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1. Linkage of Fields (Adam Chapman)

We restrict the discussion to quaternion algebras for simplicity, but it can be
similarly extended to other objects such as symbol algebras and Pfister forms.

Let F be a field. A set of quaternion algebras Q1, . . . , Qn over F is called linked
if they share a common maximal subfield (up to isomorphism). The field F is called
n-linked if every n quaterion algebras over F are linked.

For example, it is well-known that F is 2-linked if and only if the symbol length of

2 BrF is 1 (i.e., every 2-torsion Brauer class is represented by a quaternion algebra).
If

√
−1 ∈ F and there is a quaternion division algebra over F , then this moreover

implies that u(F ) (the u-invariant of F ) is 4 or 8; see [9], [4]. When F is nonreal,
the field F is 3-linked if and only if u(F ) ≤ 4; see [1], [5].

Question 1.1. Let r ≥ 2. Is there an r-linked field that is not (r + 1)-linked? In
particular, is there a 4-linked field that is not 5-linked?

The answer is known to be positive for r = 2, 3. For example:

• C((x))((y))((z)) is 2-linked and not 3-linked.
• C(x, y) is 3-linked and not 4-linked [6].

• Falg
2 (x, y) is 3-linked and not 4-linked.

Also, Q[i] is n-linked for all 2 ≤ n ∈ N.
Notice that the above examples are in characteristics 2 and 0. Can we find ex-

amples in characteristic p ̸= 0, 2? One possible approach to constructing examples
in any prescribed characteristic is the following: Start with a field E admitting
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“many” quaternion division algebras. Extend E to a compositum of all function
fields of anisotropic Albert forms and all anisotropic 3-fold Pfister forms. Repeat
until one gets a new field E′. This field is 3-linked.

Question 1.2. Is E′ 4-linked?

2. Parametric Dimension (Danny Neftin)

Let F be a field, e.g. Q, and let G be a linear algebraic group over F . We would
like to have a rational parametrization of G-torsors of F . The extent to which this
is possible is measured by the parametric dimension.

The (generalized or rational) parametric dimension ofG over F , denoted pdF (G),
is defined as the minimal number t ∈ N ∪ {0} (or ∞) such that there exist finitely
many G-torsors T1, . . . , Tr over K := F (x1, . . . , xt) such that every G-torsor over
F is a specialization of at least one of the Ti. It was defined and studied for finite
constant groups in [8, Section 5], [14] and is also related to the arithmetic dimension
of O’Neil [16]. There is a variation on the definition where one allows each Ti to be
defined over an F -field Ki for transcendence degree ≤ t; denote it by pd′F (G). It is
clear that pd′F (G) ≤ edF (G), where the right hand side is the essential dimension
of G.

It is interesting to compare the behaviour of parametric dimension and essential
dimension over number fields. It is also interesting to study the relation between
pd′KG and pdKG.

A particularly interesting example [14, Example A.1], [8, Section 5] is the group
G = Cs

2 = C2 × · · · ×C2 (s times), where C2 is the (constant) algebraic group with
2 elements. The G-torsors over F classify G-Galois extensions of F , which are all of
the form F [

√
α1, . . . ,

√
αs] for some α1, . . . , αs ∈ F× (if charF ̸= 2).1 Consequently

pdQC
s
2 ≤ s, because Q(

√
x1, . . . ,

√
xs)/Q(x1, . . . , xs) specializes to any Cs

2 -Galois

extension of Q. For comparison, edQC
s
2 = s. However, pdQC

5
2 ≤ 4.

To see this, we can use the Hasse–Minkowski Theorem, from which it follows
that the set of values represented by a quadratic form over Q of dimension 4 is Q+,
Q−, Q− {0}, or Q. Consider the C5

2 -Galois extension

Q(
√
x1, . . . ,

√
x4,

√
x1 + · · ·+ x4)/Q(x1, . . . , x4).(1)

In order to specialize it to Q[
√
α1, . . . ,

√
α5]/Q with α1, . . . , α5 > 0, we can choose

β1, . . . , β4 ∈ Q and specialize xi 7→ αiβ
2
i for i = 1, . . . , 4, so that x1 + · · · + x4 is

specialized to α1β
2
1 + · · ·+α4β

2
4 . By the Hasse-Minkowski Theorem, we can choose

the βi such that α1β
2
1 + · · · + α4β

2
4 = α5. We conclude that (1) specializes to

Q[
√
α1, . . . ,

√
α5]/Q. Other choices of signs can be handled similarly, by consider-

ing Q(
√
x1, . . . ,

√
x4,

√
x1 + x2 + x3 − x4)/Q(x1, . . . , x4). (This illustrates why we

might need more than one torsor to specialize from.)

Question 2.1. What can we say about pdQC
s
2 as s → ∞? In particular, does

pdQC
s
2 grow to ∞? is it bounded from above?

The results of [14] imply that if a certain local-to-global principle holds, then
pdQG ≤ 2 for every finite (constant) group G.

Question 2.2. Is there a connected linear algebraic group G over Q with pdQG ≥
3?

1The notation F [
√
α1, . . . ,

√
αs] stands for the F -algebra F [T1, . . . , Ts]/(T 2

1 −α1, . . . , T 2
s −αs)

with its evident Cs
2 -action, which is always a Cs

2 -Galois algebra over F , but not necessarily a field.

All Cs
2 -Galois algebras over F are of this form (if charF ̸= 2).
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3. Divisibility of Symbols (Eliyahu Matzri)

Let F be a field, let x1, . . . , x4, y1, y2 ∈ F×, and let p be a prime number.
Consider the symbol α := {x1, . . . , x4} in KM

4 F/p (Milnor’s 4-th K-theory modulo
p), and let K be the fraction field of the Severi–Brauer variety of the symbol algebra
(y1, y2)p,F .

Question 3.1. Suppose that αK = 0. Does it imply that there are t1, t2 ∈ F such
that α = {y1, y2, t1, t2}?

The question extends naturally to symbols in KM
n F for all n ≥ 2. The case

n = 3 is known and follows from an exact sequence of Merkurjev and Karpenko. In
the case n = 4, it is known that {y1, y2} divides in {x1, . . . , x4} in the ring KM

∗ F/p,
but it is not known if {x1, . . . , x4} can be expressed as the product of {y1, y2} and
another symbol.

One can also consider a generalization of the question to higher symbols {x1, . . . , xs},
{y1, . . . , yr} (x1, . . . , xs, y1, . . . , yr ∈ F× and s ≥ r) by replacing the Severi–Brauer
variety of (y1, y2)p,F with a norm variety for {y1, . . . , yr}.

4. Isotropicity of Pfister Forms over Purely Inseparable Extensions
(Detlev Hoffmann)

Question 4.1. Is there a field F of characteristic 2, a 3-fold Pfister quadratic form
q, and a purely inseparable extension K/F such that qK is isotropic, but for every
α, β ∈ K, the form qF (α,β) is anisotropic?

To put the question in context, Hoffmann [12] showed that a (n+1)-fold Pfister
quadratic form over F which becomes isotropic over K is already isotropic over
an F -subfield of K generated by 2n − 1 elements. In particular, for q as in the
question, there exist α, β, γ ∈ K such that qF (α,β,γ) is isotropic, so anistoropicity
over all F -subfields of K generated by 2 elements is the best we can hope for. Also,
if q is a 2-fold Pfister quadratic form such that qK is isotropic, then there is α ∈ K
such that qF (α) is isotropic. Hoffmann constructs in [op. cit.] a purely inseparable
field extension K/F and a 3-fold Pfister quadratic form over F such that qK is
isotropic, but qF (α) is anisotropic for every α ∈ K − F .

More generally, the question is motivated by the notion of q-mininal fields, i.e.,
fields extensions K of F such that qK is isotropic, but qL is anisotropic for every
intermediate extension F ⊆ L ⊊ K. Hoffmann’s example shows that there are
q-minimal fields K with many subfields lying between F and K.

5. Pythagoras Number of Function Fields (Marco Zaninelli)

Let K be a hereditarily Pythagorean field, i.e., every sum of squares in a finite
real extension of K is a square. Suppose also that charK = 0. Let C be a conic
over K, say aX2 + bY 2 = Z2 in P2, and let α is the Brauer class of the symbol
algebra (a, b)2,K associated to C. Then there is an exact sequence

0 → ⟨α⟩ → BrK → BrC → 0

(use Lichtenbaum’s Theorem [10, Theorem 5.4.11] and (2) below). Here, and BrC
coincides with the unramified Brauer group of K(C), denoted Brnr K(C).

Suppose now that the conic C is replaced with an elliptic curve X. The Leray
spectral sequence [7, Proposition 5.4.2] gives a 5-term exact sequence

0 → PicX → (PicX)Gal(K/K) → BrK → Br1 X → H1(K,PicX).(2)

Here, K is an algebraic closure of K, X = XK and Br1 X = ker(BrX → BrX).
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We are interested in finding the Pythagoras number of F := K(X). Observe
that if f ∈ F× is a sum of squares in F , then f is a sum of two squares if and only
if (−1, f)2,F = 0 in BrF . It can be further shown that (−1, f)2,F lives in Br1 X
[17]. We would like to know if it vanishes or not.

Turning to (2), we look at the image of (−1, f)2,K in H1(K,PicX). We know

that PicX ∼= Z×X(K), so H1(K,PicX) ∼= H1(K,X(K)). In fact, since (−1, f)2,K
is 2-torsion in Br1 X, the image of (−1, f)2,K lives in 2H

1(K,X(K)).

Question 5.1. Describe 2H
1(K,X(K)). Under what assumptions does the image

of (−1, f)2,K in 2H
1(K,X(K)) vanish?

An answer would help determining the Pythagoras number of F = K(X). The
simpler case where X is a conic was solved in [17].

We now give some examples of hereditarily Pythagorean fields K to which this
problem can be specialized. Every such K has a henselian (possibly non-discrete)
valuation ν such that its residue field k(ν) is hereditarily Pythagorean with 1 or 2
orderings. For example R((t)) is such a field; ν is the t-adic valuation and residue
field R has one ordering.

The hereditarily Pythagorean fields with one ordering were classified. An ex-
ample with two orderings can be constructed as follows: Let K1, K2 be the real
closures of Q(

√
2) relative to its two orderings, and let K = K1 ∩ K2, where the

intersection is taken in some algebraic closure of Q(
√
2). Then K is hereditarily

Pythagorean with 2 orderings. What is the answer to question 5.1 for this K? Note
that for this K, Gal(K/K) is generated (as a profinite group) by 2 involutions.

6. Galois-Theoretic Nature of the Brauer Group (Ido Efrat)

Let F be a field and let p be a prime number. Denote by GF (p) the maximal
pro-p quotient of Gal(F sep/F ).

Question 6.1. Let F1 and F2 be fields of characteristic ̸= p such that F1 and F2

contain a primitive p-th root of unity and GF1(p)
∼= GF2(p). Is it the case that

(BrF1)p ∼= (BrF2)p?

Here (−)p denotes the p-primary part of the group at hand.

7. Additive Commutators in Division Algebras (Boris Kunyavskii)

Theorem 7.1 (Amitsur–Rowen). Let D be a central simple algebra over a field
F , let A = Mn(D), and let [, ] : A × A → A be the additive commutator map
[x, y] = xy − yx. If n ≥ 2, then every a ∈ A with TrdA/F (a) = 0 can be written as
a = [x, y] for some x, y ∈ A.

The case n = 1 is still open and is a very difficult problem; it is related to the
cyclicity of p-algebras.

Question 7.2. Suppose that D is a division algebra that is infinite dimensional
over its center F . Let a ∈ D be a sum of additive commutators in D. Are there
x, y ∈ D such that a = [x, y]?

The reason there is hope for the infinite dimensional case is a vague analogy with
the behaviour of the multiplicative commutator (x, y) 7→ xyx−1y−1. Namely, most
Chevalley groups over a field that have ‘many’ commutators tend to have very few
of them over rings. However, the situation reverses if we go over to Chevalley groups
of infinite rank, even over a ring — again, they have lots of commutators. This
phenomenon was observed in various contexts by de la Harpe–Skandalis, Dennis–
Vaserstein, Gupta–Holubowski and others; see [13] for more details and precise
references.
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8. Commutators in Matrix Groups (Mathieu Florence)

Let C be a smooth projective curve of genus g over C. (Other fields of charac-
teristic 0 are also interesting.) Then πet

1 (C) is the profinite completion of

⟨x1, y1, . . . , xg, yg⟩ / ⟨[x1, y1] · · · [xg, yg]⟩
(here [x, y] = xyx−1y−1). Consider a (continuous) representation

ρ : πet
1 (C) → GLn(Fp),

where p is a prime number. For example, if g = 1, then the datum of ρ is equivalent
to choosing X,Y ∈ GLn(Fp) (the images of the generators x1, y1) such that XY =
Y X.

Question 8.1. Can we lift ρ to a representation ρ∞ : πet
1 (C) → GLn(Zp)?

The problem is related to conjectures of De Jong about local systems on curves.
By Greenberg’s Theorem [11], there is r ∈ N (depending on g, n) such that if there
exists a lift of ρ to ρr : πet

1 (C) → GLn(Z/prZ), then ρ∞ exists.
M. Florence (unpublished) showed that ρ∞ exists when g = 1. More general

lifting results in Galois theory suggest that ρ2 exists for all g. It is expected that
answer to the question is “yes” for all g, and there should be direct clean proof.

9. Symbol Length in the Relative Brauer Group (Bill Jacob)

Let F be a field, say, of characteristic 0. Let p be a prime number such that F
contains a primitive p-th root of unity. Let α, β ∈ F×, let E = F [ p

√
α, p

√
β], and

consider

p Br(E/F ) := ker(p BrF → p BrE) ⊆ p BrF

(the subscript p means taking the p-torsion part). Let sℓ(E/F ) denote the maxi-
mum possible (p-)symbol length of elements in p Br(E/F ).

It is not difficult to show that sℓ(E/F ) ≤ 3 if p = 2. B. Jacob and N. Schley
(unpublished; inspired by the work of A. Laghribi) recently showed that sℓ(E/F ) ≤
3 if p = 3. Moreover, any x ∈ p Br(E/F ) can be written as a sum of symbols of
the form (α, ?)3,F +(β, ?)3,F +(?, ?)3,F . This is an improvement on Matzri’s upper
bound of 31 3-symbols [15].

Question 9.1. Is sℓ(E/F ) ≤ 3 for all p?

10. Galois Cohomology of Algebraic Groups via Root Datum
(Mathieu Florence)

Let F be a field, let Γ = Gal(F sep/F ), and let χ : Γ →
∏

p ̸=charF Z×
p denote the

cyclotomic character of F .2

Let G be a reductive algebraic group over F . It is well-known that G is deter-
mined up to isomorphism by the root datum of GF sep , denoted R(G) for simplicity,
and the action of Γ on R(G). Consequently, R(G) with its Γ-action determines
H1(F,G).

Question 10.1. Can we describe H1(F,G) directly from R(G) with its Γ-action,
possibly with reference to χ, but without referring to the field F?

When G is a torus, it is well-known that it is possible to describe H1(F,G) by
means of the cocharacter lattice X∗(G) := HomF sep-grp(Gm, G) (with its Γ-action)
and the cyclotomic character.

2To define χ, note that Γ acts on the set of n-th roots of unity in F . This induces a group
homomorphism Γ → (Z/nZ)×. Taking the inverse limit over n coprime to charF gives χ.
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Borovoi and Timashev [2] described H1(R, G) in terms of the root datum when
G is a semisimple R-group. This description seems to apply over any real-closed
field, and is therefore an example where H1(F,G) depends only on R(G) (with its
Γ-action) when Γ ∼= C2. See also the followup paper [3].
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