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Abstract. A spectral integral representation is established for locally

defined symmetric semigroups of operators, with indices which are not

restricted to a neighborhood of zero. This extends the well-known results

of Fröhlich [Unbounded, symmetric semigroups on a separable Hilbert

space are essentially selfadjoint, Adv. in Appl. Math. 1 (1980), 237-256]

and Klein and Landau [Construction of a unique selfadjoint generator

for a symmetric local semigroup, J. Funct. Anal. 44 (1981), 121-137].

Introduction

Semigroups of selfadjoint and symmetric operators with real indices have

been studied by many authors over the years. The classical results, con-

cerning the spectral representation of semigroups of selfadjoint operators,

are those of Nagy [11, XI.2] and Hille [4], [5, §4.1] for bounded operators,

and Devinatz [1] for unbounded operators. Nussbaum [12] generalized these

results to semigroups of densely-defined symmetric operators, for which the

semigroup property holds on a common, dense domain.

Fröhlich [2] and Klein and Landau [10] proved an even stronger theorem.

They considered local semigroups T (·) of symmetric operators, that need

not be densely-defined. The term ”local” means that for each x in some

dense set, T (t)x is defined for all t > 0 small enough, depending upon x.
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The results of both papers are essentially similar, and yield the spectral

representation T (t)x = etHx for a suitable selfadjoint operator H.

Other consequences in the same spirit followed. Examples are the cor-

responding generalizations to multidimensional Euclidean spaces [13, 17];

local cosine families of symmetric operators [8]; and local semigroups over

settings other than Hilbert space [7, 15, 16].

In the present paper, we establish a generalization of [2, 10] to a broader

class of semigroups. The semigroups considered in these results all have in-

dices in right neighborhoods of 0. The same is true in the multidimensional

cases [13, 17], in which 0 must either belong to the indices set, or to its

closure in Rn. In Theorem 2.8 we obtain a similar spectral representation,

for local symmetric semigroups of operators whose set of indices is a right

neighborhood (conforming to some restrictions) of any positive real semi-

group. This generalization is needed in a forthcoming paper of the author

on spectral representation of local symmetric operator semigroups over sub-

semigroups of locally compact Abelian groups. In our basic result, Theorem

2.3, the considered ”pre-semigroups” of operators do not encompass any

algebraic structure.

1. Preliminaries

We begin with a brief survey on commuting selfadjoint operators. Through-

out this paper, H will denote a complex Hilbert space.

Definition 1.1 ([11, VIII.1, p. 50]). Let A, B be (possibly unbounded)

normal operators, with spectral measures E and F respectively. We say

that A and B commute if their spectral measures commute, i.e., if for every

two Borel sets in C, σ1 and σ2, E(σ1)F (σ2) = F (σ2)E(σ1).

If A and B commute, then f(A) and g(B) commute for every Borel func-

tions f, g : C → C. If B is bounded, then A and B commute if and only if

BA ⊆ AB (c.f. [3, Theorem I]). In this case, BA = AB.
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Proposition 1.2. Let A and B be selfadjoint operators. Then the following

statements are equivalent:

(1) A and B commute.

(2) For all s, t ∈ R, eitAeisB = eisBeitA.

(3) For all t ∈ R, eitAB ⊆ BeitA.

Proof. The equivalence (1) ⇔ (2) is taken from [14, Theorem VIII.13]. (1)

⇒ (3) is simple as B is selfadjoint, and for (3)⇒ (2), see [3, Theorem I]. �

Proposition 1.3. Let A and B be commuting selfadjoint operators. Then

AB is a selfadjoint operator, that commutes with both A and B.

Proof. This proposition is widely known, and its proof is elementary. We

omit the details.

Corollary 1.4. Let A,B,C be pairwise commuting selfadjoint operators.

Assume that x, y ∈ H, n0 ∈ N are such that x ∈ D(B) and

(∀n ≥ n0) BAnx = CAny

(in particular, x ∈ D(BAn) and y ∈ D(CAn)). If E(·) is the resolution of

the identity of A, then E(R\{0})x ∈ D(B), E(R\{0})y ∈ D(C) and

BE(R\{0})x = CE(R\{0})y.

Proof. Let F (·), G(·) be the resolutions of the identity of B,C respectively.

Fix j, k, ` ∈ N, denote σj := [−j,−1
j ] ∪ [1

j , j], and write

Hj,k,` := E(σj)F ([−k, k])G([−`, `])

(in short, H). By the commutativity of A,B,C (which will be used implicitly

throughout the proof), BAnHx = CAnHy for all n ≥ n0. Consequently,

(1.1) Bp(A)Hx = Cp(A)Hy

for every polynomial p of the form p(t) = tn0q(t) (where q is some other

polynomial).
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By virtue of the Weierstrass Approximation Theorem, there exists a se-

quence of polynomials {qn}∞n=1 such that qn(t) → t−n0 uniformly on σj .

Define pn(t) := tn0qn(t). Then {pn}∞n=1 converges uniformly to 1 on σj . In

particular, pn(A)E(σj)z → E(σj)z for all z ∈ H. Thus, replacing p by pn

in (1.1) and letting n→∞, one has

BHj,k,`x = CHj,k,`y

for all j, k, ` ∈ N. Letting j →∞ yields

(1.2)

G([−`, `])BF ([−k, k])E(R\{0})x = F ([−k, k])CG([−`, `])E(R\{0})y

for all k, `. Since x ∈ D(B), so does E(R\{0})x. As a result, letting k →

∞ in (1.2) gives G([−`, `])BE(R\{0})x = CG([−`, `])E(R\{0})y. Finally,

let ` → ∞. Since C is closed, E(R\{0})y ∈ D(C) and BE(R\{0})x =

CE(R\{0})y. �

Lemma 1.5. Suppose that T,B are selfadjoint operators, and B is bounded.

If BT is symmetric, then T,B commute.

Proof. Fix y ∈ D(T ). Then for all x ∈ D(T ), (Tx,By) = (BTx, y) =

(x,BTy) by the symmetry of B, BT . Therefore, as T is selfadjoint, By ∈

D(T ), and TBy = BTy. In conclusion, BT ⊆ TB, thus T,B commute. �

2. Main results

Our first objective is to generalize [2, Theorem I.1] to the case described

by the following Definition 2.1, that should be compared against [2, §I.1,

(1)-(3)]. In particular, 0 is replaced by an arbitrary index set A. Only later,

in Definition 2.6, will A become a semigroup of positive real numbers.

Definition 2.1. Let A 6= Ø be an index set. A family of linear operators

(Ta(t))a∈A,t≥0 is called a local symmetric pre-semigroup of operators (over

R) if there exists a (not necessarily dense) subspace D of H, such that:
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(P1) Domain: for every a ∈ A, x ∈ D, there exists εa(x) > 0 such that x ∈

D(Ta(t)) for every 0 ≤ t < εa(x); t 7→ ‖Ta(t)x‖ is either measurable

over some nonempty subinterval, or bounded on a measurable subset

of positive measure, of (0, εa(x)); and limt→0+ Ta(t)x = Ta(0)x.

(P2) Semigroup symmetry: for every a, b ∈ A and x, y ∈ D, if t, s, u ≥ 0

satisfy t + u < εa(x) and s + u < εb(y), then the following equality

holds:

(Ta(t+ u)x, Tb(s)y) = (Ta(t)x, Tb(s+ u)y).

You may observe that according to (2.1) in the following Theorem 2.3, the

terminology is in accordance with the terminology in [6, page 75] (with the

adjective ”local” applied in the usual sense), except that we do not require

the operators Ta(0), a ∈ A, to be injective.

Remark 2.2. It is important to note that even in case D is dense, Ta(t) need

not be densely defined for general a ∈ A, t > 0. Its domain may even be

{0}. Only for a ∈ A it is implied by Postulate (P1) that D ⊆ D(Ta(0)).

Theorem 2.3. Let (Ta(t))a∈A,t≥0 be a local symmetric pre-semigroup of

operators. Then there exists a selfadjoint operator H over H such that for

every a ∈ A, x ∈ D, t ∈ [0, εa(x)),

(2.1) Ta(t)x = etHTa(0)x.

Moreover, write M := span {Ta(t)x : a ∈ A, x ∈ D, 0 < t < εa(x)} . Then H

is essentially selfadjoint over M⊕M⊥, and H is unique if we require that

M⊥ ⊆ kerH.

Note that the trivial case, in which A is a singleton A = {a0}, Ta0(0) ⊆ I

and D is dense, yields Fröhlich’s Theorem ([2, Theorem I.1]). It is easily

seen that the assumptions of Fröhlich’s Theorem imply Postulates (P1) and

(P2).
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Proof. Existence. Fix a ∈ A, x ∈ D. We first prove that t 7→ Ta(t)x

is continuous on (0, εa(x)). If Ta(t0)x = 0 for some t0 ∈ (0, εa(x)), then

Postulate (P2) implies that Ta(t)x = 0 for all t ∈ (0, εa(x)). Else, define

(∀t ∈ (0, εa(x))) g(t) := log ‖Ta(t)x‖ .

If s, u ∈ (0, εa(x)), then by Postulate (P2) and the Cauchy-Schwarz inequal-

ity,

(2.2) (Ta(
s+ u

2
)x, Ta(

s+ u

2
)x) = (Ta(s)x, Ta(u)x) ≤ ‖Ta(s)x‖ ‖Ta(u)x‖ .

Hence g( s+u2 ) ≤ 1
2g(s) + 1

2g(u), i.e., g is convex on (0, εa(x)). By Postulate

(P1), g is continuous (c.f. [18, 9]). If now s, u ∈ (0, εa(x)), then (2.2) yields

that

‖Ta(s)x− Ta(u)x‖2 = ‖Ta(s)x‖2 + ‖Ta(u)x‖2 − 2Re(Ta(s)x, Ta(u)x)

= ‖Ta(s)x‖2 + ‖Ta(u)x‖2 − 2
∥∥∥∥Ta(s+ u

2
)x
∥∥∥∥2

.

Therefore t 7→ Ta(t)x is continuous on (0, εa(x)).

For every n ∈ N, let δn ∈ C∞(R) be such that

(2.3) supp δn ⊆ [0,
1
n

], δn ≥ 0 and
∫

R
δn(s)ds = 1.

Given a ∈ A, x ∈ D, 0 ≤ t < εa(x), let n0 = n0(a, x, t) be minimal such

that t+ 1
n0
< εa(x). Then for every n ≥ n0, k ∈ Z+, by Postulate (P1),

Ψ(a, x, t, n, k) :=
∫

R
δ(k)
n (s)Ta(t+ s)xds

is well-defined. Moreover, (2.3) implies that Ψ(a, x, t, n, 0) → Ta(t)x as

n→∞. Denote

Ω :=
{

(a, x, t, n, k) : a ∈ A, x ∈ D, 0 < t < εa(x), n ≥ n0(a, x, t), k ∈ Z+
}

and D1 := span {Ψ(a, x, t, n, k)}Ω. Fix a, x, t, n, k as above. We wish to

prove that the derivative limh→0
1
h [Ψ(a, x, t + h, n, k) − Ψ(a, x, t, n, k)] de-

fines a (well-defined) symmetric operator over D1. Let ε′ = ε′a(x, t) :=
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1
2 min(εa(x) − (t + 1

n0
), t) > 0. Then for h ∈ (−ε′, ε′), Ψ(a, x, t + h, n, k) is

well defined. Moreover,

Ψ(a, x, t+ h, n, k)−Ψ(a, x, t, n, k) =

=
∫

R
δ(k)
n (s)(Ta(t+ s+ h)x− Ta(t+ s)x)ds

=
∫

R
(δ(k)
n (s− h)− δ(k)

n (s))Ta(t+ s)xds.

The function v 7→ Ta(v)x is continuous on the closed interval [1
2 t,

1
2(εa(x) +

(t+ 1
n0

))], hence it is bounded there by some M <∞, and we obtain∥∥∥∥1
h

[Ψ(a, x, t+ h, n, k)−Ψ(a, x, t, n, k)] +
∫

R
δ(k+1)
n (s)Ta(t+ s)xds

∥∥∥∥ ≤
M

∫
R

∣∣∣∣1h [δ(k)
n (s− h)− δ(k)

n (s)] + δ(k+1)
n (s)

∣∣∣∣ ds
for h ∈ (−ε′, ε′). The right side tends to 0 as h→ 0, and we can thus define

H0Ψ(a, x, t, n, k) := lim
h→0

1
h

[Ψ(a, x, t+ h, n, k)−Ψ(a, x, t, n, k)]

= −
∫

R
δ(k+1)
n (s)Ta(t+ s)xds ∈ D1.

(2.4)

To demonstrate why this defines a well-defined linear operator H0 : D1 →

D1, fix ai ∈ A, xi ∈ D, 0 < ti < εai(xi), ni ≥ n0(ai, xi, ti) and ki ∈ Z+

(i=1,2). Postulate (P2) furnishes the existence of r > 0 such that for h ∈

(−r, r), if 0 ≤ si1 < si2 . . . < si`i ≤ 1/ni and ci1, . . . , c
i
`i
∈ R (i=1,2), then

(
`1∑
j=1

c1
jTa1(t1 + s1

j + h)x1,

`2∑
k=1

c2
kTa2(t2 + s2

k)x2) =

(
`1∑
j=1

c1
jTa1(t1 + s1

j )x1,

`2∑
k=1

c2
kTa2(t2 + s2

k + h)x2).

By the definition of the Riemann integral, we thus have, for h ∈ (−r, r),

(2.5) (Ψ(a1, x1, t1 + h, n1, k1),Ψ(a2, x2, t2, n2, k2)) =

(Ψ(a1, x1, t1, n1, k1),Ψ(a2, x2, t2 + h, n2, k2)).
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Fix Ψ ∈ D1. Suppose that (ai, xi, ti, ni, ki), (a′j , x
′
j , t
′
j , n
′
j , k
′
j) ∈ Ω and

ci, c
′
j ∈ C (1 ≤ i ≤ k, 1 ≤ j ≤ l) are such that

∑k
i=1 ciΨ(ai, xi, ti, ni, ki) =∑l

j=1 c
′
jΨ(a′j , x

′
j , t
′
j , n
′
j , k
′
j) = Ψ. If (bι, yι, τι, ηι, κι) ∈ Ω, γι ∈ C (1 ≤ ι ≤ %)

and |h| is small enough, (2.5) yields

(
k∑
i=1

ciΨ(ai, xi, ti + h, ni, ki)︸ ︷︷ ︸
φ(h)

,

%∑
ι=1

γιΨ(bι, yι, τι, ηι, κι)) =

= (
k∑
i=1

ciΨ(ai, xi, ti, ni, ki),
%∑
ι=1

γιΨ(bι, yι, τι + h, ηι, κι))

= (
l∑

j=1

c′jΨ(a′j , x
′
j , t
′
j , n
′
j , k
′
j),

%∑
ι=1

γιΨ(bι, yι, τι + h, ηι, κι))

= (
l∑

j=1

c′jΨ(a′j , x
′
j , t
′
j + h, n′j , k

′
j)︸ ︷︷ ︸

ϕ(h)

,

%∑
ι=1

γιΨ(bι, yι, τι, ηι, κι)).

(2.6)

Taking derivatives with respect to t in both ends of (2.6) (i.e., applyingH0 on

the left side of the inner products) implies that (limh→0
1
h [φ(h)−φ(0)],Φ) =

(limh→0
1
h [ϕ(h) − ϕ(0)],Φ) for all Φ ∈ D1. But since the derivatives them-

selves belong to D1 (c.f. (2.4)), this indicates that H0 : D1 → D1 is a

well-defined operator. Moreover, by (2.6), H0 is symmetric over D1.

Set H1 := D1. Then H0 is a symmetric densely-defined operator over the

Hilbert space H1, which we would like to extend to a selfadjoint operator.

We do not know, in advance, whether it has equal deficiency indices. We thus

use the method of [2], and consider the operator H̃0 : D1 ×D1 → D1 ×D1,

defined by H̃0(x, y) = (H0x,−H0y) for all x, y ∈ D1. This is a symmetric

densely-defined operator over the Hilbert space H̃1 = H1 × H1, which has

equal deficiency indices (c.f., for example, [6, Lemma 2.44]). Hence, it has

a selfadjoint extension, H̃ (over H̃1).

Let E(·) be the spectral measure of H̃. Denote, for m ∈ N, Em :=

E([−m,m]), H̃m := H̃Em. Fix a ∈ A, x ∈ D, n such that 1
n < εa(x) and

k ∈ Z+. For every 0 < t < ε := εa(x)− 1
n , define Ψm(t) := Em

(
Ψ(a,x,t,n,k)

0

)
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for all m ∈ N (note that the set of (a, x, t, n, k) that can be chosen this way

forms exactly Ω). Then by the definition of H0, H̃0 and the boundedness of

Em,

Ψ′m(t) = Em
(
H0Ψ(a,x,t,n,k)

0

)
= EmH̃0

(
Ψ(a,x,t,n,k)

0

)
= H̃mΨm(t).

Since H̃m is a bounded operator (over H̃1), then for all 0 < t′ ≤ t < ε,

Ψm(t) = e(t−t′)H̃mΨm(t′) = e(t−t′)H̃mEmΨm(t′)

= e(t−t′)H̃EmΨm(t′) = e(t−t′)H̃Ψm(t′).

Now, since s− lim
n→∞

Em = I (in H̃1), and since e(t−t′)H̃ is selfadjoint, hence

closed,
(

Ψ(a,x,t′,n,k)
0

)
∈ D(e(t−t′)H̃), and

(2.7)
(

Ψ(a,x,t,n,k)
0

)
= e(t−t′)H̃(Ψ(a,x,t′,n,k)

0

)
for all (a, x, t, n, k) ∈ Ω, 0 < t′ ≤ t. From (2.7) we conclude that for every

Ψ ∈ D1, eτH̃
(

Ψ
0

)
∈ H1 × {0} for all 0 ≤ τ < ρ (ρ > 0 is small enough) .

Since H̃ is selfadjoint, we can analytically expand eτH̃
(

Ψ
0

)
to ezH̃

(
Ψ
0

)
for

all z in the strip {z : 0 < Re(z) < ρ}. By the analyticity in that strip and

the continuity in {z : 0 ≤ Re(z) < ρ}, we have eisH̃
(

Ψ
0

)
∈ H1 × {0} for all

s ∈ R, Ψ ∈ D1. Since D1 is dense in H1, eisH̃(H1×{0}) ⊆ H1×{0}, and so

the orthogonal projection P :=
(

1 0
0 0

)
commutes with eisH̃ for all s ∈ R (as

selfadjoint operators over H̃1), equivalently- with H̃ (c.f. Proposition 1.2).

Hence, H := PH̃|D(H̃)∩(H1×{0}) is a selfadjoint operator over H1.

Let a ∈ A, x ∈ D and 0 < t < εa(x) be given. For all n, k such that

(a, x, t, n, k) ∈ Ω and 0 < t′ < t,

Ψ(a, x, t, n, k) = e(t−t′)HΨ(a, x, t′, n, k)

by (2.7). Take k = 0 and let n→∞, and one has (as e(t−t′)H is closed)

(2.8) Ta(t)x = e(t−t′)HTa(t′)x,

equivalently- e(t′−t)HTa(t)x = Ta(t′)x. Let now t′ → 0+. The right side

tends to Ta(0)x (c.f. Postulate (P1)). The Spectral Theorem and Lebesgue’s
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Convergence Theorems hence yield that Ta(t)x ∈ D(e−tH) and e−tHTa(t)x =

Ta(0)x, that is,

(2.9) Ta(t)x = etHTa(0)x.

Finally, replace H by the operator H ⊕ 0H⊥1 . Then the (new) H is a

selfadjoint operator over H, and since Ta(0)x ∈ H1, (2.9) is still true.

H is essentially selfadjoint over M⊕M⊥. By our construction,

(2.10) M = H1 ⇒ M⊥ = H⊥1 ⊆ kerH.

Let a ∈ A, x ∈ D and 0 < t < εa(x) be given. By (2.1) (or (2.8)) and the

Spectral Theorem, Ta(t)x ∈ D(esH) ∩D(e−sH) ⊆ D(H) for every 0 < s <

εa(x, t) := min(εa(x) − t, t). Hence M ⊆ D(H). Denote H1 := H|M⊕M⊥ .

H1 is symmetric as a restriction of the selfadjoint operator H. We assert

that ker(H∗1 − iI) = {0}. Suppose that H∗1y = iy. Fix a, x, t as above. Then

for 0 < s < εa(x, t),

d

ds
(esHTa(t)x, y) = (HesHTa(t)x, y) = (H1e

sHTa(t)x, y) = −i(esHTa(t)x, y),

and by the continuity of (esHTa(t)x, y) in s we infer that

(∀0 ≤ s < εa(x, t)) (esHTa(t)x, y) = e−is(Ta(t)x, y).

By analytic continuation, we conclude that

(∀r ∈ R) (eirHTa(t)x, y) = er(Ta(t)x, y).

But the left side is bounded in r, thus necessarily (Ta(t)x, y) = 0. So

y ∈M⊥, and by (2.10) and the definition of H1, 0 = Hy = H1y = H∗1y = iy.

The proof that ker(H∗1 + iI) = {0} is identical. H1 is therefore essentially

selfadjoint.

Uniqueness. Suppose that H ′ is another selfadjoint operator that satisfies

both (2.1) (or (2.8)) and the right side of (2.10). Let a ∈ A, x ∈ D and

0 < t < εa(x) be given. Then for all 0 ≤ h < εa(x)− t and y ∈ H,

(ehHTa(t)x, y) = (Ta(t+ h)x, y) = (ehH
′
Ta(t)x, y).
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By analytic continuation,

(∀s ∈ R) (eisHTa(t)x, y) = (eisH
′
Ta(t)x, y).

Therefore eisHTa(t)x = eisH
′
Ta(t)x for all a ∈ A, x ∈ D, 0 < t < εa(x) and

s ∈ R. By (2.10) and the boundedness of the operators, eisH = eisH
′

for all

s ∈ R, which implies that H = H ′. �

Remark 2.4. The requirement in Postulate (P1) of continuity in 0+ of the

functions Ta(·)x is superfluous if, instead of (2.1), one is satisfied with (2.8).

Indeed, this requirement is not used anywhere else in the course of the proof.

Remark 2.5. Our proof of Theorem 2.3 contains that of [2, Theorem I.1].

It is also possible to use the latter theorem directly, together with our new

ideas and several more, to prove our theorem. However, it is required in

[2] that the Hilbert space H be separable. This assumption, nevertheless,

is not used during the proof of the theorem, so that H may actually be

an arbitrary complex Hilbert space. Likewise, no request for separability is

made by us in our results, but for the sake of completeness we have included

full details.

A common (and perhaps the most important) example of a local sym-

metric pre-semigroup of operators is when A is a subsemigroup of (R+,+),

and Ta(t) = T (a+ t).

Definition 2.6. A family of linear operators T (v), v ≥ a0 for some a0 ∈ R+,

is called a local symmetric semigroup of operators (over R) if there exist a

nonempty subsemigroup A of the semigroup (R+,+) and a dense subspace

D of H, such that:

(S1) Domain: for every a ∈ A, x ∈ D, there exists εa(x) > 0 such that

x ∈ D(T (a + t)) for every 0 ≤ t < εa(x); t 7→ ‖T (a+ t)x‖ is either

measurable over some nonempty subinterval, or bounded on a mea-

surable subset of positive measure, of (0, εa(x)); and limt→0+ T (a+

t)x = T (a)x.
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(S2) Semigroup symmetry: for every a, b ∈ A and x, y ∈ D, if t, s, u ≥ 0

satisfy t + u < εa(x) and s + u < εb(y), then the following equality

holds:

(T (a+ t+ u)x, T (b+ s)y) = (T (a+ t)x, T (b+ s+ u)y).

(S3) Semigroup law: for every a, b ∈ A and x ∈ D, εa+b(x) ≥ εa(x) and

if 0 ≤ t < εa(x) then T (a+ t)x ∈ D(T (b)) and

T (b)T (a+ t)x = T (a+ b+ t)x.

(S4) Symmetry: for every a ∈ A, T (a) is symmetric and T (a)|D is essen-

tially selfadjoint. We denote H(a) := (T (a)|D) = T (a).

For the rest of this section, T (·) will denote a local symmetric semigroup

of operators (over R). Postulates (S1), (S2) correspond, of course, to (P1),

(P2) of Definition 2.1 for Ta(t) := T (a+ t). We therefore have the following

corollary of Theorem 2.3.

Corollary 2.7. H(ma) = H(a)m, and the operator H discussed in Theorem

2.3 commutes with H(a), for every a ∈ A, m ∈ N.

Proof. Fix a ∈ A, m ∈ N. For every x ∈ D, x ∈ D(T (a)m) and T (a)mx =

T (ma)x by Postulate (S3). Hence, H(a)mx = T (a)mx = T (ma)x (c.f. Pos-

tulate (S4)), which implies that H(ma) = (T (ma)|D) ⊆ H(a)m = H(a)m.

Since both H(ma), H(a)m are selfadjoint, we infer that H(ma) = H(a)m.

Let a ∈ A, x, y ∈ D be given. Then for every 0 ≤ t < εa(x),

(etHT (3a)x, y) = (T (3a+ t)x, y) = (T (2a)T (a+ t)x, y)

= (T (a+ t)x, T (2a)y) = (T (a)x, T (2a+ t)y)

= (x, T (a)T (2a+ t)y) = (x, T (3a+ t)y)

= (x, etHT (3a)y)

by (2.1) and Postulates (S2)-(S4). Hence, by analytic extension,

(eisHT (3a)x, y) = (x, e−isHT (3a)y) = (eisHx, T (3a)y)
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for all s ∈ R. Thus, for every x ∈ D fixed, (eisHx, T (3a)y) is a continu-

ous function of y in D. By the definition of the Hilbert adjoint, eisHx ∈

D(T (3a)∗) = D(H(3a)), and H(3a)eisHx = eisHT (3a)x. In conclusion,

eisHT (3a)|D ⊆ H(3a)eisH , and so eisH(T (3a)|D) = eisHH(3a) ⊆ H(3a)eisH

for every s ∈ R. Hence, H(3a) and eisH commute (as selfadjoint operators)

for all s ∈ R, which implies (c.f. Proposition 1.2) that H(3a) = H(a)3

commutes with H. As a result, since H(a) is selfadjoint and 3 is odd, so

that λ 7→ λ1/3 is a well-defined continuous real function,
(
H(a)3

)1/3 = H(a)

commute with H. �

The main advantage of our following final result is that it supplies a

spectral representation that depends on a single, selfadjoint operator.

Theorem 2.8. (1) Suppose that A * {0} and lim
n→∞

εna(x) = ∞ for all

0 6= a ∈ A and x ∈ D. Then there exists a unique positive selfadjoint

operator A such that

(2.11) T (a+ t)x = Aa+tx

for all 0 6= a ∈ A, x ∈ D and 0 ≤ t < εa(x). This operator also

satisfies H(a) = Aa for all 0 6= a ∈ A.

(2) If 0 ∈ A, there exists a unique positive selfadjoint operator A◦ such

that for all x ∈ D and 0 < t < ε0(x),

(2.12) T (t)x = At◦x.

(3) If all of the above is true, then A and A◦ are related by the equa-

tion A = A◦F , where F ≤ H(0) is an orthogonal projection that

commutes with A◦, which is unique with respect to these properties.

Once again, the trivial case A = {0}, T (0) ⊆ I reduces Theorem 2.8 to

the case of Fröhlich’s Theorem ([2, Theorem I.1]), as the hypotheses of the

latter imply those of the former.
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Proof. Existence. Let Ea(·) denote the resolution of the identity of H(a) for

all a ∈ A. Fix 0 6= a, b ∈ A, and let x ∈ D be given. Since lim
n→∞

εna(x) =∞

and b > 0, there exists some n0 = n0(a, b, x) such that εna(x) > b for all

n ≥ n0. As a result, for all n ≥ n0,

H(a)nH(b)x = H(na+ b)x = ebHH(na)x = ebHH(a)nx

(c.f. (2.1), Postulate (S3) and the last Corollary). Therefore, Corollaries 1.4

and 2.7 (which will be used repeatedly in the present proof) yield

Ea(R\{0})H(b)x = ebHEa(R\{0})x,

which is true for all x ∈ D; that is to say, Ea(R\{0})H(b)|D ⊆ ebHEa(R\{0}).

As ebH is closed, we obtain

(2.13) Ea(R\{0})H(b) = Ea(R\{0})(H(b)|D) ⊆ ebHEa(R\{0}).

Since ebHEa(R\{0}) is symmetric, so is Ea(R\{0})H(b). Thus, by Lemma

1.5, H(b) commutes with Ea(R\{0}). Hence,

(2.14) Ea(R\{0})H(b) = H(b)Ea(R\{0}) = ebHEa(R\{0})

(equality holds since a selfadjoint operator is maximal symmetric).

From (2.13) and the fact that ebH is injective we infer that kerH(b) ⊆

kerEa(R\{0}) = kerH(a). By symmetry,

(2.15) ImEa({0}) = kerH(a) = kerH(b) = ImEb({0}),

and so (2.14) becomes

(∀0 6= a, b ∈ A) H(b) = ebHEa(R\{0}) = Ab

for A := eHEa(R\{0}) (which is independent of the choice of a by virtue of

(2.15)). Therefore

etHH(a) = Aa+t

for all 0 6= a ∈ A, t ≥ 0, whence (2.11) easily follows.
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If 0 ∈ A, then by Corollary 2.7, H(0)2 = H(0). Thus H(0), since

it is selfadjoint, is a (necessarily bounded) orthogonal projection. More-

over, for a ∈ A, H(0)H(a)|D ⊆ H(a)|D, and we infer (as in (2.13)) that

H(0)H(a) ⊆ H(a). By Lemma 1.5, H(0) commutes with H(a), hence

H(a)H(0) = H(a). Consequently, Ea(R\{0}) ≤ H(0) (both orthogonal

projections). To complete the proof of existence, take A◦ := eHH(0) and

F := Ea(R\{0}).

Uniqueness. The uniqueness of A follows immediately from the equality

H(a) = Aa, that holds for each 0 6= a ∈ A.

Suppose that (2.12) is also true for A′◦. Let G(·) and G′(·) be the spectral

measures of A◦ and A′◦, respectively. Fix x ∈ D, y ∈ H. For all 0 < t <

ε0(x), (2.12) implies that∫
R+

λt(G(dλ)x, y) =
∫

R+

λt(G′(dλ)x, y).

Therefore, on account of the Uniqueness Theorem for the bilateral Laplace

transform (c.f. [21, Ch. VI, Theorem 6a]), the measures (G(·)x, y) and

(G′(·)x, y), when restricted to the σ-algebra of Borel subsets of (0,∞), are

equal. Since (G(R+)x, y) = (x, y) = (G′(R+)x, y), those measures are equal

as Borel measures over R+. This is true for all x, y as above, thus G(·) =

G′(·), so that A◦ = A′◦. The definition of A◦ yields that kerA◦ = kerH(0).

Consequently, if F ′ is an orthogonal projection that commutes with A◦, and

also F ′ ≤ H(0), A = A◦F
′, then kerF ′ = kerA, so necessarily F ′ = F . �

Remark 2.9. One of the consequences of Theorem 2.8 is that H(a), H(b)

commute for all a, b ∈ A. This is not a trivial byproduct of Definition 2.6.

3. Application

As an application, we have the following technique of establishing the

existence of a representing measure for a positive semi-definite functional

over some types of function algebras. In [20], the author defined a special
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function algebra R, and proved a representation theorem for positive semi-

definite functionals over R. It was then shown that such a theorem may be

used to derive a fractional moments theorem (c.f. [20, Theorems 2.1, 2.6]).

However, in these results, it was required that the functions R+ 3 t 7→ tα

belong to R for all α in a dense subset of R+ (c.f. [20, Remark 2.7]). In the

following discussion we demonstrate how Theorem 2.8 may be employed to

prove a representation theorem for a wider class of function algebras.

Assume that R is an algebra of complex functions, which contains the

constant functions, and such that r ∈ R for all r ∈ R (such an algebra is

said to be selfadjoint). Let Λ : R → C be a positive semi-definite linear

functional over R, i.e., Λ(|r|2) ≥ 0 for all r ∈ R. Then Λ induces a semi-

inner product over R in the standard manner, by defining (r, q) := Λ(rq) for

r, q ∈ R. Thus, if N denotes the ideal
{
r ∈ R : Λ(|r|2) = 0

}
, then R/N is

an inner-product space. Hence, its completion H is a complex Hilbert space.

Let A be a subsemigroup of R+. Suppose that R is an algebra of complex

functions over R+, that satisfies the following (we use t as the independent

variable):

(1) ta, (t2a + 1)−1 ∈ R for all a ∈ A.

(2) There exists an ideal Q in R such that N ⊆ Q, and for every r ∈ Q,

a ∈ A, there exists εa(r) > 0, for which tαr ∈ Q if a ≤ α < a+ εa(r)

(we take εa(r) to be the maximal with this property).

(3) If a ∈ A and r0 ∈ N , then tαr0 ∈ N for a ≤ α < a+ sup
r∈Q

εa(r).

Given r ∈ Q and a ∈ A, (2) and (3) imply that εa(r + r0) = εa(r) for

all r0 ∈ N . Hence we may set εa(r +N ) := εa(r). For 0 ≤ s < εa(r +N ),

define

T (a+ s)(r +N ) := ta+sr +N .

This definition is legal by virtue of (3). For r+N ∈ (Q/N )⊥, set εa(r+N ) :=

∞ and T (a+ s)(r +N ) := 0 for every s ≥ 0.
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We prove that T (·) satisfies the requirements of Definition 2.6 with D :=

Q/N⊕(Q/N )⊥. From the definitions of the inner-product and T (·) it follows

that Postulates (S2), (S3) hold, and that T (a) (whose domain is exactly D) is

symmetric for all a ∈ A. Moreover, if r ∈ Q, a ∈ A, then since Q is an ideal

in R, (ta± i)−1r = (ta∓ i)(t2a+1)−1r ∈ Q (by virtue of (1)). Consequently,

r +N ∈ Im(T (a)± iI). Since obviously (Q/N )⊥ ⊆ Im(T (a)± iI), we infer

that Im(T (a)±iI) are dense inH, hence T (a) is essentially selfadjoint. (This

technique of establishing the essentially selfadjointness of T (a) it taken from

[19, page 1269]). In order to make Postulate (S1) true, we add the following

requirement:

(4) For fixed r ∈ Q and a ∈ A, the function s 7→ Λ(t2a+2s |r|2) is either

measurable over some nonempty subinterval, or bounded on a mea-

surable subset of positive measure, of (0, εa(r)); and lims→0+ Λ((ta+s−

ta)2 |r|2) = 0.

Theorem 2.8 is now applicable, and yields the following result.

Theorem 3.1. Let R be a selfadjoint algebra of complex functions over R+,

and let Λ be a positive semi-definite functional over R. If (1)-(4) are satisfied

by R and Λ, then there exists a unique positive selfadjoint operator A over

the Hilbert space H associated with Λ, whose kernel contains (Q/N )⊥, and

such that

Aα(r +N ) = tαr +N

for every r ∈ Q, a ∈ A and a ≤ α < a+ εa(r).

This means, for example, that given r ∈ R, there exists a positive Borel

measure µr over R+ such that

Λ(tα |r|2) =
∫

R+

λαdµr

for every a ∈ A, a ≤ α < a+ εa(r).

A similar theorem, for algebras R consisting of functions of k positive

real variables t1, . . . , tk, is easily obtained. Postulates (1)-(4) should be
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substituted by the corresponding ones, in which t is replaced by ti for i =

1, . . . , k.
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