

If e /∈ A′ then we require, in addition, that there exist a pairwise orthogonal family (Pk)k∈K

of orthogonal projections, such that:

(III) Pk and H(t) commute for every k ∈ K and t ∈ S′ ∪ A′.

(IV) For each k ∈ K there exists ak ∈ A′ such that the restriction of H(ak) to its

reducing subspace PkH has a bounded inverse.

(V) H(t)(I −
∑

k∈K Pk) = 0 for all t ∈ S′.

Remark 2.3.
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(1) Note that S′ ∪ A′ is indeed a semigroup: S is an open semigroup, and so S · S =

S · S ⊆ S. As a result, if t ∈ S′ and a ∈ A′, then ta ∈ S. Since also ta ∈ G′, we

obtain ta ∈ S ∩G′ = S′. The same is true for at.

(2) Condition (II) is essentially [21, (13)]. It is satisfied, e.g., when G′ is countable.

(3) K is not assumed to be countable.

Of special interest is the case in which A′ = {e} (this can only happen if e ∈ S). The

family H(·) is then required to be locally defined only close to e. Nevertheless, the majority

of the proof of Theorem 2.6 is still indispensable.

We introduce some notation to be used in the sequel. Given x ∈ D, denote the extension

of t 7→ H(t)x to U(x) by t 7→ T (t)x (see (I)). In doing so we obtain a family (T (t))t∈S

of linear operators, such that if x ∈ D, then the function t 7→ T (t)x is (well-defined and)

continuous on U(x), and T (t)x = H(t)x for all t ∈ U(x) ∩S′. However, for general t ∈ S,

the domain D(T (t)) need not be dense in H, and it might even be {0}.

Definition 2.4 (compare with Definitions 3.1, 3.2 below). An extended real valued function

χ over S is called an extended real character of S if χ(t)χ(s) = χ(ts) for all t, s ∈ S for

which this multiplication makes sense by usual arithmetics (i.e., if χ(t), χ(s) are either both

finite or both nonzero). The set of all extended real characters of S, endowed with the

topology of pointwise convergence, will be denoted by S∗,nc
∞ .

Remark 2.5. Elements of S∗,nc
∞ are not required to be continuous over S (the “nc” superscript

stands for “not necessarily continuous”). Furthermore, S∗,nc
∞ is a compact Hausdorff space,

for it may be identified with a closed subspace of the topological space RS
, which is compact

owing to Tychonoff’s Theorem.

We are ready to state the main theorem of this section.

Theorem 2.6. Under Standing Hypothesis 2.2, the semigroup (H(t))t∈S′ extends to a semi-

group (H(t))t∈S of selfadjoint operators (see Definition 2.1), in such a way that

T (t)x = H(t)x (2.3)

for all x ∈ D, t ∈ U(x). There exists a unique regular spectral measure E(·) over S∗,nc
∞ such

that χ(t) is finite E(dχ)-a.e. and

H(t) =

∫
S∗,nc∞

χ(t)E(dχ) (2.4)

8



for all t ∈ S. Moreover, (H(t))t∈S is “continuous” in the following sense: there exists a

dense linear subspace D′ of H such that D′ ⊆
⋂
t∈SD(H(t)) and t 7→ H(t)x is continuous

over S for all x ∈ D′.

Remark 2.7. It is perhaps more convenient for some purposes that conditions (III)-(V) (and

their preface) may be reformulated to guarantee the existence of a family (P ′k)k∈K of pair-

wise commuting orthogonal projections, not necessarily pairwise orthogonal, satisfying the

mentioned conditions with Pk replaced by P ′k and
∑

k∈K Pk replaced by
∨
k∈K P

′
k. The two

formulations are equivalent (to derive the first from the second, cast a well-order relation on

K, and define (Pk)k∈K by Pk := P ′k(I −
∨
l<k P

′
l )).

A few words are in order about the theorem’s assumptions, being mostly not only suf-

ficient, but also necessary in a sense, for the stated results to hold. Condition (I) is

natural in light of the extended operator semigroup (H(t))t∈S satisfying (2.3). As for

(III)-(V), assume that (2.4) holds. Denote by χ0 the zero character on S. Let L :=

{(χ, t) : χ ∈ S∗,nc
∞ , t ∈ S, χ(t) 6= 0}, and for (χ, t) ∈ L write

A(χ,t) :=

{
{ξ ∈ S∗,nc

∞ : |ξ(t)| > |χ(t)| /2} , if |χ(t)| 6=∞
{ξ ∈ S∗,nc

∞ : |ξ(t)| > 1} , if |χ(t)| =∞.

Each of the sets A(χ,t) is open in S∗,nc
∞ and disjoint from {χ0}, and their union equals

S∗,nc
∞ \{χ0}. For any subset K of L with the property that the union

⋃
(χ,t)∈KA(χ,t) is also

S∗,nc
∞ \{χ0}, define P ′k := E(Ak) for k ∈ K and Q := E({χ0}). Then the orthogonal projec-

tions (P ′k)k∈K commute pairwise and also with H(t) for all t ∈ S. The regularity of E(·)
implies that Q = I −

∨
k∈K P

′
k. Surely H(t)Q = 0, and for every k = (χk, ak) ∈ K with

P ′k 6= 0, the operator H(ak)|P ′kH possesses a bounded inverse. Observe that we chose our

elements ak from S, while in Standing Hypothesis 2.2 it was permitted to choose them from

S.

Let us outline the course of the proof of Theorem 2.6 before going into the details. We

construct an Abelian von Neumann algebra R that contains the spectral projections of all

the operators H(t), t ∈ S′ ∪ A′. This algebra is extended to an algebra R of unbounded

normal operators, as described in §1. R is used to procure a family of orthogonal projections

with least upper bound I, each of which reduces each of the operators H(t) to a bounded one.

Using these projections and Theorem 1.7, we extend (H(t))t∈S′∪A′ to a family of commuting

selfadjoint operators (H(t))t∈SA′∪A′S, which satisfies the semigroup property, equation (2.3)
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and the “strong continuity” property mentioned in the statement of the theorem. Conditions

(III)-(V) are then employed to further extend (H(t))t∈SA′∪A′S to a semigroup of selfadjoint

operators (H(t))t∈S. The spectral representation (2.4) is obtained as a consequence of the

integral representation formula of elements of R and the semigroup property.

The first extension of (H(t))t∈S′ , namely to the open subset SA′∪A′S of S, is only feasible

by virtue of the family H(·) being locally defined in S close to elements of A′ (Condition

(I)). This is the principal role of A′ in Standing Hypothesis 2.2. The definition of H(t) is

thus technically confined to the case when t is a multiplication of an element of A′ by an

element of S, which is the reason we need to go through SA′∪A′S in our way to eventually

extend H(·) to all of S.

Proof of Theorem 2.6. Following [34, 29, 30], we denote by Ft(·) the spectral measure of H(t)

for t ∈ S′∪A′. Let R be any Abelian von Neumann algebra in B(H) that contains Ft(C) for

all Borel subsets C of R and t ∈ S′∪A′. Such R necessarily exists since Ft(·) commutes with

Fs(·) when t, s ∈ S′ ∪A′ (see Definition 2.1), and the results of §1 apply to it. In particular,

R ∼= C(M) where M is the structure space of R (cf. Theorems 1.1 and 1.2). As proved in

[30, Theorem 4], H(t) ∈ R for all t ∈ S′ ∪A′. Let ft be the element of C(M) corresponding

to H(t) (i.e., Nft = H(t)), and write St := f−1
t (∞) (which is nowhere dense in M). Consider

the set S :=
⋃
t∈D St. D is countable by our assumption, hence S is of the first category.

Accordingly, S is in fact nowhere dense in M (see [30, Theorem 5], originally from [3, p. 65,

b], [42, pp. 187-188]). Fix M ∈ Sc. There exists a clopen subset σ of M such that M ∈ σ
and σ ∩ S = Ø. For this σ we have, using (II), EσH ⊆

⋂
t∈DD(H(t)) =

⋂
t∈S′∪A′ D(H(t)).

Consequently, σ ⊆
⋂
t∈S′∪A′ S

c
t . Since M ∈ σ, we infer that S =

⋃
t∈S′∪A′ St. Let

O := {σ : σ is clopen in M and σ ∩ S = Ø} .

If σ ∈ O, then by the foregoing, H(t)Eσ is bounded for all t ∈ S′∪A′. Thus (H(t)Eσ)t∈S′∪A′

is a semigroup of bounded selfadjoint operators by virtue of (2.1) (as H(t)EσH(s)Eσ ⊆
H(ts)Eσ, and equality holds since both sides are everywhere defined).

We have already commented (see Remark 2.3) that SA′,A′S ⊆ S. Let s ∈ SA′, x ∈ D
and σ ∈ O be given. Fix t ∈ S, a ∈ A′ so that s = ta. Since a ∈ S and U(x) is the

intersection of S with a neighborhood of a (cf. (I)), we have a ∈ U(x). Consequently, t

belongs to the closure of the open set taU(x)−1. In addition, t ∈ S which is open, therefore

(taU(x)−1) ∩S 6= Ø. As a result, it is possible to select an element t0 of S′ that belongs to

taU(x)−1 (recall that S′ is dense in S), that is, t−1
0 ta ∈ U(x). Hence H(t0)Eσ is bounded
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and x ∈ D(T (t−1
0 ta)), so that one may intuitively define

H̃(s)Eσx := H(t0)EσT (t−1
0 ta)x. (2.5)

In particular, if s = ta itself belongs to S′, so does t−1
0 ta (seeing that t−1

0 ta ∈ S, and the

equality S′ = S ∩ G′ holds for the subgroup G′ of G). Thus (I) and the definition of T (·)
yield that

H(t0)EσT (t−1
0 ta)x = H(t0)EσH(t−1

0 ta)x

= H(t0)H(t−1
0 ta)Eσx = H(s)Eσx.

(2.6)

The above definition does not depend on the specifically chosen t, a or t0, since by virtue

of (I) we have

H(t0)EσT (t−1
0 ta)x = H(t0)Eσ( lim

t′→t
t′∈S′

T (t−1
0 t′a)x)

= limH(t0)EσT (t−1
0 t′a)x

= limH(t0)EσH(t−1
0 t′a)x

= limH(t0)H(t−1
0 t′a)Eσx

= limH(t′a)Eσx,

(2.7)

all limits being the same as the first one. This limit is well-defined since S′ is dense in S.

We used here the fact that t−1
0 t′a belongs to U(x) ∩ S′ for t′ ∈ S′ close enough to t (as

S′ = S ∩ G′). Notice that in particular, the limits in (2.7) necessarily exist. In a similar

fashion, an element of S′ is “close” to s if and only if it may be expressed as t′a, for t′ “close”

to t in S′. Hence (2.7) becomes

H̃(s)Eσx = lim
s′→s
s′∈S′

H(s′)Eσx, (2.8)

which is valid for all s ∈ SA′, x ∈ D and σ ∈ O.

We wish to extend our definition in (2.5) to a selfadjoint operator H̃(s). Let us define, for

s ∈ SA′,

H̃(s) := s. g-lim
s′→s
s′∈S′

H(s′). (2.9)

The fact that S is nowhere dense in M, [11, Theorem 1.1] and the Gelfand-Neumark Theorem

imply that Eσ −−→
σ∈O

I in the strong operator topology, thus⋃
σ∈O

EσD is dense in H. (2.10)
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The requirements of Theorem 1.7 are consequently satisfied by (2.8) and (2.10). The operator

H̃(s), as defined in (2.9), is therefore a well-defined selfadjoint operator, and R(±i; H̃(s)) =

s-lim s′→s
s′∈S′

R(±i;H(s′)). Since R(±i;H(s′)) ∈ R for all s′ ∈ S′, and sinceR is strongly closed,

we deduce that R(±i; H̃(s)) ∈ R. Consequently, H̃(s) ∈ R for all s ∈ SA′ by Theorem

1.2, and the unbounded selfadjoint operators
{
H̃(s) : s ∈ SA′

}
commute pairwise. We have

already proved (cf. (2.6)) that for s ∈ SA′ ∩ S′, H̃(s) and H(s) agree on the dense linear

subspace defined in (2.10). Since they both belong to R, they commute, and so, by [32,

Proposition 1], they are equal. Henceforth, we shall consequently write H(s) instead of H̃(s)

for all s ∈ SA′, and denote by fs(·) the element of C(M) that corresponds to H(s) ∈ R.

Having H(s) defined for s ∈ SA′, we assert that the strong graph limit in (2.9) is not

restricted to nets in S′. Indeed, fix s ∈ SA′, and let (sj)J be any net in SA′ that converges

to s. The operators (H(sj))J commute pairwise. Additionally, (2.5) implies that H(s)Eσx

is a continuous function of s in SA′ for fixed x ∈ D and σ ∈ O. Therefore, from Theorem

1.7, s. g-limJ H(sj) is a well-defined selfadjoint operator, which agrees with H(s) on a dense

linear subspace. As in the preceding paragraph, s. g-limJ H(sj) ∈ R. [32, Proposition 1]

consequently yields that s. g-limJ H(sj) = H(s).

The foregoing construction may be repeated for elements s ∈ A′S, in such a way that

H(s) possess all of the features that are proved above for elements of SA′. Moreover, by

(2.2) and (2.9) (see also the passage from (2.7) to (2.8)),

H(ta) = H(at) (2.11)

for all t ∈ S and a ∈ A′.

Our next task is to prove that the family (H(s))s∈SA′∪A′S satisfies the following version

of the semigroup law. Let s1 ∈ A′S, s2 ∈ SA′ be given. Since H(s1) and H(s2) are

commuting selfadjoint operators in R, the operator H(s1)H(s2) is selfadjoint and belongs

to R (cf. Theorem 1.2). On the other hand, s1s2 ∈ A′S and H(s1s2) also belongs to R,

thus it commutes with H(s1)H(s2). To prove that they are equal, we use [32, Proposition 1].

Indeed, for x ∈ D and σ ∈ O, from (H(t)Eσ)t∈S′∪A′ being a semigroup of bounded operators

we infer that

H(s1s2)Eσx
(1)
= lim

s′1→s1
s′1∈S′

lim
s′2→s2
s′2∈S′

H(s′1s
′
2)Eσx = lim

s′1→s1
s′1∈S′

lim
s′2→s2
s′2∈S′

H(s′1)EσH(s′2)Eσx

12



= lim
s′1→s1
s′1∈S′

H(s′1)Eσ( lim
s′2→s2
s′2∈S′

H(s′2)Eσx)
(2)
= lim

s′1→s1
s′1∈S′

H(s′1)EσH(s2)Eσx

= lim
s′1→s1
s′1∈S′

H(s′1)H(s2)Eσx
(3)
= H(s1)H(s2)Eσx.

Note that equalities (1) and (2) are true since the function s 7→ H(s)Eσx is continuous on

SA′ ∪ A′S, and equality (3) holds in view of (2.9). By (2.10) we conclude that

(∀s1 ∈ A′S, s2 ∈ SA′) H(s1s2) = H(s1)H(s2). (2.12)

Very similarly, if a ∈ A′, s ∈ A′S, x ∈ D and σ ∈ O, we have

H(sa)Eσx = lim
s′→s
s′∈S′

H(s′a)Eσx = lim
s′→s
s′∈S′

H(s′)H(a)Eσx = H(s)H(a)Eσx,

so we obtain

(∀a ∈ A′, s ∈ A′S) H(sa) = H(s)H(a) = H(a)H(s). (2.13)

If e ∈ A′ then SA′ = S = A′S, and one may take D′ to be the linear subspace of H that

appears in (2.10).

Suppose otherwise. Then (III)-(V) hold. From (III), R could have been chosen such

that {Pk}k∈K ⊆ R, and so will be assumed hereinafter. Write Q := I −
∑

k∈K Pk (which

necessarily belongs to R as the latter is a von Neumann algebra). For k ∈ K, let σk be

the clopen set in M so that the indicator Iσk is the element of C(M) corresponding to Pk.

Similarly, let σ∗ be the clopen set in M such that Iσ∗ corresponds to Q. Then (σk)K]{∗} is a

family of mutually disjoint clopen subsets of M, and one verifies easily that (IV) is equivalent

to the function fak being nonzero on the (compact) subset σk of M for every k ∈ K. By (V),

(2.9) and (2.11) we infer that H(s)Q = 0 for all s ∈ SA′∪A′S, that is, fs is identically zero

on σ∗ for all such s. Let S1 denote the complement in M of the open set
⊎
k∈K]{∗} σk. Then

[11, Theorem 1.1], the extremal disconnectedness of M and the definition of Q imply that

S1 is nowhere dense in M. Consequently, S2 := S ∪S1 is also nowhere dense. Fix t ∈ S. We

shall construct a function ft ∈ C(M) in the following manner. Define ft(M) to be zero when

M ∈ σ∗. For every M ∈ Sc2\σ∗ there exists a unique k ∈ K such that M ∈ σk. Moreover,

fak(M) /∈ {0,∞}, and we may define

ft(M) := ftak(M)fak(M)−1 = fakt(M)fak(M)−1 (2.14)

(cf. (2.11)). Since ftak ∈ C(M) and σk is open for every k ∈ K ] {∗}, ft is a continuous

function from Sc2 to R ∪ {∞}. We shall require the following simple lemma.
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Lemma 2.8. If (θl)l∈L is a family of nowhere dense subsets of a topological space X, and

(τl)l∈L is a family of mutually disjoint open subsets of X, then υ :=
⊎
l∈L(θl ∩ τl) is also

nowhere dense in X.

Proof. Put τ :=
⊎
l∈L τl. Since the sets τl are open, υ ⊆

⊎
l∈L(θl ∩ τl)] (τ\τ). τ is open, thus

τ\τ is nowhere dense. As the sets θl are nowhere dense we infer that int υ = Ø. �

By Lemma 2.8, f−1
t (∞) =

⋃
k∈K(f−1

tak
(∞)∩σk) is nowhere dense in M. Using [11, Theorem

2.2] and Baire’s theorem, ft may be extended to an element of C(M), also denoted by ft.

Let H(t) denote the selfadjoint operator in R that corresponds to ft. If t ∈ S′ ∪SA′ ∪A′S
then the operator H(t) (thus ft(·)) is already defined. These notions are consistent with the

new ones: indeed, (2.1), (2.13), (2.14) and Theorem 1.2 indicate that the new and the old

functions ft(·) agree on Sc2, which is dense in M. Since both belong to C(M), they are equal.

The consistency in the definition of the corresponding operators follows at once.

From ft(·) being identically zero on σ∗ we deduce that H(t)Q = 0 for all t ∈ S. Fix

t1, t2 ∈ S and M ∈
[
S2 ∪

⊎
k∈K
(
(Sakt1 ∪ Sakt2 ∪ Sakt1t2) ∩ σk

)]c
. If M /∈ σ∗ and k is such

that M ∈ σk, then

ft1(M)ft2(M) = fakt1(M)fak(M)−1ft2ak(M)fak(M)−1

= fakt1t2ak(M)fak(M)−2

= fakt1t2(M)fak(M)fak(M)−2

= fakt1t2(M)fak(M)−1 = ft1t2(M)

(cf. (2.12), (2.13), (2.14) and Theorem 1.2). The equality ft1(M)ft2(M) = ft1t2(M) surely

holds when M ∈ σ∗. Therefore ft1ft2 = ft1t2 in C(M), that is,

(∀t1, t2 ∈ S) H(t1)H(t2) = H(t1t2). (2.15)

Given k ∈ K, consider the function that takes M ∈ σk to fak(M)−1 and M ∈ σck to 0.

This function is an element of C(M). Denote by Bk its corresponding bounded operator in

R. Then (2.14) may be written as H(t)Pk = H(tak)Bk (the commutativity of the involved

operators was used). Hence, if x ∈ D and σ ∈ O, then

H(t)PkEσx = H(tak)BkEσx = BkH(tak)Eσx,
14



thus t 7→ H(t)PkEσx is continuous over S. Therefore, t 7→ H(t)y is continuous over S for

every y in the linear subspace

D′ := span {PkEσx : x ∈ D, σ ∈ O, k ∈ K} ⊕QH,

which is dense in H by virtue of (2.10) and the definition of Q. By mimicking earlier parts

of the proof, one confirms that

s. g-lim
J

H(tj) = H(t) (2.16)

for every t ∈ S and every net (tj)J in S that converges to t.

To ascertain (2.3), let x ∈ D and t ∈ U(x) be given. Then T (t)x = lim t′→t
t′∈S′

T (t′)x =

lim t′→t
t′∈S′

H(t′)x = H(t)x by virtue of (I) and (2.16).

The establishment of (2.4) is now easy in light of the integral spectral representation that

operators in R admit. For every t ∈ S, we have

H(t) =

∫
M

ft(M)EdM . (2.17)

ft is continuous as a function from M to C∪{∞}, but it may also be viewed as a continuous

extended real valued function (cf. Remark 1.3). For fixed M ∈M, the function t 7→ ft(M)

is consequently an extended real valued function over S. Moreover, (H(t))t∈S satisfying the

semigroup law (2.15) makes this function an extended real character of S in the sense of

Definition 2.4. Thus it is natural to define a function ϕ : M→ S∗,nc
∞ by M 7→ (t 7→ ft(M)).

ϕ is continuous on account of the continuity of ft for all t ∈ S. We may therefore define a

spectral measure over the algebra of Borel sets in S∗,nc
∞ by

E(Ω) := Eϕ−1(Ω)

for every such Borel set Ω. (E(Ω)) is inner regular since (EB), as a spectral measure over

M, is inner regular and ϕ is continuous. By complementation, (E(Ω)) is outer regular as

well. Finally, a simple change of parameter in (2.17) yields (2.4).

To prove the uniqueness of E(·), suppose that E ′(·) is a regular spectral measure over

S∗,nc
∞ satisfying (2.4). Using standard functional calculus arguments, it is readily seen that∫

S∗,nc∞

arctan(χ(t))E(dχ) = arctan(H(t)) =

∫
S∗,nc∞

arctan(χ(t))E ′(dχ) (2.18)

for all t ∈ S. Let A denote the set of all continuous real valued functions f over S∗,nc
∞ that

satisfy the equality
∫
S∗,nc∞

f(χ)E(dχ) =
∫
S∗,nc∞

f(χ)E ′(dχ). Then A is a closed subalgebra of

CR(S∗,nc
∞ ) and 1 ∈ A. From (2.18), the set B := {χ 7→ arctan(χ(t)) : t ∈ S} is contained

15



in A. As arctan is injective from R to [−π/2, π/2], the family B (and consequently also

A) separates points on S∗,nc
∞ . The Stone-Weierstrass Theorem implies that A = CR(S∗,nc

∞ ).

Both E(·) and E ′(·) are regular, thus they are equal. �

3. Second hypothesis

Definition 3.1 (compare with [29, Definitions 2,3], [38, p. 220] and Definition 3.2). A

real valued function χ over a (topological) semigroup S is called a real character of S if

χ(t)χ(s) = χ(ts) for all t, s ∈ S. As in the case of S∗,nc
∞ , real characters are not required

to be continuous. The semigroup of all real characters of S, with the topology of pointwise

convergence, will be denoted by S∗,nc.

Definition 3.2 ([30, Definitions 2,3]). We denote by Ŝ the semigroup of all continuous real

characters of a topological semigroup S, together with the topology of uniform convergence

on compact subsets of S.

Both S∗,nc and Ŝ are plainly topological semigroups.

In this section we assume that G is a locally compact group. As in §2, G′ is a subgroup

of G and S is an open semigroup in G such that S′ = S ∩G′ is dense in S.

Standing Hypothesis 3.3. Suppose that the assumptions of Standing Hypothesis 2.2 are

satisfied and, in addition, the following condition holds:

(UBB) There exist an open subset U of S and a constant m > 0 such that if t ∈ U ′ :=

U ∩S′ then ‖H(t)x‖ ≥ m ‖x‖ for all x ∈ D(H(t)).

In other words, the family (H(t))t∈U ′ is uniformly bounded from below.

Theorem 3.4. Under Standing Hypothesis 3.3, there exists a unique regular spectral measure

F (·) over Ŝ such that

H(t) =

∫
Ŝ

χ(t)F (dχ) (3.1)

for all t ∈ S, where (H(t))t∈S is the extended semigroup discussed in Theorem 2.6.

We shall require the following lemma, which is a generalization of [18, Lemma 10.2.1] to

the case of semigroups of normal operators with indices in an open subsemigroup of a locally

compact group. A similar result is [7, §4, Lemma 1] (where it is assumed that e ∈ S).
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Lemma 3.5. Let G be a locally compact group, S an open subsemigroup of G, and let

T (·) : S → B(H) be a semigroup of bounded normal operators such that ‖T (·)x‖ is Borel

measurable over S for every x ∈ H. Then T (·) is bounded on every compact subset of S.

Proof. Let µ denote the left Haar measure of G. Fix a compact subset K of S. Assume

that T (·) is not bounded on K. Since the operators T (t) are normal, ‖T (t2)‖ = ‖T (t)2‖ =

‖T (t)‖2 for all t ∈ S. Hence, T (·) is not bounded on K2 := {t2 : t ∈ K}. By the Uniform

Boundedness Theorem, there exists x ∈ H such that T (·)x is unbounded on K2. Therefore,

there exists a sequence (ζn)N in K such that∥∥T (ζ2
n)x
∥∥ ≥ n for all n ∈ N. (3.2)

As K is compact, (ζn)N possesses a cluster point ζ ∈ K. Since G is a locally compact group

and S is open, there exists an open neighborhood U of the identity of G such that U is

compact, and ζU, ζ2UUU−1ζ−1 ⊆ S. Write V := ζU and W := ζ2UU . Then V , W are open

neighborhoods of ζ, ζ2, respectively, and V,WV −1 ⊆ S. Additionally, WV −1 is of finite

measure, being a subset of the compact set ζ2 · U · U · (U)−1 · ζ−1. As (ζn)N clusters at ζ we

may assume, by passing to a subsequence if necessary, that ζn ∈ V and ζ2
n ∈ W for every

n ∈ N. Note that (3.2) is retained.

On account of the measurability of ‖T (·)x‖, there exist a measurable subset F ⊆ V and a

constant M < ∞ such that µ(F−1) > 0 and ‖T (t)x‖ ≤ M for every t ∈ F . Indeed, V may

be expressed as the union of measurable sets ∪∞n=1An where An := {t ∈ V : ‖T (t)x‖ ≤ n}
for all n ∈ N; since µ(V −1) > 0, we must have µ(A−1

n0
) > 0 for some n0 ∈ N, so we may take

F := An0 and M := n0. Set En := ζ2
nF
−1 for all n ∈ N. Then En ⊆ WV −1 ⊆ S. T (·) is a

semigroup of bounded operators, and so, from (3.2),

(∀n ∈ N, t ∈ F ) n ≤
∥∥T (ζ2

n)x
∥∥ ≤ ∥∥T (ζ2

nt
−1)
∥∥ ‖T (t)x‖ ≤M

∥∥T (ζ2
nt
−1)
∥∥ .

Consequently, ‖T (s)‖ ≥ n/M for all s ∈ En. Hence, if s ∈ E := lim supEn, then ‖T (s)‖ =

∞, which is impossible. Thus E = Ø. But µ is left invariant, therefore

µ(E) = lim
n→∞

µ

(
∞⋃
k=n

Ek

)
≥ µ(F−1) > 0, (3.3)

and so E 6= Ø, a contradiction. Equation (3.3) holds since for every n, En is a subset of the

set WV −1, which is of finite measure. �
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Proof of Theorem 3.4. Throughout the present proof, the notations of the proof of Theorem

2.6 will be freely used. It is routine to check that (UBB) and (2.16) yield that

‖H(u)x‖ ≥ m ‖x‖

for all u ∈ U and x ∈ D(H(u)). Consequently, f−1
u (0) = Ø for all u ∈ U . Given σ ∈ O and

t ∈ S, the openness of U and the density of S′ in S furnish the existence of u ∈ U so that

ut ∈ S′. With this u at hand we have, by virtue of Proposition 1.4,

H(u)H(t) = H(u)H(t) = H(ut) =⇒ H(u)H(t)Eσ = H(ut)Eσ. (3.4)

The operator H(ut)Eσ is bounded, and the Closed Graph Theorem thus implies that H(t)Eσ

is bounded as well. We conclude that (H(t)Eσ)t∈S is a semigroup of bounded selfadjoint

operators.

Let x ∈ H. Fix a sequence (xn)N in D′ that converges to x, and consider the functions

ρn(t) := ‖H(t)Eσxn‖ = ‖EσH(t)xn‖, n ∈ N, as nonnegative real functions over S. As

proved in Theorem 2.6, the function ρn(t) is continuous for every n. By the foregoing, these

functions converge pointwise to the function ρ : t 7→ ‖H(t)Eσx‖ (also defined over S).

Consequently, ρ is Borel measurable. This being true for all x ∈ H, Lemma 3.5 implies that

H(t)Eσ is uniformly bounded on every compact subset of S. It is now easy to prove the

continuity of t 7→ H(t)Eσx over S (either using ε type arguments, or directly, from (2.16)).

To complete the proof, it would now be sufficient to employ [30, Theorem 6]. In this

theorem, Nussbaum requires that the equation H(t+ s) = H(t)H(s) hold for every t, s ∈ S,

in contrast to our (H(t))t∈S satisfying (2.1), which is more general (see §5). However, this

requirement is needed only to guarantee that H(·)Eσ is a strongly continuous semigroup of

bounded operators for every σ ∈ O (using our notation; see [30, Theorem 5] and its proof),

and that being already established, (2.1) is sufficient.

Alternatively, an idea of [21, Theorem 3] (see also their §6) can be used. We describe it

succinctly. Choose a maximal family (σl)L of disjoint clopen subsets of M in O. For l ∈ L,

(H(t)|EσlH)t∈S is a strongly continuous semigroup of bounded selfadjoint operators (acting

on the Hilbert space EσlH) that satisfies the requirements of [30, Theorem 6]. It thus admits

a representing (inner regular, thus) regular spectral measure Fσl(·) over Ŝ in the sense of

(3.1). We now obtain the desired regular spectral measure by defining F (·) :=
⊕
L Fσl(·).
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The uniqueness of F (·) is a consequence of the uniqueness part of Theorem 2.6 and the

regularity of the measure. To see this, notice that a compact subset K of Ŝ is compact in

the topology of S∗,nc
∞ as well. �

Remark 3.6. Condition (UBB) is evidently not necessary for (3.1) to hold. We required it

in the proof of Theorem 3.4 to verify that H(t)Eσ was bounded for σ ∈ O and t ∈ S.

Nevertheless, (3.4) could have been established directly, using simpler boundedness from

below arguments, instead of the more general Proposition 1.4. The latter was nonetheless

integrated into the proof to demonstrate the possibility to relax Condition (UBB). The

difficulty would be that the theorem’s assumptions cannot include any restriction on the

extended semigroup (H(t))t∈S, which is constructed during the course of the proof.

Open Question 3.7. Can Condition (UBB) be substituted by a weaker one?

4. Application to convolution semigroups

Let G be a topological group and let S be an open semigroup in G with e ∈ S. Suppose

that S′ is a countable dense subsemigroup of S that equals the intersection of S with some

subgroup of G. The following application of Theorems 2.6 and 3.4 to (local) convolution

semigroups with indices in S′ is in the spirit of [32, §4].

We employ the theory of unbounded convolution operators of [25], with whose results

the reader is assumed to be familiar. Fix a locally compact Abelian group G and a Haar

measure on it. If f, g are (complex valued) measurable functions over G, we say that their

convolution f ∗ g exists if
∫
G
|f(x− y)g(y)|dy is locally integrable; and in this case, we define

(f ∗ g)(x) :=
∫
G
f(x− y)g(y)dy. Fix a measurable function f over G. The operator L′f over

the Hilbert space H := L2(G) is the (possibly unbounded) operator defined by L′f (g) := f ∗g
with domain consisting of all functions g ∈ L1(G)∩L2(G) such that f ∗ g exists in the above

sense and belongs to L2(G). We say that f satisfies condition (K) if L′f is densely defined

and closable. In this case its closure, denoted by Lf , is automatically normal. Condition

(K) is satisfied if D(L′f ) contains a subset of functions with compact supports whose set of

translates is total (in the sense that its span is dense in L2(G)). This happens, e.g., when

f ∈ Lp(G) for some 1 ≤ p ≤ 2. Moreover, upon setting f ∗(x) := f(−x), we have L∗f = Lf∗ .

Thus, if f is symmetric in the sense that f = f ∗ then Lf is selfadjoint.

Our assumptions are therefore the following:
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(1) (ft)t∈S′ is a family of symmetric measurable functions over G that satisfy condition

(K).

(2) For all t, s ∈ S′, ft ∗ fs exists and equals fts, and there is a total set C of functions

in D(L′fs) with compact supports such that fs ∗ C ⊆ D(L′ft).

(3) There exists a dense subspace D of L2(G) with the property that for every g ∈ D
there is an open neighborhood V (g) of e in G, such that g ∈ D(Lft) for t ∈ S′∩V (g)

and the function t 7→ Lft(g) extends to a continuous function on S ∩ V (g).

Defining H(t) := Lft , the family (H(t))t∈S′ is a semigroup of selfadjoint operators that meets

the requirements of Theorem 2.6 with A′ = {e} (see especially [25, Corollary 3.3.5]). It

therefore extends to a semigroup of selfadjoint operators (H(t))t∈S having all the properties

mentioned in the theorem. In particular, it admits the integral representation (2.4).

Suppose that in addition, G is locally compact and the following condition holds:

(4) There exists an open subset U of S such that the operators L′ft , t ∈ U ∩ S′, are

uniformly bounded from below.

Then Theorem 3.4 is applicable, hence (H(t))t∈S admits the stronger representation (3.1).

Condition (4) is not far-fetched on account of [25, Corollaries 3.1.1, 3.3.4 and 3.3.5].

This example can presumably be generalized further to the case in which G is not nec-

essarily Abelian and convolution by functions is replaced by convolution by measures (as

suggested in [32]) using [10]. In this connection see also [15, §20].

5. Comparison with other similar results

In this section, we compare our Theorems 2.6 and 3.4 to various past results concerning

the spectral representation of semigroups of (unbounded) selfadjoint or normal operators,

with indices in some general semigroup. Our focus will be chiefly, but not only, on Definition

2.1. For the general theory of semigroups of unbounded operators in Banach space, consult

[19, 20]. We start by commenting on the possibility to generalize Theorem 2.6 to semigroups

of normal operators. The obstacle would be Proposition 1.6, which does not hold for normal

operators. This is demonstrated by the following result:

Theorem ([2, Theorem 3.3], [4]). A bounded operator is subnormal if and only if it is the

limit, in the strong operator topology, of a net of bounded normal operators.
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Let us continue by comparing the conditions related to commutativity and the semigroup

law in [21, 30, 38] to Definition 2.1. A thorough comparison of those three papers can be

found in [38, §2].

Nussbaum [30] considers families (H(t))t∈S of unbounded selfadjoint operators, and re-

quires that the following semigroup law hold (cf. ibid. p. 134, (2)):

(Nuss) H(ts) ⊆ H(t)H(s) for every t, s ∈ S.

As commented in [30], this implies (cf. [8, Theorem 1 and Corollary 1]) that for all t, s ∈ S,

H(s) commutes with H(t) and H(ts) = H(t)H(s) = H(s)H(t). This semigroup law is by far

more restrictive than (2.1) (for example, if A is an unbounded normal operator and 0 ∈ ρ(A),

then AA−1 = I but A−1A = I|D(A) $ I; one might come across this situation when S is in

fact a group, and A = H(t) for some t ∈ S).

Ionescu Tulcea [21] discusses the analogous case for families of unbounded normal operators

(H(t))t∈S, and it is assumed there that (cf. ibid. (10), (11)):

(IT1) The semigroup operators commute pairwise.

(IT2) The semigroup law (Nuss) is satisfied (apart from the selfadjointness requirement).

Commutativity must be explicitly required, since for unbounded normal operators A,B,C,

the fact that C ⊆ AB does not automatically imply that A,B commute (in contrast to

selfadjoint operators; compare [6, Theorem 1]). It is mentioned in [21] that both the com-

mutativity and the semigroup law are implied by the condition that H(t)H(s) = H(ts) =

H(st) = H(s)H(t) for all t, s ∈ S (cf. [6]). The converse implication is, of course, also

true: if (IT1) and (IT2) are satisfied, then H(ts) ⊆ H(t)H(s) ⊆ H(t)H(s) = H(s)H(t),

and since both H(ts) and H(t)H(s) are normal (by virtue of the commutativity), we infer

that they are equal, thus H(ts) = H(t)H(s) = H(s)H(t). We conclude that {(IT1), (IT2)}
is the natural extension of (Nuss) to normal operators, therefore the former and the latter

compare to our requirements equally.

The indices semigroups S treated in [21, 30] are locally compact full semigroups (cf. [29,

30]). Our discussion was restricted to open semigroups, which are a special case of full

semigroups when embeddible in a locally compact group, as is the case in Theorem 3.4. It is

interesting to note that every locally compact full semigroup contains an open subsemigroup

(cf. [1, Theorem 1]).

While in the previous results the semigroup S is a topological one, Ressel and Ricker [38]

consider Abelian unital ∗-semigroups S that need not have a topology. In their setting, as
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in [21], the family (H(t))t∈S consists of unbounded normal operators, and additionally, for

all t, s ∈ S (cf. ibid. Definition 1.1, (iii) and (iv)):

(RR1) H(t)H(s) ⊆ H(ts) and D(H(t)H(s)) = D(H(ts)) ∩D(H(s)).

(RR2) H(t)H(s) = H(ts).

Commutativity of the operators is not required, but follows as a consequence of (RR1), (RR2)

and the rest of the conditions in [38, Definition 1.1] (especially (v), which is the “substitute”

for the lacking topological requirements, and does not appear in our hypotheses). This

framework is therefore closer to being a “normal operator” version of our Definition 2.1 than

the above-mentioned one. Note that the pair {(RR1), (RR2)} is implied by both (Nuss) and

the pair {(IT1), (IT2)} individually. Stochel and Szafraniec obtained in [40, §5] a similar

spectral representation for the shift operators related to positive definite forms over Abelian

unital ∗-semigroups.

All results establish the existence of a representing spectral measure for the family (H(t))t∈S,

but over different character spaces: in Theorem 2.6 it is S∗,nc
∞ , in [38, Theorem 1.2] and [40,

Theorem 4] it is an analog of S∗,nc, in Theorem 3.4 and [30, Theorem 6] it is Ŝ, and in [21,

Theorem 3] a complex version of Ŝ is used.

As a concluding remark, we wish to point out that in the recent paper [26] a problem

related to ours is considered: the extendability of a weakly continuous semigroup of bounded

operators with indices in a dense subsemigroup of R+ to a C0-semigroup. Their context,

however, is completely different (the operators are bounded, the indices are real and the

operators act on a separable reflexive Banach space), and thus so are the methods involved.
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