Generation of algebras and versality of torsors

Uriya A. First

University of Haifa

MIT number theory seminar, April 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Joint work with Zinovy Reichstein (UBC)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Primitive Element Theorem)

Every finite separable field extension K/k is generated by a single element.

Theorem (Folklore)

Every central simple algebra over a field is generated by 2 elements.

- An algebra A over a field k is central simple if A is simple, Z(A) = kand dim_k $A < \infty$. Equivalently, $A \otimes_k \overline{k} \cong M_{n \times n}(\overline{k})$.
- Examples: $M_n(k)$, $k\langle i,j | i^2 = j^2 = -1, ij = -ji \rangle$ (quaternions).

Trivial Theorem

Every n-dimensional vector space over a field is generated by n elements.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Globalization I

Trivial Theorem

Every n-dimensional vector space over a field is generated by n elements.

Vector spaces globalize to locally free modules:

• A module *M* over a ring *R* is *locally free* of rank *n* if there exists a faithfully flat *R*-ring *S* with $M \otimes_R S \cong S^n$.

Theorem (Forster, 1964)

Assume R is a noetherian ring, and let $d = \dim R$. Every locally free R-module of rank n is generated by n + d elements.

- Swan, 1962: Forester's bound is tight in general.
- Swan, 1967: Can take $d = \dim \operatorname{Max} R$.
- Improvements by Eizenbud–Evans (1973), Warfried (1980), Upadhyay–Kumar (2013), ...

A B M A B M

Globalization II

Theorem (Primitive Element Theorem)

Every finite separable field extension K/k is generated by a single element.

Separable field extensions globalize to finite étale algebras:

• An algebra *E* over a ring *R* is *finite étale* (of rank *n*) if there exists a faithfully flat *R*-ring *S* with $E \otimes_R S \cong S^n$ as *S*-algebras.

Theorem (F–Reichstein, 2017)

Let *R* be a noetherian ring with no finite images, and let $d = \dim \operatorname{Max} R$. Every finite étale *R*-algebra can be generated by 1 + d elements.

- d = 0: Every étale algebra over an *infinite* field is generated by a single element.
- The case of finite fields and Z was analyzed by Kravchenko–Mazur– Petrenko (2012). See also F–Salazar–Reichstein (2018).

Theorem (Folklore)

Every central simple algebra over a field is generated by 2 elements.

Central simple algebras globalize to Azumaya algebras:

• An algebra A over a ring R is Azumaya of degree n if there exists a faithfully flat R-ring S with $A \otimes_R S \cong M_{n \times n}(S)$.

Theorem (F-Reichstein, 2017)

Let R be a noetherian ring, and let $d = \dim \operatorname{Max} R$. Every Azumaya R-algebra can be generated by 2 + d elements.

A B M A B M

Theorem A (F-Reichstein, 2017)

Let *R* be a noetherian ring, and let $d = \dim \operatorname{Max} R$. Let *A* be a finite *R*-algebra. Assume that for every $\mathfrak{m} \in \operatorname{Max} R$, the $k(\mathfrak{m})$ -algebra $A \otimes_R k(\mathfrak{m})$ can be generated by *n* elements. Then *A* can be generated by $\mathfrak{m} = k \cdot \mathfrak{m}$ determines

Then A can be generated by n + d elements.

- A does not have to be associative or unital.
- Forster's theorem is recovered by taking an *R*-module *M* and regarding it as an *R*-algebra with zero multiplication.
- A can even be a *multialgebra*, i.e., an *R*-module with a collection of *R*-multilinear maps $\{m_i : A^{r_i} \to A\}_{i \in I}$. For example,
 - **(**) a binary product is a bilinear map $m: A^2 \to A$,
 - 2 a unity is a (0-multilinear) map $u: A^0 \to A$,
 - **③** an involution is a linear map $i : A \rightarrow A, \ldots$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let A be R-algebra, and let S be an R-ring. A **form** of A over S is an S-algebra B for which there is a faithfully flat S-ring S' such that $A \otimes_R S' \cong B \otimes_S S'$.

- Azumaya algebras of degree *n* are *R*-forms of the \mathbb{Z} -algebra $M_n(\mathbb{Z})$.
- Finite étale algebras of degree *n* are *R*-forms of the \mathbb{Z} -algebra \mathbb{Z}^n .
- Octonion *R*-algebras are *R*-forms of the split octonion *Z*-algebra *O*_{*Z*}.

Corollary (F–Reichstein, 2017)

Let k be an infinite field, and let A be a finite-dimensional k-algebra which is n-generated. Let R be a noetherian k-ring, and let $d = \dim \operatorname{Max} R$. Then every R-form of A can be generated by n + d elements.

Is this tight?

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Shukla–Williams, 2019 / Ojanguren, 2017)

Let $d \ge 0$ and $n \ge 2$. There exist a smooth finite type \mathbb{R} -ring R with dim R = d and a finite étale R-algebra E of rank n such that E cannot be generated by fewer than 1 + d elements.

There is some sensitivity to the base field.

Proposition (Shukla–Williams, 2019)

Let *R* be a *smooth* finite type ring over an algebraically closed field. Assume that $d := \dim R \ge 2$. Then every finite étale algebra of rank 2 can be generated by *d* elements.

Lower bounds: The Azumaya case

Theorem (Williams, 2018)

Let $d, n \in \mathbb{N}$. There exist a smooth finite type \mathbb{C} -ring R with dim R = d and a degree-n Azumaya R-algebra A such that A cannot be generated by fewer than $2 + \lfloor \frac{d}{2n-2} \rfloor$ elements.

$$2 + \lfloor \frac{d}{2n-2} \rfloor \ll 2 + d$$

Theorem (Williams, 2018)

Every *topological Azumaya algebra* of degree *n* over a *D*-dimensional CW-complex can be generated by $2 + \lfloor \frac{D}{2n-2} \rfloor$ global sections.

- A topological Azumaya algebra over a topological space X is a C-algebra bundle over X with fibers isomorphic to Mat_{n×n}(ℂ).
- Write $d = \frac{D}{2}$ for the complex dimension of X. Then William's upper bound becomes $2 + \lfloor \frac{d}{n-1} \rfloor$.

What is new? A better upper bound

Henceforth:

- k is an infinite field.
- A is a finite-dimensional k-algebra, e.g., k^n or $M_{n \times n}(k)$.
- Z_r is the k-variety of tuples $(a_1, \ldots, a_r) \in A^r$ not generating A.

Theorem B (F-Reichstein, 2020)

Let *R* be a finite type *k*-ring, and let $d = \dim R$. Assume that $r \dim A - \dim Z_r > d$.

Then every R-form of A can be generated by r elements.

For A = kⁿ, we have dim Z_r = (n − 1)r, so every finite étale R-algebra is generated by d + 1 elements (same as Theorem A).
For A = M_{n×n}(k), we have dim Z_r = (n² − n + 1)r + (n − 1), hence:

Corollary

Azumaya *R*-algebras of degree *n* can be generated by $2 + \lfloor \frac{d}{n-1} \rfloor$ elements.

Bounds on number of generators for various algebras

A	dim Z _r	<i>R</i> -forms of <i>A</i> are	no. of generators \leq
$M_{n \times n}(k)$	$(n^2 - n + 1)r + (n - 1)$	Azumaya of deg. <i>n</i>	$2 + \lfloor \frac{d}{n-1} \rfloor$
k ⁿ	(n-1)r	étale of rank <i>n</i>	1 + d
$(M_{n \times n}(k), t)$	$n \neq 4$: $(n^2 - 2n + 3)r + (r - 2)$	Azumaya of deg. <i>n</i>	$n \neq 4$: $1 + \lfloor \frac{d + (n-2)}{2n-3} \rfloor$
	n = 4: 12r + 1	with orth. invol.	$n = 4$: $1 + \lfloor \frac{d+1}{4} \rfloor$
$(M_{n \times n}(k), s)$	$n \ge 8$: $(n^2 - 2n + 3)r + (r - 1)$	Azumaya of deg. <i>n</i>	$n \ge 8$: $1 + \lfloor \frac{d + (n-2)}{2n-3} \rfloor$
n even	n = 6: 27r + 6	with symp. invol.	$n = 6$: $1 + \lfloor \frac{d+6}{9} \rfloor$
	n = 4: 12r + 3		$n = 4$: $1 + \lfloor \frac{d+3}{4} \rfloor$
	n = 2: 3r + 1		n = 2: 2 + d
octonion	6 <i>r</i> + 5	octonion <i>R</i> -alg's	$3 + \lfloor \frac{d+1}{2} \rfloor$
Albert	21r + O(1)	Albert <i>R</i> -alg's	$rac{d}{6} + O(1)$

Let R denote a finite type k-algebra of dimension d.

- Theorem A gives bounds of the form d + O(1).
- The calculation of dim Z_r for $(M_{n \times n}(k), t)$ and $(M_{n \times n}(k), s)$ is due to Taeuk Nam, Cindy Tan and Ben Williams, 2019.
- Let *b* denote the maximal dimension of a proper \overline{k} -subalgebra of $A \otimes_k \overline{k}$. Then, *under a mild assumption*, dim $Z_r = br + O(1)$, and every *R*-form of *A* is generated by $\frac{d}{\dim A-b} + O(1)$ elements.

The dimension of Z_r for $A = M_n(k)$

Lemma

Assume
$$A = M_{n \times n}(k)$$
. Then dim $Z_r = (n^2 - n + 1)r + (n - 1)$.

Proof. By Theorem B, we reduce to proving dim $Z_r = (n^2 - n + 1)r + (n - 1)$. We may assume that $k = \overline{k}$. By Burnside's Theorem, $Z_r = X_1 \cup \cdots \cup X_{n-1}$ for

 $X_i = \{(a_1, \ldots, a_r) \in A^r \mid a_1, \ldots, a_r \text{ stabilize a common } i\text{-dimensional space}\}.$

Consider $Y_i = \{(a_1, \ldots, a_r, W) | a_i(W) \subseteq W\} \subseteq M_n^r \times Gr(n, i)$. Let $p_1 : Y_i \to X_i$ and $p_2 : Y_i \to Gr(n, i)$ denote the evident projections. By the fiber dimension theorem:

dim
$$Y_i = \dim X_i + \dim p_1^{-1}$$
(general $x \in X_i$) = dim X_i
dim $Y_i = \dim \operatorname{Gr}(n, i) + \dim p_2^{-1}$ (general $W \in \operatorname{Gr}(n, i)$)
= $i(n-i) + r(n^2 - i(n-i)) = rn^2 - (r-1)i(n-i)$.

The maximum of dim $X_i = rn^2 - (r-1)i(n-i)$ is attained for i = 1 and i = n-1, yielding dim $Z_r = (n^2 - n + 1)r + (n-1)$.

Forms of algebras and torsors

Let $G = \underline{Aut}_k(A)$, an affine group scheme over k.

Recall: Let X be a k-scheme. A G-torsor over X consists of an X-scheme T with G_X -action $T \times_X G_X \to T$, such that there exists a faithfully flat morphism $X' \to X$ for which $T_{X'} \cong G_{X'}$ as right $G_{X'}$ -spaces. (Informally, G acts freely on T, and X = T/G.)

Example: The trivial torsor, $G_X = X \times_k G$ over X.

Example: Let *R* be *k*-ring and let *B* be an *R*-form of *A*. Put $X = \operatorname{Spec} R$ and $T = \underline{\operatorname{Iso}}_R(A \otimes_k R, B)$. Then *T* is a *G*-torsor over *X*.

Theorem (Serre)

There is an equivalence of categories

```
{R-forms of A} ~ {G-torsors over SpecR}
```

given by $B \mapsto \underline{\text{Iso}}_R(A \otimes_k R, B)$ and $T \mapsto T \times^G A$.

イロト イヨト イヨト イヨ

The variety of r-tuples which generate A

Let $U_r = A^r - Z_r$ denote the variety of *r*-tuples $(a_1, \ldots, a_r) \in A^r$ generating *A*. Formally,

 $U_r(S) = \{(a_1, \ldots, a_r) \in A_S^r \ : \ a_1, \ldots, a_r \text{ generate } A_S \text{ as an } S\text{-algebra}\}.$

Then $G = \underline{Aut}_k(A)$ acts on U_r , and U_r is a *G*-torsor over U_r/G (a priori U_r/G is not a scheme but an algebraic space).

Proposition

Let R be a k-ring, let B be an R-form of A and let T be its associated G-torsor. Then the following are in canonical bijection:

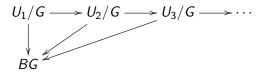
• G-equivariant morphisms $T \rightarrow U_r$,

2 *r*-tuples $(b_1, \ldots, b_r) \in B^r$ generating *B* as an *R*-algebra.

In order to prove the Theorem B, we need so show that if $\operatorname{codim}_{A^r} Z_r > d$, then every *G*-torsor over a *d*-dimensional finite type *k*-ring is a specialization of $U_r \to U_r/G$.

Some remarks

- Morphisms $Y \to U_r/G$ classify tuples (B, b_1, \ldots, b_r) where B is a Y-form of A and b_1, \ldots, b_r are global sections generating B (this is a categorical equivalence).
- 2 The identity morphism $U_r/G \rightarrow U_r/G$ corresponds to a U_r/G -form of A which is the universal for being generated by r elements.
- U_r embeds *G*-equivariantly in U_{r+1} by appending a 0. These embeddings induce a tower of "approximations"



Constructing forms of A which can be generated by r elements and no fewer amounts to obstructing the existence of maps $U_r/G \rightarrow U_{r-1}/G$ over BG. Obstructing such maps using low-dimensional invariants results in examples over a low-dimensional base ring/scheme.

Uriya A. First (UH)

Definition

Let G be a group scheme over k, and let \mathscr{C} be a class of k-schemes. We say that a G-torsor $T \to X$ is versal for \mathscr{C} if every G-torsor $T_1 \to X_1$ with $X_1 \in \mathscr{C}$ is a specialization of $T \to X$. When \mathscr{C} is the class of d-dimensional finite type affine k-schemes, we simply say that $T \to X$ is d-versal.

Remark: When \mathscr{C} is the class of *k*-fields, we recover *weakly versal* torsors. **Question:** Are there *d*-versal torsors?

Theorem C (F-Reichstein, 2020)

Let $\rho: G \to GL(V)$ be a representation and let Z denote a G-subvariety of V with $\operatorname{codim}_V Z > d$. Then $(V - Z) \to (V - Z)/G$ is d-versal, provided that G acts freely on V - Z.

Totaro, 1999: There exist appropriate V and Z for every d.

Theorem B (F–R)

Let *R* be a finite type *k*-ring, and let $d = \dim R$. Assume that $r \dim A - \dim Z_r > d$. Then every *R*-form of *A* can be generated by *r* elements.

Proof. Let B be an R-form of A.

Let $T = \underline{lso}_R(A \otimes_k R, B)$ be its associated *G*-torsor.

We assume that $r \dim A > \dim Z_r + d$, or rather, $\dim_{A^r} Z_r > d$.

By Theorem C, $U_r \rightarrow U_r/G$ is *d*-versal, so there exists a *G*-equivariant morphism $f : T \rightarrow U_r$.

By the proposition, $f : T \to U_r$ corresponds to an *r*-tuple $(b_1, \ldots, b_r) \in B^r$ generating *B*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Question 1. Are the upper bounds on number of generators implied by Theorem B the best possible?

Theorem B applies only to finite type k-rings R where k is an infinite field, whereas Theorem A applies to all rings.

Question 2. What can be said about the number of generators of forms A when k and R are general noetherian rings? Specifically, can any Azumaya algebra of degree n over a d-dimensional ring be generated by $2 + \lfloor \frac{d}{n-1} \rfloor$ elements?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?