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Abstract

The abstract Volterra relation is the relation V D(S) ⊆ D(S) , SV − V S ⊆
V 2 , satisfied by a closed operator S and a bounded operator V over some
complex Banach space X . Results of several articles of the second author are
extended from the case of S bounded to the general case. These include results
on similarity, quasi-affinity, Cn -classification, and growth of related semigroups.
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Introduction

This article deals with various settings of the abstract Volterra relation, which
is the relation

V D(S) ⊆ D(S), SV − V S ⊆ V 2,

satisfied by a closed operator S and a bounded operator V over some complex
Banach space X .

Our first case is of an unbounded Volterra systems, which is a system
{Sn, Vn: 1 ≤ n ≤ N} , in which for all n , the pair (Sn, Vn) satisfies the
Volterra relation, plus a few additional requirements. This setting is motivated
by the classical example, in which X = Lp([0,∞)N ) (for 1 < p < ∞ fixed),
Sn: f(x) �→ xnf(x), and Vn is the “weighted Volterra operator”

(Vnf)(x) =

∫ xn

0

e−ε(xn−t)f(x1, . . . , xn−1, t, xn+1, . . . , xN ) dt

for some ε > 0 (see Example 4.2) . For ζ ∈ CN , we set Tζ := S +
∑N

n=1 ζnVn ,

where S =
∑N

n=1 Sn . The operators iTζ generate a C0 -group, denoted by
Tζ(·). Among our results in this case, we prove that for fixed t ∈ R , Tζ(t) is an
entire function of ζ ∈ CN ; we find an upper bound for the growth of ‖Tζ(t)‖ ; we
prove that for α, ζ ∈ CN with Re(α) = Re(ζ), Tα and Tζ are similar, and that

∗This paper is based on the first author’s master’s thesis, written under the direction of
the second author at Bar Ilan University, Israel, in 2004.
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Tζ is of class Cn+m1+···+mN for S of class Cn and ζ ∈ CN with (∀1 ≤ k ≤ N)
|Re(ζk)| ≤ mk .

In our second case, based on two alternative standing hypothesis, S is
a closed operator, V ∈ B(X) is injective and (S, V ) satisfy the Volterra relation.
Moreover, −A := −V −1 either satisfies (0,∞) ⊆ ρ(−A) and
supλ>0 ‖λR(λ;−A)‖ < ∞ , or is the generator of a uniformly bounded C0 -
semigroup. The former is motivated by Example 4.3, in which X = Lp(0,∞)
(1 ≤ p <∞ fixed), S: f(x) �→ −xf(x), and A = εI − d

dx for some ε > 0 (with
a suitable domain of definition). Instead of using similarity, we use the weaker
relation of quasi-affinity (B is a quasi-affine transform of A if QA ⊆ BQ for
some injective Q ∈ B(X)). We prove that for 1

2 ≤ α < 1 or 0 < α < 1,

respectively, and t ≥ 0, S̃ is a quasi-affine transform of S̃ + tV α , and S̃ − tV α

is a quasi-affine transform of S̃ , where V α is Balakrishnan’s fractional power
and S̃ is either a restriction of S to some known manifold of X or S itself,
respectively. In addition, for all ζ, β ∈ C with 1 < Re(β), S + ζV β is similar
to S . Following the first case, we also extend this one to unbounded Volterra
systems.

1. Preliminaries

Throughout this paper, X will denote a complex Banach space.

Let S be a closed operator over X with domain D(S), and V ∈ B(X)
such that

V D(S) ⊆ D(S). (1.1)

When this is the case, the Lie product operator [S, V ] := SV − V S satisfies
D([S, V ]) = D(S). When (1.1) is true, we say that S and V satisfy the abstract
Volterra relation if

[S, V ] ⊆ V 2.

The reader of this article is assumed to be familiar with the basic theory of
semigroups of operators, that can be found in the first chapters of [5]. The
second chapter of this article is based on the results of [6], chapter 11 and [9],
that are generalized in the spirit of [7]. The third chapter is a generalization
of [8].

We begin with some preliminaries concerning regular semigroups.

Notation 1.1. For ζ ∈ C , we use the notations ξ = Re(ζ), η = Im(ζ).

Definition 1.2. A regular semigroup is a C0 -semigroup holomorphic in C
+ ,

which is bounded in the rectangle Q := {ζ ∈ C: 0 < ξ ≤ 1, |η| ≤ 1} . We set

ν := sup
ζ∈Q

log ‖V (ζ)‖.

Then 0 ≤ ν <∞ .



Viselter and Kantorovitz 361

Theorem 1.3. Let V (·) be a regular semigroup. Then for each η ∈ R ,
V (ξ+ iη) converges strongly as ξ → 0+ to a bounded operator, V (iη) , with the
following properties:

(1) {V (iη): η ∈ R} is a C0 -group.

(2) V (iη) commutes with V (ζ) for all η ∈ R , ζ ∈ C+ .

(3) V (ξ + iη) = V (ξ)V (iη) for all ξ > 0 , η ∈ R .

(4) V (·) is of exponential type ≤ ν , that is, there exists a constant K > 0
such that ‖V (ζ)‖ ≤ Keν|ζ| for all ζ ∈ C+ .

Proof. Theorem 17.9.1 from [4].

Definition 1.4. ([4], page 235) Let V (·) be a regular semigroup. The Nörlund
function of V (·), γ(·), is given by

(∀ξ > 0) γ(ξ) := lim sup
|η|→∞

|η|−1 log ‖V (ξ + iη)‖.

Let (α0, α1) be the largest α -interval such that the equation

γ(ξ) =
π

2α

has a (necessarily unique) solution for all 0 ≤ α0 < α < α1 ≤ ∞ . The symbols
α0 , α1 will be used in this sense in the rest of the paper.

Lemma 1.5. Let V (·) be a regular semigroup with α1 > 1 . Set V = V (1) .
Then every (bounded) operator commuting with V commutes with V (ζ) for all
ζ ∈ C+ .

Proof. Lemma 2.3 from [9].

Corollary 1.6. Let Vi(·) , i = 1, 2 be two regular semigroups with α1 > 1 .
Set Vi = Vi(1) , i = 1, 2 , and assume that V1 , V2 commute. Then V1(ζ)
commutes with V2(λ) for all ζ, λ ∈ C+ .

We next present some of the basics of Balakrishnan’s fractional powers
theory.

Definition 1.7. ([1], (2.1)) Let A be a closed operator over X . Suppose
that (0,∞) ⊆ ρ(−A) and that there exists an M <∞ such that for all λ > 0,

‖λR(λ;−A)‖ ≤M.

In this case we define, for each α ∈ C with 0 < Re(α) < 1 and x ∈ D(A),

Jαx :=
sinπα

π

∫ ∞
0

λα−1R(λ;−A)Axdλ

(we take the principal value of λα , so that λα is positive for positive α).
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The operator Jα (with domain D(A)) is well-defined, since it is easily
seen that the integral above converges absolutely.

This definition can be extended to all α such that Re(α) > 0 (see [1],
(2.2), (2.3) and (2.4)), to form a family of operators, Jα , Re(α) > 0, such that
for 0 < Re(α) < 1, D(Jα) = D(A), and for n − 1 ≤ Re(α) < n , n ≥ 2,
D(Jα) = D(An).

By Lemma 2.1 from [1], Jα is closable for all α ∈ C with Re(α) > 0,
which allows us to define ([1], (2.7))

Aα := Jα.

If A is bounded, Jα = Aα are bounded for all α with Re(α) > 0. For
more basic properties of the fractional powers, we refer the reader to [1].

We recall that a C0 -semigroup, T (·), is called uniformly bounded if there
exists an M <∞ such that for all t ≥ 0, ‖T (t)‖ ≤M .

We use Balakrishnan’s fractional powers under two alternative standing
hypothesis:

Standing Hypothesis 1.8. Let X be a complex Banach space.

(1) A is a closed, densely defined operator, such that (0,∞) ⊆ ρ(−A) and
there exists an M <∞ with

(∀λ > 0) ‖λR(λ;−A)‖ ≤M.

(2) −A is the generator of a uniformly-bounded C0 -semigroup.

Note that (1) means that the assumptions of Definition 1.7 are satisfied
by A , plus the fact that A is densely-defined. Moreover, by the Hille-Yoshida
Theorem, (2) is more restrictive than (1).

Theorem 1.9. Assume that A satisfies the assumptions of Standing Hy-
pothesis 1.8, (1). Then:

(1) For 0 < α ≤ 1
2 , −Aα generates a C0 -semigroup holomorphic in some

sector of C , that contains the positive real axis.

(2) For 0 < α ≤ 1
2 , (0,∞) ⊆ ρ(−Aα) , and for all µ > 0 , x ∈ X ,

(µI +Aα)−1x =
sinπα

π

∫ ∞
0

R(λ;−A) λα

µ2 − 2µλα cosπα+ λ2α
x dλ

(the integrand is of class L1(0,∞)).

Suppose that V ∈ B(X) is injective, such that A = V −1 . Then:

(3) For α ∈ C+ , V α is injective, and Aα = (V α)−1 .
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(4) Let α ∈ C+ . Assume that T ∈ B(X) is such that T , R(µ;A) commute
for some µ ∈ ρ(A) . Then TAα ⊆ AαT .

If A satisfies the assumptions of Standing Hypothesis 1.8, (2), then (1) and (2)
above are true for all 0 < α < 1 , and:

(5) Jα is closed; in particular, Aα = Jα .

Proof. Lemma 3.5, Theorem 5.1, Lemma 6.3 and the beginning of its proof
in [1]; the discussion after the proof of Theorem 5.1.2 and Corollaries 5.1.12,
(ii) and 5.2.2 in [2]; and the discussion on page 260 and Theorem 1, page 263
in [11].

The following lemma will be used repeatedly in the 3rd chapter.

Lemma 1.10. Let V,C ∈ B(X) be commuting operators, and let S be a
closed operator with domain D(S) . Suppose that V D(S) ⊆ D(S) and that
[S, V ] ⊆ C . Then for all λ ∈ ρ(V ) ,

R(λ;V )D(S) ⊆ D(S)

and

[S,R(λ;V )] ⊆ CR(λ;V )2.

Proof. This is the case (a) ⇒ (b) in Lemma 12.1 from [6].

2. Unbounded Volterra systems

2.1. General theory

Definition 2.1. An Unbounded Volterra System over a Banach space X is
a system {Sn, Vn: n = 1, . . . , N} , such that:

(1) For each n = 1, . . . , N , iSn is the generator of the C0 -group Sn(t).

(2) For each 1 ≤ k, l ≤ N , t ∈ R , Sk(t)Sl(t) = Sl(t)Sk(t).

(3) Denote by iS the generator of the C0 -group S(t) = S1(t) · · ·SN (t); then
S =

∑N
n=1 Sn (defined on D(S) =

⋂N
n=1D(Sn) ).

(4) For each 1 ≤ n ≤ N , Vn ∈ B(X).

(5) For each 1 ≤ k, l ≤ N , [Vk, Vl] = 0, VkD(Sl) ⊆ D(Sl) and [Sl, Vk] ⊆
δlkV

2
k .

Comment 2.2. The fact that S(t) as defined above is indeed a C0 -group is

a result of 1,2. In this case, it is easy to prove that
∑N

n=1 Sn ⊆ S . We require
equality.
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Notation 2.3. For each ζ = (ζ1, . . . , ζN ) ∈ C
N , 0 ≤ j ≤ N , we set

Tζ,j := S +
∑j

k=1 ζkVk . Let Tζ,j(·) be the C0 -group generated by iTζ,j (see
Theorem 1.38 from [5]). We also set Tζ := Tζ,N , Tζ(·) := Tζ,N (·).

Lemma 2.4. Let S(t) be a C0 -group, whose generator is iS , and let {Vn: 1 ≤
n ≤ N} ⊆ B(X) be such that for each 1 ≤ k, l ≤ N , VkD(S) ⊆ D(S) ,
[S, Vk] ⊆ V 2

k , and [Vk, Vl] = 0 . Then for each 1 ≤ n ≤ N , ρ(Vn) contains
iR\{0} , and if A ∪B = {1, 2, . . . , N} and A ∩B = ∅ ,

(∀K ∈ ZN , t ∈ R) TK(t) =
∏
n∈A

(I − itVn)−KnS(t)
∏
n∈B

(I + itVn)
Kn

and

‖TK(t)‖ ≤ ‖S(t)‖
N∏
n=1

(1 + |t|‖Vn‖)|Kn|.

Proof. We will prove by induction on j (j ≤ n) that if A ∪B = {1, . . . , j}
and A ∩B = ∅ , then for each K ∈ ZN (equivalently, K ∈ Zj ),

TK,j(t) =
∏
n∈A

(I − itVn)−KnS(t)
∏
n∈B

(I + itVn)
Kn .

For j = 0, the proof is trivial, since Tζ,0 = S , and so Tζ,0(·) = S(·). We
assume that the claim above is true for some 1 ≤ j < N , and prove its validity
for j + 1: let K = (K1, . . . ,Kj+1) be in Zj+1 , and set S′ := TK,j . Observe
that S′ actually doesn’t depend on Kj+1 , but only on K1, . . . ,Kj . According
to the properties of S, V1, . . . , VN , the pair (S′, Vj+1) satisfies the assumptions
of Theorem 1.3 from [9] (used here with A = −I in its notations); therefore,
ρ(Vj+1) contains iR\{0} , and since S′+Kj+1Vj+1 = TK,j+1 , iTK,j+1 generates
the C0 -group TK,j+1(t), and we have TK,j+1(t) = TK,j(t)(I + itVj+1)

Kj+1 =
(I − itVj+1)

−Kj+1TK,j(t). If A,B are as above, and if we assume (without loss
of generality) that j + 1 ∈ B , then by the induction assumption (when setting
A′ = A,B′ = B\{j + 1}) and the first equality in the equation above, we have

TK,j+1(t) =
∏
n∈A′

(I − itVn)−KnS(t)
∏
n∈B′

(I + itVn)
Kn(I + itVj+1)

Kn

=
∏
n∈A

(I − itVn)−KnS(t)
∏
n∈B

(I + itVn)
Kn .

This concludes the proof of the first statement of the Lemma.

To prove the second, set A := {1 ≤ n ≤ N : Kn < 0} , B := {1 ≤
n ≤ N : Kn ≥ 0} . By the first statement, for all K ∈ Z

N , ‖TK(t)‖ =

‖
∏

n∈A(I− itVn)|Kn|S(t)
∏

n∈B(I+ itVn)
|Kn|‖ ≤ ‖S(t)‖

∏N
n=1(1+ |t|‖Vn‖)|Kn| ,

and the proof is complete.
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Lemma 2.5. Under the assumptions of an Unbounded Volterra System, for
all ζ ∈ CN , K ∈ ZN and t ∈ R ,

Tζ+K(t) = Tζ(t)

N∏
n=1

(I + itVn)
Kn =

N∏
n=1

(I − itVn)−KnTζ(t).

Proof. Let ζ ∈ CN be given. By using Lemma 2.4 with Tζ instead of

S , and noting that for each K ∈ ZN , Tζ +
∑N

n=1KnVn = Tζ+K , we have
the wanted equality (by first setting A = ∅, B = {1, 2, . . . , N} , then the
opposite).

Definition 2.6. ([3], page 224) Let G be an open set in CN . A function f
defined on G with values in X is said to be analytic on G if f is continuous,
and the first partial derivatives ∂f/∂zi , i = 1, 2, . . . , N , exist at every point
of G .

Lemma 2.7. Under the assumptions of an Unbounded Volterra System, for
all t ∈ R fixed, Tζ(t) is an entire function of ζ ∈ CN ; moreover, for t in a
neighborhood of 0 ,

(∀ζ ∈ CN ) Tζ(t) = S(t)

N∏
n=1

(I + itVn)
ζn =

N∏
n=1

(I − itVn)−ζnS(t).

Proof. Let M,ω ≥ 0 be such that ‖S(t)‖ ≤Meω|t| for each t ∈ R .
We will prove inductively that for each j , 0 ≤ j ≤ N , Tζ,j(t) is an

entire function of the variable (ζ1, . . . , ζj) ∈ Cj for every t ∈ R fixed, that

‖Tζ,j(t)‖ ≤ M · exp(ω|t| +M |t|
∑j

k=1 |ζk|‖Vk‖) for each t ∈ R , ζ ∈ CN (or
ζ = (ζ1, . . . , ζj) ∈ Cj , equivalently), and that there exists a neighborhood of
zero such that for each t in the neighborhood and ζ ∈ CN ,

Tζ,j(t) = S(t)

j∏
k=1

(I + itVk)
ζk =

j∏
k=1

(I − itVk)−ζkS(t).

In particular, those exponentials make sense.

For j = 0, since Tζ,0(t) = S(t), the claims are obvious.

We assume that the claims above are true for some j , 0 ≤ j < N ,
and prove their validity for j + 1. By Definition 2.1, the pair (Tζ,j , Vj+1)
satisfies the assumptions of Corollary 11.6 from [6] for every fixed ζ ∈ CN .
Applying that Corollary (and its proof’s inner results), one gets the equality
Tζ,j+1 =

∑∞
m=0 Um(t)(iζj+1)

m , when for each m ∈ N, t ∈ R, x ∈ X ,

U0(t) := Tζ,j(t) , Um(t)x :=

∫ t

0

Tζ,j(t− s)Vj+1Um−1(s)x ds
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(actually, the functions {Um}∞m=0 from R to B(X) depend on (ζ1, . . . , ζj), and
the precise notation should be U(ζ1,...,ζj),m(t)).

By the induction assumption, since Tζ,j is an entire function of (ζ1, . . . , ζj)
∈ Cj for every t ∈ R fixed, each of the functions Um(t) (m = 0, 1, . . .) is an
entire function of (ζ1, . . . , ζj) ∈ Cj for every t ∈ R fixed. Moreover,

‖Um(t)‖ ≤M(M‖Vj+1‖|t|)m · eω|t|+M |t|
∑j

k=1
|ζk|‖Vk‖/m!

(here, ω + M
∑j

k=1 |ζk|‖Vk‖ replaces ω in the Corollary). Therefore, for
every t ∈ R fixed, lim supm→∞ ‖Um(t)‖1/m = 0 uniformly for (ζ1, . . . , ζj)

in every bounded subset of Cj (since m
√
m! → ∞ as m → ∞), and so

the series
∑∞

m=0 Um(t)(iζj+1)
m converges uniformly for (ζ1, . . . , ζj) in every

bounded subset of Cj+1 . Thus, Tζ,j+1(t) is an entire function of the variable
(ζ1, . . . , ζj , ζj+1) for every t ∈ R fixed. Moreover, by the estimate of ‖Um(t)‖
above (and the power-series representation exp(a) =

∑∞
m=0 a

m/m!),

‖Tζ,j+1(t)‖ ≤M · eω|t|+M |t|
∑j+1

k=1
|ζk|‖Vk‖.

By the induction hypothesis and Corollary 11.6 from [6], there exists a
neighborhood of zero such that for all t in that neighborhood and ζ ∈ CN ,

Tζ,j+1(t) = Tζ,j(t)(I + itVj+1)
ζj+1 = S(t)

j+1∏
k=1

(I + itVk)
ζk

= (I − itVj+1)
−ζj+1Tζ,j(t) =

j+1∏
k=1

(I − itVk)−ζkS(t),

as wanted.

Definition 2.8. An Unbounded Volterra System {Sk, Vk: k = 1, . . . N} over
a Banach space X is said to be regular if for each 1 ≤ n ≤ N , Vn(·) is a regular
C0 -semigroup with α1 > 1, such that Vn = Vn(1).

In a regular system, the boundary groups Vn(iη) exist, and there are
positive finite constants νn and Kn such that ‖Vn(iη)‖ ≤ Kn exp(νn|η|) for all
n = 1, . . . , N and η ∈ R . It follows that there exist positive finite constants
ν,K such that ‖Vn(iη)‖ ≤ Keν|η| for all n, η .

Theorem 2.9. Let {Sk, Vk: k = 1, . . . N} be an unbounded regular Volterra
system, let α, ζ ∈ CN be such that Re(α) = Re(ζ) , and denote iη = α− ζ . For
θ ∈ RN , we define Qθ =

∏N
n=1 Vn(iθn) . Then

Tα = Q−1
η TζQη

(that is, Tα and Tζ are similar when Re(α) = Re(ζ)).
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Proof. Define, for each θ ∈ RN , 0 ≤ j ≤ N , Qθ,j :=
∏j

n=1 Vn(iθn) (Qθ,0 =
I ). We will prove inductively that Tα,j = Q−1

η,jTζ,jQη,j for all 0 ≤ j ≤ N .

For j=0, the claim is obvious. We assume that Tα,j = Q−1
η,jTζ,jQη,j for some

0 ≤ j < N , and prove it for j + 1. The properties of an Unbounded Volterra
System imply that the pair (Tα,j , Vj+1) satisfies the assumptions of Corollary
11.13 from [6]. Since Re(α) = Re(ζ) implies that Re(αj+1) = Re(ζj+1), we get
that

Tα,j+1 = Tα,j + αj+1Vj+1 = V
−1
j+1(iηj+1)(Tα,j + ζj+1Vj+1)Vj+1(iηj+1).

But by the induction assumption, Tα,j = Q−1
η,jTζ,jQη,j . Moreover, ζj+1Vj+1

commutes with Qη,j , Q
−1
η,j (by Definition 2.1, (5) and Lemma 1.5), and so

ζj+1Vj+1 = Q
−1
η,j(ζj+1Vj+1)Qη,j , and in conclusion,

Tα,j+1 = V −1
j+1(iηj+1)Q

−1
η,j(Tζ,j + ζj+1Vj+1)Qη,jVj+1(iηj+1)

= Q−1
η,j+1Tζ,j+1Qη,j+1,

as wanted. Finally, the last step of the induction (j=N) gives us

Tα = Tα,N = Q−1
η,NTζ,NQη,N = Q−1

η TζQη.

By Lemma 11.14 from [6], we thus have:

Corollary 2.10. Let ζ, α ∈ CN be such that Re(ζ) = Re(α) , and denote
iη = α− ζ . Then

(∀t ∈ R) Tα(t) = Q−ηTζ(t)Qη.

The following theorem plays a fundamental role in the proof of Theo-
rem 2.15.

Theorem 2.11. (the “Three Lines Theorem”) Let f be a function of a com-
plex variable z with values in X (we set x = Re(z) , y = Im(z)). Suppose that
f is defined, analytic and bounded in the strip x0 ≤ x ≤ x1 , −∞ < y < ∞ .
For x0 ≤ x ≤ x1 , define

M(x) := sup
−∞<y<∞

‖f(x+ iy)‖.

Then logM(x) is a convex function (of the real variable x).

Proof. Theorem 3 from [3], chapter VI.10.1, page 520.

Notation 2.12. For ζ ∈ CN , we shall set ξ = Re(ζ), η = Im(ζ), and use

the 81 norm |ζ| =
∑N

n=1 |ζn| .

The following lemma illustrates our usage of the “3-Lines Theorem” in
the proof of Theorem 2.15.
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Lemma 2.13. Let m ∈ ZN . Define π := {ζ ∈ CN : (∀1 ≤ k ≤ N) mk ≤
ξk ≤ mk + 1} , and let φ: π → X be an analytic bounded function. For all ξ ,
mk ≤ ξk ≤ mk + 1 (∀k ), set M(ξ) := supη∈RN ‖φ(ξ + iη)‖ . Assume that there
exist constants ν ∈ R , a, b1, . . . , bN ≥ 0 such that

M(δ) ≤ a · eν
∑N

k=1
δ2
k

N∏
k=1

b
|δk|
k

for all δ = (δ1, . . . , δN ) ∈ RN with δk ∈ {mk,mk + 1} , k = 1, 2, . . . , N . Then
for all ζ ∈ π ,

M(ξ) ≤ a · eν
∑N

k=1
(ξ2
k+ 1

4 )
N∏
k=1

b
|ξk|
k .

Proof. Let ξ1 ∈ R be such that m1 ≤ ξ1 ≤ m1 + 1, and let 0 ≤ t ≤ 1 be
such that ξ1 = tm1 + (1 − t)(m1 + 1). Notice that when this is the case, then
|ξ1| = t|m1|+(1− t)|m1 +1| (since m1 ∈ Z). We apply the “3-Lines Theorem”
for φ(·,m2, . . . ,mN ), x = m1 , y = m1 + 1, and get

M(ξ1,m2, . . . ,mN ) ≤ M(m1, . . . ,mN )
t ·M(m1 + 1,m2, . . . ,mN )

1−t

≤ at+(1−t) · eνt
∑N

k=1
m2
k · eν(1−t)[(m1+1)2+

∑N

k=2
m2
k]

·
N∏
k=1

b
t|mk|
k b

(1−t)|m1+1|
1 ·

N∏
k=2

b
(1−t)|mk|
k

= a · eν[tm2
1+(1−t)(m1+1)2+

∑N

k=2
m2
k] · b|ξ1|

1 ·
N∏
k=2

b
|mk|
k .

But

tm2
1 + (1− t)(m1 + 1)2 = tm2

1 + (1− t)(m2
1 + 2m1 + 1)

= tm2
1 +m

2
1 + 2m1 + 1− tm2

1 − 2tm1 − t
= m2

1 + 2m1 + 1− 2tm1 − t
= (m1 + 1− t)2 − t2 + t

≤ (m1 + 1− t)2 + 1

4
= ξ2

1 +
1

4

(since −t2 + t ≤ 1/4 for all t ∈ R). Thus,

M(ξ1,m2, . . . ,mN ) ≤ a · eν(ξ2
1+ 1

4 +
∑N

k=2
m2
k)b
|ξ1|
1

N∏
k=2

b
|mk|
k .

Let ξ2 ∈ R be such that m2 ≤ ξ2 ≤ m2 + 1, and let 0 ≤ t ≤ 1 be such
that ξ2 = tm2 + (1 − t)(m2 + 1). We use again the “3-Lines Theorem” for
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φ(ξ1, ·,m3, . . . ,mN ), x = m2 , y = m2 + 1, and continue inductively. The last
step would give us the lemma’s statement.

Remark 2.14. In the proof above we didn’t use the fact that φ is an analytic
function on π , but only that it is analytic in each one of the variables ζ1, . . . , ζN
separately. The continuity of φ was not used.

Theorem 2.15. Let {Sk, Vk: k=1, . . . N} be an Unbounded Regular Volterra
System. There exists a constant H > 0 , independent of t, ζ , such that

(∀t ∈ R, ζ ∈ CN ) ‖Tζ(t)‖ ≤ H · ‖S(t)‖
N∏
n=1

(1 + |t|‖Vn‖)|ξn| · e2ν|η|.

Proof. Fix t ∈ R , and define φt: C
N → B(X) by φt(ζ) := e

ν
∑N

k=1
ζ2
kTζ(t)

for each ζ ∈ CN (recall that ν is such that there exists a constant K , indepen-
dent of n, η , with ‖Vn(iη)‖ ≤ Keν|η| for all n, η ). For convenience, throughout
the following proof we will use “

∑
” instead of “

∑N
k=1 ”.

By Theorem 2.9 with ζ, ξ instead of α, ζ respectively,

(∀ζ ∈ CN ) ‖φt(ζ)‖ ≤ eν
∑

(ξ2
k−η2

k)‖Q−η‖‖Tξ(t)‖‖Qη‖

≤ K2Neν
∑

(ξ2
k−η2

k+2|ηk|)‖Tξ(t)‖

≤ K2Neν
∑

(ξ2
k+1)‖Tξ(t)‖. (2.1)

By Lemma 2.7, φt is an entire function over CN . In particular, φt is
bounded in every “poly-strip” of the form {ζ ∈ CN : (∀1 ≤ k ≤ N) mk − 1 ≤
ξk ≤ mk} , when mk ∈ Z for all 1 ≤ k ≤ N (the entireness of Tζ(t) implies
that Tξ(t) is bounded on the compact set {ξ: (∀k)µk − 1 ≤ ξk ≤ mk} in RN ;
the rest follows directly from (2.1)).

Moreover, by Lemma 2.4,

‖φt(m1 + iη1, . . . ,mN + iηN )‖ ≤ K2Neν
∑

(m2
k+1)‖S(t)‖

N∏
k=1

(1 + |t|‖Vk‖)|mk|.

By Lemma 2.13 (with a = K2NeνN‖S(t)‖ , bk = 1 + |t|‖Vk‖), for ζ in every
poly-strip of the above form, hence for every ζ ∈ CN ,

‖φt(ζ)‖ ≤ K2Neν
∑

(ξ2
k+ 5

4 )‖S(t)‖
N∏
k=1

(1 + |t|‖Vk‖)|ξk|. (2.2)

Thus, for all ξ ∈ RN ,

‖Tξ(t)‖ = e−ν
∑

ξ2
k‖φt(ξ)‖≤K2Ne

5
4νN‖S(t)‖

N∏
k=1

(1 + |t|‖Vk‖)|ξk|.
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The theorem now follows from this and Theorem 2.9 (by taking H :=

K4Ne
5
4νN ).

2.2. Cn classification

The following theorem is based on an extension of the term Cn -classification
for unbounded operators, taken from [6], Section 11.19.

Theorem 2.16. If S is of class Cn , then Tζ is of class Cn+m1+m2+...mN

for all ζ ∈ πm1,...,mN
:= {z ∈ CN : (∀1 ≤ k ≤ N) |Re(zk)| ≤ mk} .

Proof. Fix a ζ ∈ πm1,...,mN
. We prove inductively that for each 0 ≤ j ≤ N ,

Tζ,j is of class Cn+m1+···+mj . For j = 0, the claim is obvious (since Tζ,0 = S
is of class Cn ). Assume that the claim is true for some 0 ≤ j < N . The
pair (Tζ,j , Vj+1) satisfies the assumptions of Standing Hypothesis 11.10, [6];
thus, by Theorem 11.20 from [6], since Tζ,j is of class Cn+m1+···+mj and
|Re(ζj+1)| ≤ mj+1 , Tζ,j+1 = Tζ,j+ ζj+1Vj+1 is of class Cn+m1+···+mj+mj+1 , as
wanted. The last step of the induction (j = N ) gives the wanted result.

3. Quasi-affinity and the unbounded Volterra relation

Let S, V satisfy the assumptions of Standing Hypothesis 11.10, [6]. By the
discussion preceding Theorem 12.6 on page 102 from [6], restricted to the case
ζ1 = ζ ∈ C , ζ2 = ζ3 = . . . = 0, α1 = α , Re(α) ≥ 1, α �= 1, we conclude that
S + ζV (α) is similar to S . The case α = 1 is exactly the case of Corollary
11.13 from [6]. Hence, S + ζV is similar to S if Re(ζ) = 0. These results
pose the question of similarity of the perturbations S + ζV (α) and S when
0 ≤ Re(α) < 1. This question is partially answered in [8], for S bounded. In the
setting of [8], it is not assumed that V can be embedded in a regular semigroup
as before. Instead, Balakrishnan’s fractional powers theory is used. In this
chapter, the results of this article are generalized to the case of S unbounded,
and to the case of unbounded Volterra systems.

Definition 3.1. [8] A quasi-affinity between the Banach spaces X ,Y is a
bounded linear operator Q: X → Y which is injective and has a dense range. A
quasi-affine operator over a Banach space X is an injective operator Q: X → X .

Note that a quasi-affine operator Q over a Banach space X is a quasi-
affinity between X and range Q .

Definition 3.2. Let A , B be unbounded operators. We say that B is a
quasi-affine transform of A if B ⊇ QAQ−1 for some quasi-affine operator, Q ,
over X .

(Equivalently, QA ⊆ BQ , or, if A , B are bounded, QA = BQ).

We begin with the following extension of Theorem 3.3.2 in [4] to an infinite
interval.
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Lemma 3.3. Let X be a Banach space, and let f : (0,∞) → X be a con-
tinuous function. Let S be a closed operator over X such that Im(f) ⊆ D(S) ,
S ◦ f is also continuous, and f, S ◦ f ∈ L1(0,∞) . Then

∫∞
0
f(λ) dλ ∈ D(S) ,

and

S

∫ ∞
0

f(λ) dλ =

∫ ∞
0

(S ◦ f)(λ) dλ.

Proof. Fix 0 < a < b < ∞ . Over the (finite) interval [a, b] , the continuous
functions f , S ◦ f are Riemann-integrable. Let {In} be Riemann sums for

the integral
∫ b
a
f(λ) dλ (converging to it). Each In is a linear combination of a

finite number of values of f in [a, b] . Therefore, for each n ∈ N , In ∈ D(S),
and by the linearity of S and the continuity of S ◦ f , {SIn} converges to∫ b
a
(S ◦ f)(λ) dλ . Since S is closed, we have

∫ b
a
f(λ) dλ ∈ D(S), and

S

∫ b

a

f(λ) dλ =

∫ b

a

(S ◦ f)(λ) dλ.

But f , S ◦ f ∈ L1(0,∞), and therefore
∫ b
a
f(λ) dλ →

∫∞
0
f(λ) dλ and

S
∫ b
a
f(λ) dλ =

∫ b
a
(S ◦ f)(λ) dλ →

∫∞
0
(S ◦ f)(λ) dλ as a → 0+, b → ∞ . Again,

since S is closed,
∫∞

0
f(λ) dλ ∈ D(S) and

S

∫ ∞
0

f(λ) dλ =

∫ ∞
0

(S ◦ f)(λ) dλ.

3.1. Quasi affinity

We shall assume that the following hypothesis is true throughout the following
subsection.

Standing Hypothesis 3.4. Let X be a complex Banach space, and let S ,
V be such that:

(1) S is a closed operator over X , V ∈ B(X) is injective, V D(S) ⊆ D(S)
and [S, V ] ⊆ V 2 .

(2) A := V −1 is densely defined, (0,∞) ⊆ ρ(−A) and there exists a constant
M <∞ such that

(∀λ > 0) ‖λR(λ;−A)‖ ≤M.

Remark 3.5. A consequence of (2) is that for each λ > 0, λ ∈ ρ(−V ) and
‖λR(λ;−V )‖ ≤M + 1.

Lemma 3.6. Let α be such that 0 < Re(α) < 1 and x ∈ D(S) . Then
V αx ∈ D(S) , and

SV αx =
sinπα

π

∫ ∞
0

λα−1SR(λ;−V )V x dλ.
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Proof. We use Lemma 3.3. By Standing Hypothesis 3.4, (1), V x ∈ D(S),
thus, by Lemma 1.10 (with C = V 2 ) and Remark 3.5, R(λ;−V )V x ∈ D(S)
for all λ > 0. The function λα−1R(λ;−V )V x is surely a continuous function
of λ > 0. Moreover, by the second statement of Lemma 1.10,

g(λ) := λα−1SR(λ;−V )V x = λα−1[R(λ;−V )SV x+ V 2R(λ;−V )2V x]

for all λ > 0. Thus, by Remark 3.5,

‖g(λ)‖ ≤ λα−2(M + 1)‖SV x‖+ λα−3(M + 1)2‖V 3x‖

(we used the commutativity of V , R(λ;−V ) for all λ ∈ ρ(−V )). Thus,
g ∈ L1(1,∞). On the other hand, by Lemma 1.10,

g(λ) = λα−1S[I − λR(λ;−V )]x
= λα−1[Sx− λR(λ;−V )Sx− λV 2R(λ;−V )2x]
= λα−1[Sx− λR(λ;−V )Sx− λ(I − λR(λ;−V ))2x],

and so

‖g(λ)‖ ≤ λα−1[‖Sx‖+ (M + 1)‖Sx‖+ λ(1 + 1 +M)2‖x‖].

Hence, g ∈ L1(0, 1). In conclusion, g ∈ L1(0,∞). Therefore, by Lemma 3.3,
V αx ∈ D(S), and

SV αx =
sinπα

π

∫ ∞
0

λα−1SR(λ;−V )V x dλ.

Lemma 3.7. Let α be such that 0 < Re(α) < 1 . Then D([S, V α]) = D(S) ,
and

[S, V α] ⊆ αV α+1.

Proof. Since [S, V α] = SV α − V αS , it is clear that D([S, V α]) ⊆ D(S).
By Lemma 3.6, the opposite is also true, and we have D([S, V α]) = D(S).
Moreover, since R(λ;−V )V = I − λR(λ;−V ), for x ∈ D(S),

π

sinπα
[S, V α]x =

∫ ∞
0

λα−1[SR(λ;−V )V x−R(λ;−V )V Sx] dλ

=

∫ ∞
0

λα−1[Sx− λSR(λ;−V )x− Sx+ λR(λ;−V )Sx] dλ

=

∫ ∞
0

λα[R(λ;−V ), S]x dλ.

Therefore, by Lemma 1.10,

π

sinπα
[S, V α]x =

∫ ∞
0

λαR(λ;−V )2V 2x dλ.
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Since d
dλR(λ;−V ) = −R(λ;−V )2 , integrating by parts gives

π

sinπα
[S, V α]x = [−λαR(λ;−V )V 2x]∞λ=0 +

∫ ∞
0

αλα−1R(λ;−V )V 2x. (3.1)

Regarding the first factor in (3.1),

‖λαR(λ;−V )V 2x‖ = ‖λα(I − λR(λ;−V ))V x‖ ≤ λα(1 + 1 +M)‖V x‖ → 0

as λ→ 0+ , and

‖λαR(λ;−V )V 2x‖ ≤ λα−1(M + 1)‖V 2x‖ → 0

as λ→∞ . Hence, by the boundedness of V , (3.1) becomes

[S, V α]x =
sinπα

π
α

∫ ∞
0

λα−1R(λ;−V )V 2x dλ

=
sinπα

π
αV

∫ ∞
0

λα−1R(λ;−V )V x dλ = αV V αx = αV α+1x,

that is, [S, V α] ⊆ αV α+1 , as wanted.

Corollary 3.8. Let α be such that Re(α) > 0 . Then D([S, V α]) = D(S) ,
and

[S, V α] ⊆ αV α+1.

In other words, the conclusion of Lemma 3.7 is true for all α ∈ C+ .

Proof. First, we assume that Re(α) = 1. Obviously, D([S, V α]) ⊆ D(S).
Let x ∈ D(S) and let (αn)N be a sequence in {z ∈ C: 0 < Re(z) < 1} such
that limn→∞ αn = α . Since V is bounded, the function C

+ � α �→ V αy
is analytic for all y ∈ X (see Lemma 2.2 in [1]), thus continuous, and so
limn→∞ V αnx = V αx . For each n ∈ N , one can apply Lemma 3.7 to get
that V αnx ∈ D(S), and

SV αnx = V αnSx+ αnV
αn+1x→ V αSx+ αV α+1x

as n → ∞ . Since S is closed, we conclude that V αx ∈ D(S) and SV αx =
V αSx+ αV α+1x , as wanted.

We now turn to the remaining case. Assume Re(α) > 1. Let β, n be
such that n ∈ N , 0 < Re(β) ≤ 1 and α = n + β (n = [Re(α)] if Re(α) /∈ N ,
otherwise n = Re(α)−1). As before, D([S, V α]) ⊆ D(S). Let x ∈ D(S). Then
V αx = V n+βx = V nV βx ∈ D(S) by the first part of Lemma 3.6. Moreover, by
the identity [S, V n] ⊆ nV n+1 (easily proven by induction) and Lemma 3.7,

SV αx = SV nV βx = V nSV βx+ nV n+1V βx

= V nV βSx+ βV nV β+1x+ nV n+β+1x = V αSx+ αV α+1x,

as wanted.
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Theorem 3.9. For all β ∈ C with Re(β) > 1 and for all ζ ∈ C , S + ζV β

is similar to S . More specifically,

S + ζV β = e(−ζ/(β−1))V β−1

Se(ζ/(β−1))V β−1

.

Proof. By Corollary 3.8,

[S, V β−1/(β − 1)] ⊆ V β .

The theorem’s statement now follows from Corollary 12.2, [6] with S, V β−1/(β−
1), V β replacing S, V,C respectively.

Corollary 3.10. Let α be such that 0 < Re(α) < 1 . Then

[S,Aα] ⊆ −αV 1−α.

Proof. We use the identity Aα = (V α)−1 (c.f. Theorem 1.9, (3)). Let
x ∈ D([S,Aα]) , that is, x ∈ D(S), x ∈ D(Aα), Sx ∈ D(Aα) and Aαx ∈ D(S).
Set y = Aαx (equivalently, x = V αy ). Then y, V αy ∈ D(S), SV αy ∈ D(Aα),
and by Lemma 3.7,

[S,Aα]x = SAαx−AαSx = Sy −AαSV αy = Aα(V αSy − SV αy)

= −Aα[S, V α]x = −αAαV α+1y = −αAαV αV y

= −αV y = −αV 1−αV αAαx = −αV 1−αx.

Notation 3.11. For 1
2 ≤ α < 1, set Aα := −A1−α/(1− α), and denote by

Tα(·) the C0 -semigroup generated by Aα (see Theorem 1.9, (1)).

Notation 3.12. For any two linear operators A , S over X , we use the
notation dAS := [A,S] .

By Corollary 3.10, dAαS ≡ [Aα, S] ⊆ V α .

Lemma 3.13. Let x ∈ D([S,Aα]) . Then for all 1
2 ≤ α < 1 , µ > 0 ,

R(µ;−Aα)x ∈ D(S) and SR(µ;−Aα)x ∈ D(Aα) .

Proof. Since R(µ;−Aα) = (1 − α)R((1 − α)µ;−A1−α), it is sufficient to
prove the above when R(µ;−Aα) is replaced by R(µ;−Aα) and 0 < α ≤ 1

2 .
Fix 0 < α ≤ 1

2 , µ > 0 and x ∈ D(S). By Theorem 1.9, (2), (0,∞) ⊆ ρ(−Aα),
and for all µ > 0, x ∈ X ,

R(µ;−Aα)x =
sinπα

π

∫ ∞
0

λα

µ2 − 2µλα cosπα+ λ2α
R(λ;−A)x dλ.

By the identify

(∀λ > 0) R(λ;−A) = λ−1V R(λ−1;−V ), (3.2)
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Standing Hypothesis 3.4, (1) and Lemma 1.10, for all x ∈ D(S), R(λ;−A)x ∈
D(S) and

SR(λ;−A)x= λ−1SV R(λ−1;−V )x
= λ−1[V S + V 2]R(λ−1;−V )x
= λ−1[V R(λ−1;−V )Sx− V V 2R(λ−1;−V )2x+ V 2R(λ−1;−V )x]
=R(λ;−A)Sx+ λ−1V 2R(λ−1;−V )[I − V R(λ−1;−V )]x
=R(λ;−A)Sx+ λ−1V 2R(λ−1;−V )[I − I + λ−1R(λ−1;−V )]x
=R(λ;−A)Sx+ [λ−1V R(λ−1;−V )]2x
=R(λ;−A)Sx+R(λ;−A)2x. (3.3)

(note that [S,−V ] ⊆ −V 2 , hence [S,R(λ;−V )] ⊆ −V 2R(λ;−V )2 ).
Denote the scalar factor of R(λ;−A) in the integral above by f(λ), and

set g(λ) = f(λ)SR(λ;−A)x . Let C1 be such that for λ > 0 large enough,
|f(λ)| ≤ C1λ

−α . Thus, for such λ , by (3.3),

‖g(λ)‖ ≤ C1λ
−α−1M [‖Sx‖+ λ−1M‖x‖].

Therefore g(λ) ∈ L1(1,∞). There exists also a constant C2 such that for
λ > 0 small enough, |f(λ)| ≤ C2λ

α . By (3.2) and Remark 3.5, ‖R(λ;−A)‖ ≤
(M + 1)‖V ‖ for all λ > 0; Hence, for such λ , by (3.3),

‖g(λ)‖ ≤ C2λ
α(M + 1)‖V ‖[‖Sx‖+ (M + 1)‖V ‖‖x‖],

and we have g(λ) ∈ L1(0, 1). In conclusion, g(λ) ∈ L1(0,∞), and by Lemma 3.3,
R(µ;−Aα)x ∈ D(S), and

SR(µ;−Aα)x =
sinπα

π

∫ ∞
0

λα

µ2 − 2µλα cosπα+ λ2α
SR(λ;−A)x dλ.

Now, assume that x ∈ D([S,Aα]) . We want to show that SR(µ;−Aα)x ∈
D(Aα). Again, Lemma 3.3 is used. By (3.3), g(λ) is a continuous function
of λ > 0, and SR(λ;−A)x ∈ R(λ;−A)X = D(A) ⊆ D(Aα). Moreover, by
Theorem 1.9, (4) and Corollary 3.10,

AαSR(λ;−A)x = AαR(λ;−A)Sx+AαR(λ;−A)2x
= R(λ;−A)AαSx+R(λ;−A)2Aαx

= R(λ;−A)SAαx+ αR(λ;−A)V 1−αx+R(λ;−A)2Aαx.

Set h(λ) = f(λ)AαSR(λ;−A)x . Then for λ > 0 large enough,

‖h(λ)‖ ≤ C1λ
−α−1M [‖SAαx‖+ α‖V 1−αx‖+ λ−1M‖Aαx‖],
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thus h(λ) ∈ L1(1,∞), and for λ > 0 small enough,

‖h(λ)‖ ≤ C2λ
α(M + 1)‖V ‖[‖SAαx‖+ α‖V 1−αx‖+ (M + 1)‖V ‖‖Aαx‖],

hence h(λ) ∈ L1(0, 1). In conclusion, h(λ) ∈ L1(0,∞), and by Lemma 3.3,
SR(µ;−Aα)x ∈ D(Aα).

Notation 3.14. For 1
2 ≤ α < 1 fixed, set

D = {x ∈ D(dAαS): Aαx ∈ D(dAαS)}.

Lemma 3.15. For all 1
2 ≤ α < 1 , t ≥ 0 , S|D is a quasi-affine transform of

S|D+ tV
α and S|D− tV α is a quasi-affine transform of S|D . More specifically,

Tα(t) is a quasi-affinity, and

Tα(t)(S|D + tV α) ⊆ S|DTα(t),

Tα(t)S|D ⊆ (S|D − tV α)Tα(t).

Proof. The idea is to use Lemma 12.12 from [6]. First, by Theorem 1.9, (1)
and the discussion preceding Remark 2.4 in [8], Tα(t) is 1-1 (meaning, quasi-
affine) for all t ≥ 0, and by Corollary 3.10,

dAαS ≡ [Aα, S] ⊆ V α.

Claim 1. D = D(d2
Aα
S) .

The inclusion ’⊇ ’ is surely true. To prove the opposite, we notice that it is
enough to prove that if x ∈ D(dAαS) then (dAαS)x ∈ D(Aα). But by Corollary
3.10, (dAαS)x = V

αx ∈ D(Aα) by Theorem 1.9, (4).
By Theorem 1.9, (4), for all x ∈ D(d2

Aα
S), (d2

Aα
S)x = AαV

αx− V αAαx = 0.

Claim 2. D is R(λ;−Aα)-invariant for all λ > 0 .

To prove the claim, let x ∈ D , λ > 0 be given. Surely R(λ;−Aα)x ∈ D(Aα).
By Lemma 3.13, R(λ;−Aα)x ∈ D(S) and SR(λ;−Aα)x ∈ D(Aα). Moreover,
AαR(λ;−Aα)x = x − λR(λ;−Aα)x ∈ D(S), and we have R(λ;−Aα)x ∈
D(dAαS). Hence, AαR(λ;−Aα)x = x − λR(λ;−Aα)x ∈ D(dAαS) as well,
and in conclusion, R(λ;−Aα)x ∈ D .

By Lemma 12.12, [6] with −Aα, S, V
α replacing A,S,C respectively, we

have

Tα(t)(S|D + t(V α)|D) ⊆ S|DTα(t).

But V α is bounded, and so S|D + t(V α)|D = S|D + tV α . Hence,

Tα(t)(S|D + tV α) ⊆ S|DTα(t).
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For the second equality in the statement of the theorem, define Sα =
S − tV α . Since V , V α commute (this is trivial from the definition of V α and
the boundedness of V ), [Sα, V ] ⊆ V 2 , meaning- Standing Hypothesis 3.4 is
satisfied by the pair (Sα, V ), and so, if we set

D′ := {x ∈ D(dAαSα): Aαx ∈ D(dAαSα)},

then what we have proved so far gives

Tα(t)S|D′ = Tα(t)(S|D′ − t(V α)|D′ + tV
α) ⊆ (S|D′ − t(V α)|D′)Tα(t)

= (S|D′ − tV α)Tα(t),

and the desired conclusion follows from the fact that D ⊆ D′ , which is easily
verified (note that x ∈ D(Aα) ⇒ there exists a y ∈ X such that x = V 1−αy ,
hence V αx = V αV 1−αy = V 1−α(V αy) ∈ D(Aα); see Theorem 1.9, (3)).

As a result, we have the following

Theorem 3.16. Suppose that D is a core for S . Then for all 1
2 ≤ α < 1

and t ≥ 0 , S is a quasi-affine transform of S + tV α and S − tV α is a quasi-
affine transform of S . More specifically, Tα(t) is a quasi-affinity, and

Ta(t)(S + tV α) ⊆ STα(t),

Tα(t)S ⊆ (S − tV α)Ta(t).

3.2. Limits of similarities

We shall assume that the following hypothesis is true throughout the following
subsection.

Standing Hypothesis 3.17. Let X be a complex Banach space, and let
S , V be such that:

(1) S is a closed operator over X , V ∈ B(X) is injective, V D(S) ⊆ D(S),
and [S, V ] ⊆ V 2 .

(2) −A := −V −1 generates a uniformly bounded C0 -semigroup, T (·) (‖T (t)‖
≤M <∞ for all t > 0).

By the Hille-Yoshida Theorem, in this case we have (0,∞) ⊆ ρ(−A) and

‖[λR(λ;−A)]n‖ ≤M

for all λ > 0, n ∈ N . Therefore, Standing Hypothesis 3.17 is more restrictive
than Standing Hypothesis 3.4.

Notation 3.18. For ε > 0, we set Aε := R(ε;−V ).
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Lemma 3.19. For all x ∈ D(S) , α ∈ C with 0 < Re(α) < 1 , and ε > 0 ,
we have A1−α

ε x ∈ D(S) and

SA1−α
ε x =

sinπα

π

∫ ∞
0

λ−αSR(λ;−Aε)Aεx dλ.

Proof. Fix x ∈ D(S), 0 < Re(α) < 1, ε > 0. By (19) from [8], for all
λ > 0,

R(λ;−Aε)Aεx = λ
−1R

(
1 + λε

λ
;−V

)
x ∈ D(S) (3.4)

(cf. Lemma 1.10). For all λ > 0, set f(λ) := λ−αSR(λ;−Aε)Aεx . By (3.4)
and Lemma 1.10, for all λ > 0,

f(λ) =λ−α−1

[
R

(
1 + λε

λ
;−V

)
Sx− V 2R

(
1 + λε

λ
;−V

)2

x

]

=λ−α−1

[
R

(
1+λε

λ
;−V

)
Sx−

(
I− 1+λε

λ
R

(
1+λε

λ
;−V

))2
x

]
. (3.5)

By the first equality in (3.5),

‖f(λ)‖ ≤ λ−α−1

[
λ

1 + λε
(1 +M)‖Sx‖+ ‖V ‖2 λ2

(1 + λε)2
(1 +M)2‖x‖

]
≤ λ−α[(1 +M)‖Sx‖+ ‖V ‖2λ(1 +M)2‖x‖],

and so f ∈ L1(0, 1). Moreover, by the second equality in (3.5),

‖f(λ)‖ ≤ λ−α−1

[
λ

1 + λε
‖Sx‖+ (1 + 1 +M)2‖x‖

]
.

For all λ > 0, λ
1+λε ≤

1
ε , and so

‖f(λ)‖ ≤ λ−α−1

[
1

ε
‖Sx‖+ (2 +M)2‖x‖

]
.

Thus f ∈ L1(1,∞). In conclusion, f ∈ L1(0,∞). Hence, by Lemma 3.3,
A1−α
ε x ∈ D(S) and

SA1−α
ε x =

sinπα

π

∫ ∞
0

λ−αSR(λ;−Aε)Aεx dλ.

Lemma 3.20. For all α ∈ C with 0 < Re(α) < 1 , ε > 0 ,

[A1−α
ε , S] ⊆ (1− α)A2−α

ε V 2.
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Proof. By Lemma 3.19, D([A1−α
ε , S]) = D(S). Fix x ∈ D(S). By (3.4),

A1−α
ε x =

sinπα

π

∫ ∞
0

λ−α−1R

(
1 + λε

λ
;−V

)
x dλ.

By Lemma 1.10, [S,R(µ;−V )] ⊆ −R(µ;−V )2V 2 . Thus, by (3.4) and Lemma 3.19,

[A1−α
ε , S]x =

sinπα

π

∫ ∞
0

λ−1−α
[
R

(
1 + λε

λ
;−V

)
, S

]
x dλ

=
sinπα

π

∫ ∞
0

λ−1−αR

(
1 + λε

λ
;−V

)2

V 2x dλ

=
sinπα

π

∫ ∞
0

λ−α+1R(λ;−Aε)
2A2

εV
2x dλ

=
sinπα

π

∫ ∞
0

−λ−α+1 d

dλ
R(λ;−Aε)A

2
εV

2x dλ.

We integrate by parts: by Lemma 3.1 from [8],

‖λ−α+1R(λ;−Aε)A
2
εV

2x‖ ≤ λ−αM‖A2
εV

2x‖ → 0

as λ→∞ , and

‖λ−α+1R(λ;−Aε)A
2
εV

2x‖ = ‖λ−α+1[I − λR(λ;−Aε)]AεV
2x‖

≤ λ1−α(1 +M)‖AεV
2x‖ → 0

as λ→ 0+ . Hence,

π

sinπα
[A1−α

ε , S]x = [−λ−α+1R(λ;−Aε)A
2
εV

2x]∞λ=0

+(1− α)
∫ ∞

0

λ−αR(λ;−Aε)A
2
εV

2x dλ

=
π

sinπα
(1− α)A1−α

ε AεV
2x =

π

sinπα
(1− α)A2−α

ε V 2x.

Thus [A1−α
ε , S] ⊆ (1− α)A2−α

ε V 2 .

Since A1−α
ε , A2−α

ε V 2 commute, Corollary 12.2 from [6] gives:

Corollary 3.21. For each α ∈ C with 0 < Re(α) < 1 , ε > 0 and ζ ∈ C ,
S + ζA2−α

ε V 2 is similar to S . Moreover,

S + ζA2−α
ε V 2 = e(ζ/(1−α))A1−α

ε Se−(ζ/(1−α))A1−α
ε .
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Notation 3.22. For 0 < α < 1, set Aα := −A1−α/(1 − α) (do not con-
fuse with Aε !), and denote by Tα(·) the C0 -semigroup generated by Aα (see
Theorem 1.9).

By Theorem 3.4 from [8], we get the following

Theorem 3.23. For all 0 < α < 1 , t ≥ 0 , S is a quasi-affine transform of
S + tV α and S − tV α is a quasi-affine transform of S . Moreover,

Tα(t)(S + tV α) ⊆ STα(t)

and

Tα(t)S ⊆ (S − tV α)Tα(t).

Proof. Applying exp[−ζA1−α
ε /(1−α)] to both sides of the result of Corollary

3.21 with 0 < α < 1 and t > 0, and applying Theorem 3.4 from [8], we obtain
Tα(t)(S + tV α) ⊆ STα(t). For the second result, set Sα := S − tV α . Since
(Sα, V ) satisfies the assumptions of Standing Hypothesis 3.17, we can apply the
first result to it; the second result follows.

3.3. Quasi affinity in unbounded Volterra systems

We generalize Theorems 3.9 and 3.23 to the case of Unbounded Volterra Sys-
tems. The generalization of Theorem 3.9 will assume the following.

Standing Hypothesis 3.24. Let X be a complex Banach space, N ∈ N
be given, and let the pairs (S1, V1),(S2, V2),...,(SN , VN ) satisfy the assumption
of Standing Hypothesis 3.4, such that for all 0 ≤ k, l ≤ N , k �= l , we have
VlD(Sk) ⊆ D(Sk), [Sk, Vl] ⊆ 0 and [Vl, Vk] = 0. We set S :=

∑N
n=1 Sn .

Theorem 3.25. Let β ∈ CN be such that 1 < Re(βn) for all 1 ≤ n ≤ N ,

and let ζ = (ζ1, . . . , ζN ) ∈ CN be given. Then S +
∑N

n=1 ζnV
βn
n is similar to

S . More specifically,

S +

N∑
n=1

ζnV
βn
n = e−QSeQ

where

Q :=

N∑
n=1

ζnV
βn−1
n

βn − 1
.

Proof. For 0 ≤ j ≤ N , set Sj := S +
∑j

n=1 ζnV
βn
n , Qj :=

∑j
n=1

ζnV
βn−1
n

βn−1 .

We will prove inductively that for all such j , Sj = e
−QjSeQj . The case j = 0

is trivial. Assume the result for some j , 0 ≤ j < N . The pair (Sj , Vj+1)
satisfies the assumptions of Standing Hypothesis 3.4. This is true since by the
induction hypothesis, D(Sj) = D(S), and since Vj+1 commutes with V γ

n for
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all 1 ≤ n ≤ j , Re(γ) > 0 (because Vj+1 ,Vn commute). Therefore, the results
of Theorem 3.9 can be used. We thus have

Sj+1 = Sj + ζj+1V
βj+1

j+1 = e−(ζj+1/(βj+1−1))V
βj+1
j+1 Sje

(ζj+1/(βj+1−1))V
βj+1
j+1

= e−Qj+1SeQj+1 .

The theorem now follows by taking j = N .

Standing Hypothesis 3.26. We assume the same as in Standing Hypoth-
esis 3.24, only that the pairs (S1, V1), . . . , (SN , VN ) satisfy the assumptions of
Standing Hypothesis 3.17 (instead of 3.4).

Notation 3.27. For all 1 ≤ n ≤ N , we set An := V −1
n , and denote the

C0 -semigroup whose generator is −An by Tn(·). For 0 < Re(α) < 1, denote
by Tα,n(·) the C0 -semigroup generated by −A1−α

n /(1− α).

Under this hypothesis, we get the following generalization of Theorem 3.23:

Theorem 3.28. Let α, t ∈ RN be such that 0 < αn < 1 , tn > 0 for all
n = 1, . . . , N . Then S is a quasi-affine transform of S +

∑N
n=1 tnV

αn
n and

S −
∑N

n=1 tnV
αn
n is a quasi-affine transform of S . More specifically,

Q

(
S +

N∑
n=1

tnV
αn
n

)
⊆ SQ

and

QS ⊆
(
S −

N∑
n=1

tnV
αn
n

)
Q

for

Q :=

N∏
n=1

Tαn,n(tn).

Proof. For each 1 ≤ n ≤ N , Tαn,n(tn) is 1-1, and therefore Q is a quasi-

affinity. For 0 ≤ j ≤ N , define Qj :=
∏j

n=1 Tαn,n(tn). We will prove
inductively that for all such j ,

Qj

(
S +

j∑
n=1

tnV
αn
n

)
⊆ SQj

and

QjS ⊆
(
S −

j∑
n=1

tnV
αn
n

)
Qj .
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For j = 0, IS ⊆ SI trivially (an empty sum is regarded as 0, an empty product
as I ). We assume the result for j , 0 ≤ j < N , and prove it for j+1. The pair

(S+
∑j

n=1 tnV
αn
n , Vj+1) satisfies the assumptions of Standing Hypothesis 3.17,

and so, by Theorem 3.23,

Tαj+1,j+1(tj+1)

(
S +

j+1∑
n=1

tnV
αn
n

)

= Tαj+1,j+1(tj+1)

(
S +

j∑
n=1

tnV
αn
n + tj+1V

αj+1

j+1

)

⊆
(
S +

j∑
n=1

tnV
αn
n

)
Tαj+1,j+1(tj+1).

Hence, by the induction’s assumption, we have

Qj+1

(
S +

j+1∑
n=1

tnV
αn
n

)
= QjTαj+1,j+1(tj+1)

(
S +

j+1∑
n=1

tnV
αn
n

)

⊆ Qj

(
S +

j∑
n=1

tnV
αn
n

)
Tαj+1,j+1(tj+1)

⊆ SQjTαj+1,j+1(tj+1) = SQj+1.

In the same manner,

Qj+1S ⊆
(
S −

j+1∑
n=1

tnV
αn
n

)
Qj+1.

The theorem now follows by taking j = N .

As for Q above, the order of the multiplication doesn’t really matter, as
seen in the following lemma.

Lemma 3.29. For all 1 ≤ k, l ≤ N , t1, t2 > 0 , 0 < α, β < 1 , Tα,1(t1) and
Tβ,2(t2) commute (cf. Notation 3.27).

Proof. Step I : For all λ ∈ ρ(−Ak), µ ∈ ρ(−Al), R(λ;−Ak) and R(µ;−Al)
commute.

To prove this, write R(λ;−Ak) = λ−1VkR(λ
−1;−Vk) for λ �= 0 and

R(0;−Ak) = −Vk . Doing the same for l , the step follows immediately from the
commutativity of Vk ,Vl (see Standing Hypothesis 3.24).

Step II : Tk(t1) commutes with Tl(t2).
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This follows from the first step and the formula

Ti(t) = s− lim
n→∞

[
n

t
R(
n

t
;−Ai)]

n

for i = k, l and t > 0 (cf. Theorem 1.36 from [5]).

Step III : Tα,1(t1) and Tβ,2(t2) commute.

This follows from the second step, formula (2) in page 260, [11], and the
discussion that follows.

Of course, the results of Lemma 3.29 are still true for 1
2 ≤ α, β < 1 if we

assume only Standing Hypothesis 3.24.

4. Examples

Theorem 4.1. Fix an N ∈ N . For all ε > 0 , ζ ∈ C+ , 1 ≤ n ≤ N and a
locally integrable function on [0,∞)N , f , we define, for all x = (x1, . . . , xN ) ∈
[0,∞)N ,

(Jζε,nf)(x) := Γ(ζ)−1

∫ xn

0

e−ε(xn−t)(xn − t)ζ−1f(x1, . . . , xn−1, t, xn+1, . . . , xN ) dt.

Then for all 1 < p <∞ , we have the following results:

(1) Jζε,n is a (well-defined) bounded operator over Lp([0,∞)N ) .

(2) (Jζε,n)ζ∈C+ is a regular C0 -semigroup over Lp([0,∞)N ) .

(3) Fix π/2 < ν < π . Then the boundary group (J iηε,n)η∈R satisfies

(∀η ∈ R) ‖J iηε,n‖ ≤ Cν,p,n · eν|η|,

where Cν,p,n is a constant, independent of ε, η .

Proof. The theorem follows from Theorem 8.3 in [6] by a simple usage of
the Fubini-Tonelli Theorems.

We are now ready to present the following example to the results of
Chapter 2.

Example 4.2. Fix N ∈ N , 1 < p < ∞ , ε > 0. Denote X := Lp([0,∞)N ).
For each 1 ≤ n ≤ N , define the C0 -group Sn(·) by

(∀t ∈ R, f ∈ X,x ∈ [0,∞)N ) (Sn(t)f)(x) := e
itxnf(x).

Then for all n , Sn(·) is surely a C0 -group over X , whose generator is iSn ,
where

D(Sn) = {f ∈ X: xnf(x) ∈ X},
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and for all f ∈ D(Sn), (Snf)(x) = xnf(x). For each 1 ≤ n ≤ N , define
Vn := Jε,n = J1

ε,n . We shall prove that {Sn, Vn: 1 ≤ n ≤ N} satisfies the
assumption of Definition 2.1: (1), (2) and (4) follow immediately. We verify (3)
as follows: first, note that

(S(t)f)(x) = eit(x1+···+xN )f(x)

(for all f ∈ X,x ∈ [0,∞)N ). Denote the generator of S(·) by iS . The same
argument as above gives that D(S) = {f ∈ X: (x1 + · · · + xN )f(x) ∈ X} ,
and that if f ∈ D(S), then (Sf)(x) = (x1 + · · · + xN )f(x) for all x . Surely,⋂N

n=1D(Sn) ⊆ D(S). The reversed inclusion follows since for each f ∈ X ,
x ∈ [0,∞)N , 1 ≤ n ≤ N ,

|xnf(x)| = xn|f(x)| ≤ (x1 + · · ·+ xN )|f(x)| = |(x1 + · · ·+ xN )f(x)|,

thus xnf(x) ∈ X , and so f ∈ D(Sn).
We verify next Condition (5) in Definition 2.1. Let 1 ≤ k, l ≤ N and

f ∈ D(Sk) be given. Then for each x ∈ [0,∞)N ,

xk(Jε,lf)(x) =

∫ xl

0

e−ε(xl−t)xkf(x1, . . . , xl−1, t, xl+1, . . . , xN ) dt.

Now, if k �= l , then (by the definition of Jε,l ) xk(Jε,lf)(x) = (Jε,lSkf)(x) ∈ X .
Hence, VlD(Sk) ⊆ D(Sk), and [Sk, Vl] ⊆ 0. Else, if k = l , we have

xk(Jε,kf)(x) =

∫ xk

0

e−ε(xk−t)tf(x1, . . . , xk−1, t, xk+1, . . . , xN ) dt

+

∫ xk

0

e−ε(xk−t)(xk − t)f(x1, . . . , xk−1, t, xk+1, . . . , xN ) dt

= (Jε,kSkf)(x) + (J2
ε,kf)(x).

Thus VkD(Sk) ⊆ D(Sk) and [Sk, Vk] ⊆ V 2
k . Finally, the commutativity of

Vk, Vl follows immediately from Fubini’s Theorem.

Our next step will be showing that {Sn, Vn: 1 ≤ n ≤ N} is a regular
unbounded Volterra system. Fix 1 ≤ n ≤ N . By Theorem 4.1, (2), (Jζε,n)ζ∈C+)
is a regular C0 -semigroup. Thus, it is sufficient to show that α1 > 1. Let γn(·)
be the Nörlund function of Vn . Fix π/2 < ν < π . Then by Definition 1.4 and
Theorem 4.1, for all ξ > 0,

γn(ξ) = lim sup
|η|→∞

|η|−1 log ‖Vn(ξ + iη)‖

≤ lim sup
|η|→∞

|η|−1(log ‖Vn(ξ)‖+ log ‖Vn(iη)‖)

≤ lim sup
|η|→∞

|η|−1 log(Cν,p,ne
ν|η|) = ν.
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Therefore, if the equation γn(ξ) =
π
2α has a ξ -solution, then π

2α ≤ ν ; by letting
ν → π

2
+ , we obtain α ≥ 1. Hence, 1 ≤ α0 < α1 , and the proof is complete.

For ζ ∈ CN , let Tζ(·) be the C0 -group generated by i(S+
∑N

n=1 ζnJε,n).

Then by the results of the 2nd chapter, if Re(α) = Re(ζ) then S+
∑N

n=1 αnJε,n
is similar to S +

∑N
n=1 ζnJε,n (Theorem 2.9). Moreover,

‖S(t)‖ = 1 (4.1)

for all t ∈ R , and so there exists a constant H > 0 with

‖Tξ+iη(t)‖ ≤ H
N∏
n=1

(1 + |t|‖Jε,n‖)|ξn|e2ν|η|

for all ξ, η, t ∈ R (where ν is as in the paragraph following Definition 2.8).

In order to use Theorem 2.16, we first show that S is of class C (that is,
C0 ), using the notations and definitions of [6], Section 11.19. By (4.1), S(·) is
temperate. Now, fix a ϕ ∈ C∞C . Let ψ ∈ S such that ϕ = ψ̃ . We need to show
the existence of a constant B , independent of ϕ , with ‖τ(ϕ)‖ ≤ B‖ϕ‖U (‖ · ‖U
is the supremum norm). To do that, let f ∈ Lp([0,∞)N ) be given. Then for
all x ∈ [0,∞)N ,

(τ(ϕ)f)(x) =

∫
R

(S(t)f)(x) · ψ(t) dt =
∫
R

eit(x1+···+xN )f(x) · ψ(t) dt

= ϕ(x1 + · · ·+ xN )f(x).

Thus ‖τ(ϕ)f‖p ≤ ‖ϕ‖U‖f‖p , hence ‖τ(ϕ)‖ ≤ ‖ϕ‖U .
Therefore, by Theorem 2.16, if |ζk| ≤ mk (mk ∈ N) for all 1 ≤ k ≤ N ,

then S +
∑N

n=1 ζnJε,n is of class Cm1+···+mN .

We now bring an example to the results of Chapter 3.

Example 4.3. Fix 1 ≤ p <∞ , and set X = Lp(0,∞). Define A to be the
derivation operator, A = d

dx , over the domain

D(A) = {f ∈ X: f is absolutely continuous, and f ′ ∈ X}.

It is a well-known fact that σ(A) = {λ: Re(λ) ≤ 0} , and that for λ satisfying
Re(λ) > 0, we have

(∀f ∈ X,x ∈ [0,∞)) (R(λ;A)f)(x) =

∫ ∞
0

e−λtf(x+ t) dt.

Moreover, A is the generator of the contractive C0 -semigroup (T (t)f)(x) =
f(x+ t), defined over X (c.f. [3], pages 629-630). This motivates us to define,
for ε > 0 fixed, A(ε) := εI −A . Also define S by

(Sf)(x) = −xf(x)

(∀x ∈ [0,∞)) for each f ∈ X that satisfies xf(x) ∈ X .
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By the Hille-Yoshida Theorem, A (and so A(ε)) is densely-defined, and
for all λ > 0,

‖λR(λ;A)‖ ≤ 1.

Let λ > 0 be given. Then λI +A(ε) = (λ+ ε)I −A , thus λ ∈ ρ(−A(ε)), and

‖λR(λ;−A(ε))‖ = ‖λR(λ+ ε;A)‖ ≤ λ

λ+ ε
≤ 1.

Meaning, the second requirement in Standing Hypothesis 3.4 is satisfied (with
A(ε) replacing A). We now prove the first one. Set V (ε) = A(ε)−1 . For all
f ∈ X , by Fubini’s Theorem,

(V (ε)2f)(x) =

∫ ∞
0

e−εt
(∫ ∞

0

e−εsf(x+ t+ s) ds

)
dt

=

∫∫
[0,∞)×[0,∞)

e−ε(t+s)f(x+ t+ s) ds dt.

We use the change of variables u := t+ s , v := t− s to obtain that

(V (ε)2f)(x) =

∫ ∞
0

e−εuuf(x+ u) du.

If we assume now that f ∈ D(S), then

−x(V (ε)f)(x) = −x
∫ ∞

0

e−εtf(x+ t) dt =

∫ ∞
0

e−εt[−(x+ t)f(x+ t)] dt

+

∫ ∞
0

e−εttf(x+ t) dt = (V (ε)Sf)(x) + (V (ε)2f)(x) ∈ X.

This proves that V (ε)D(S) ⊆ D(S). In conclusion, S is a closed operator
over X , V (ε) ∈ B(X) is injective, V (ε)D(S) ⊆ D(S) and [S, V (ε)] ⊆ V (ε)2 .
The requirements of Standing Hypothesis 3.4 are hereby satisfied by the pair
(S, V (ε)), and so the results of Theorem 3.9 and Lemma 3.15 are true. That is,
for all β with Re(β) > 1 and for all ζ ∈ C ,

S + ζV (ε)β = e(−ζ/(β−1))V (ε)β−1

Se(ζ/(β−1))V (ε)β−1

and for all 1
2 ≤ α < 1, if we denote by Tε,α(·) the C0 -semigroup generated by

Aε,α := −A(ε)1−α/(1 − α) and D := {x ∈ D(dAε,αS): Aε,αx ∈ D(dAε,αS)} ,
then for all t ≥ 0, Tε,α(t) is quasi-affine, and

Tε,α(t)(S|D + tV (ε)α) ⊆ S|DTε,α(t),

Tε,α(t)S|D ⊆ (S|D − tV (ε)α)Tε,α(t).
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This example can easily by extended to the case of an unbounded Volterra
system, satisfying Standing Hypothesis 3.24, where X = Lp([0,∞)N ) (N ∈ N
and 1 ≤ p <∞ are fixed), and the operators Sn , An are defined by

(Snf)(x) = −xnf(x), An =
∂

∂xn
n = 1, 2, . . . , N

(with the suitable domains of definition).
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