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Our starting point

Theorem (Primitive Element Theorem)

Every finite separable field extension K/k is generated by a single element.

Theorem (Folklore)

Every central simple algebra over a field is generated by 2 elements.

An algebra A over a field k is central simple if A is simple, Z (A) = k
and dimk A <∞. Equivalently, A⊗k k ∼= Mn×n(k).

Examples: Mn(k), k〈i , j | i2 = j2 = −1, ij = −ji〉 (quaternions).

Trivial Theorem

Every n-dimensional vector space over a field is generated by n elements.
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Globalization I

Trivial Theorem

Every n-dimensional vector space over a field is generated by n elements.

Vector spaces globalize to locally free modules:

A module M over a ring R is locally free of rank n if there exists a
faithfully flat R-ring S with M ⊗R S ∼= Sn.

Theorem (Forster, 1964)

Assume R is a noetherian ring, and let d = dimR.
Every locally free R-module of rank n is generated by n + d elements.

Swan, 1962: Forester’s bound is tight in general.

Swan, 1967: Can take d = dim MaxR.

Improvements by Eizenbud–Evans (1973), Warfried (1980),
Upadhyay–Kumar (2013), . . .
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Globalization II

Theorem (Primitive Element Theorem)

Every finite separable field extension K/k is generated by a single element.

Separable field extensions globalize to finite étale algebras:

An algebra E over a ring R is finite étale (of rank n) if there exists a
faithfully flat R-ring S with E ⊗R S ∼= Sn as S-algebras.

Theorem (F–Reichstein, 2017)

Let R be a noetherian ring with no finite images, and let d = dim MaxR.
Every finite étale R-algebra can be generated by 1 + d elements.

d = 0: Every étale algebra over an infinite field is generated by a
single element.

The case of finite fields and Z was analyzed by Kravchenko–Mazur–
Petrenko (2012). See also F–Salazar–Reichstein (2018).
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Globalization III

Theorem (Folklore)

Every central simple algebra over a field is generated by 2 elements.

Central simple algebras globalize to Azumaya algebras:

An algebra A over a ring R is Azumaya of degree n if there exists a
faithfully flat R-ring S with A⊗R S ∼= Mn×n(S).

Theorem (F–Reichstein, 2017)

Let R be a noetherian ring, and let d = dim MaxR.
Every Azumaya R-algebra can be generated by 2 + d elements.
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The general case

Theorem A (F–Reichstein, 2017)

Let R be a noetherian ring, and let d = dim MaxR.
Let A be a finite R-algebra.
Assume that for every m ∈ MaxR, the k(m)-algebra A⊗R k(m) can be
generated by n elements.
Then A can be generated by n + d elements.

A does not have to be associative or unital.

Forster’s theorem is recovered by taking an R-module M and
regarding it as an R-algebra with zero multiplication.

A can even be a multialgebra, i.e., an R-module with a collection of
R-multilinear maps {mi : Ari → A}i∈I . For example,

1 a binary product is a bilinear map m : A2 → A,
2 a unity is a (0-multilinear) map u : A0 → A,
3 an involution is a linear map i : A→ A, . . .
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Forms of algebras

Definition

Let A be R-algebra, and let S be an R-ring.
A form of A over S is an S-algebra B for which there is a faithfully flat
S-ring S ′ such that A⊗R S ′ ∼= B ⊗S S ′.

Azumaya algebras of degree n are R-forms of the Z-algebra Mn(Z).

Finite étale algebras of degree n are R-forms of the Z-algebra Zn.

Octonion R-algebras are R-forms of the split octonion Z-algebra OZ.

Corollary (F–Reichstein, 2017)

Let k be an infinite field, and let A be a finite-dimensional k-algebra which
is n-generated. Let R be a noetherian k-ring, and let d = dim MaxR.
Then every R-form of A can be generated by n + d elements.

Is this tight?
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Lower bounds: The finite étale case

Theorem (Shukla–Williams, 2019 / Ojanguren, 2017)

Let d ≥ 0 and n ≥ 2. There exist a smooth finite type R-ring R with
dimR = d and a finite étale R-algebra E of rank n such that E cannot be
generated by fewer than 1 + d elements.

There is some sensitivity to the base field.

Proposition (Shukla–Williams, 2019)

Let R be a smooth finite type ring over an algebraically closed field.
Assume that d := dimR ≥ 2. Then every finite étale algebra of rank 2 can
be generated by d elements.
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Lower bounds: The Azumaya case

Theorem (Williams, 2018)

Let d , n ∈ N. There exist a smooth finite type C-ring R with dimR = d
and a degree-n Azumaya R-algebra A such that A cannot be generated by
fewer than 2 + b d

2n−2c elements.

2 + b d
2n−2c � 2 + d

Theorem (Williams, 2018)

Every topological Azumaya algebra of degree n over a D-dimensional
CW-complex can be generated by 2 + b D

2n−2c global sections.

A topological Azumaya algebra over a topological space X is a
C-algebra bundle over X with fibers isomorphic to Matn×n(C).

Write d = D
2 for the complex dimension of X . Then William’s upper

bound becomes 2 + b d
n−1c.
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What is new? A better upper bound

Henceforth:

k is an infinite field.
A is a finite-dimensional k-algebra, e.g., kn or Mn×n(k).
Zr is the k-variety of tuples (a1, . . . , ar ) ∈ Ar not generating A.

Theorem B (F–Reichstein, 2020)

Let R be a finite type k-ring, and let d = dimR.
Assume that r dimA− dimZr > d .
Then every R-form of A can be generated by r elements.

For A = kn, we have dimZr = (n − 1)r , so every finite étale
R-algebra is generated by d + 1 elements (same as Theorem A).
For A = Mn×n(k), we have dimZr = (n2 − n + 1)r + (n − 1), hence:

Corollary

Azumaya R-algebras of degree n can be generated by 2 + b d
n−1c elements.
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Bounds on number of generators for various algebras

Let R denote a finite type k-algebra of dimension d .
A dimZr R-forms of A are no. of generators ≤
Mn×n(k) (n2 − n + 1)r + (n − 1) Azumaya of deg. n 2 + b d

n−1
c

kn (n − 1)r étale of rank n 1 + d

(Mn×n(k), t) n 6= 4: (n2 − 2n + 3)r + (r − 2) Azumaya of deg. n n 6= 4: 1 + b d+(n−2)
2n−3

c
n = 4: 12r + 1 with orth. invol. n = 4: 1 + b d+1

4
c

(Mn×n(k), s) n ≥ 8: (n2 − 2n + 3)r + (r − 1) Azumaya of deg. n n ≥ 8: 1 + b d+(n−2)
2n−3

c
n even n = 6: 27r + 6 with symp. invol. n = 6: 1 + b d+6

9
c

n = 4: 12r + 3 n = 4: 1 + b d+3
4
c

n = 2: 3r + 1 n = 2: 2 + d

octonion 6r + 5 octonion R-alg’s 3 + b d+1
2
c

Albert 21r + O(1) Albert R-alg’s d
6

+ O(1)

Theorem A gives bounds of the form d + O(1).

The calculation of dimZr for (Mn×n(k), t) and (Mn×n(k), s) is due to Taeuk
Nam, Cindy Tan and Ben Williams, 2019.

Let b denote the maximal dimension of a proper k-subalgebra of A⊗k k.
Then, under a mild assumption, dimZr = br + O(1), and every R-form of A
is generated by d

dim A−b + O(1) elements.
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The dimension of Zr for A = Mn(k)

Lemma

Assume A = Mn×n(k). Then dimZr = (n2 − n + 1)r + (n − 1).

Proof. By Theorem B, we reduce to proving dimZr = (n2 − n + 1)r + (n − 1).
We may assume that k = k . By Burnside’s Theorem, Zr = X1 ∪ · · · ∪ Xn−1 for

Xi = {(a1, . . . , ar ) ∈ Ar | a1, . . . , ar stabilize a common i-dimensional space}.

Consider Yi = {(a1, . . . , ar ,W ) | ai (W ) ⊆W } ⊆ Mr
n ×Gr(n, i).

Let p1 : Yi → Xi and p2 : Yi → Gr(n, i) denote the evident projections.
By the fiber dimension theorem:

dimYi = dimXi + dim p−1
1 (general x ∈ Xi ) = dimXi

dimYi = dimGr(n, i) + dim p−1
2 (general W ∈ Gr(n, i))

= i(n − i) + r(n2 − i(n − i)) = rn2 − (r − 1)i(n − i).

The maximum of dimXi = rn2 − (r − 1)i(n − i) is attained for i = 1 and
i = n − 1, yielding dimZr = (n2 − n + 1)r + (n − 1).
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Forms of algebras and torsors

Let G = Autk(A), an affine group scheme over k.

Recall: Let X be a k-scheme. A G -torsor over X consists of an X -scheme
T with GX -action T ×X GX → T , such that there exists a faithfully flat
morphism X ′ → X for which TX ′

∼= GX ′ as right GX ′-spaces.
(Informally, G acts freely on T , and X = T/G .)

Example: The trivial torsor, GX = X ×k G over X .

Example: Let R be k-ring and let B be an R-form of A. Put X = SpecR
and T = IsoR(A⊗k R,B). Then T is a G -torsor over X .

Theorem (Serre)

There is an equivalence of categories

{R-forms of A} ∼ {G -torsors over SpecR}

given by B 7→ IsoR(A⊗k R,B) and T 7→ T ×G A.
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The variety of r -tuples which generate A

Let Ur = Ar − Zr denote the variety of r -tuples (a1, . . . , ar ) ∈ Ar

generating A. Formally,

Ur (S) = {(a1, . . . , ar ) ∈ Ar
S : a1, . . . , ar generate AS as an S-algebra}.

Then G = Autk(A) acts on Ur , and Ur is a G -torsor over Ur/G (a priori
Ur/G is not a scheme but an algebraic space).

Proposition

Let R be a k-ring, let B be an R-form of A and let T be its associated
G -torsor. Then the following are in canonical bijection:

1 G -equivariant morphisms T → Ur ,

2 r -tuples (b1, . . . , br ) ∈ B r generating B as an R-algebra.

In order to prove the Theorem B, we need so show that if codimAr Zr > d ,
then every G -torsor over a d-dimensional finite type k-ring is a
specialization of Ur → Ur/G .
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Some remarks

1 Morphisms Y → Ur/G classify tuples (B, b1, . . . , br ) where B is a
Y -form of A and b1, . . . , br are global sections generating B (this is a
categorical equivalence).

2 The identity morphism Ur/G → Ur/G corresponds to a Ur/G -form of
A which is the universal for being generated by r elements.

3 Ur embeds G -equivariantly in Ur+1 by appending a 0. These
embeddings induce a tower of “approximations”

U1/G //

��

U2/G //

zz

U3/G //

uu

· · ·

BG

Constructing forms of A which can be generated by r elements and no
fewer amounts to obstructing the existence of maps Ur/G → Ur−1/G
over BG . Obstructing such maps using low-dimensional invariants
results in examples over a low-dimensional base ring/scheme.
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d-versal torsors

Definition

Let G be a group scheme over k , and let C be a class of k-schemes. We
say that a G -torsor T → X is versal for C if every G -torsor T1 → X1 with
X1 ∈ C is a specialization of T → X .
When C is the class of d-dimensional finite type affine k-schemes, we
simply say that T → X is d-versal.

Remark: When C is the class of k-fields, we recover weakly versal torsors.

Question: Are there d-versal torsors?

Theorem C (F–Reichstein, 2020)

Let ρ : G → GL(V ) be a representation and let Z denote a G -subvariety
of V with codimV Z > d . Then (V − Z )→ (V − Z )/G is d-versal,
provided that G acts freely on V − Z .

Totaro, 1999: There exist appropriate V and Z for every d .
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Recap: Proof of Theorem B

Theorem B (F–R)

Let R be a finite type k-ring, and let d = dimR.
Assume that r dimA− dimZr > d .
Then every R-form of A can be generated by r elements.

Proof. Let B be an R-form of A.

Let T = IsoR(A⊗k R,B) be its associated G -torsor.

We assume that r dimA > dimZr + d , or rather, dimAr Zr > d .

By Theorem C, Ur → Ur/G is d-versal, so there exists a G -equivariant
morphism f : T → Ur .

By the proposition, f : T → Ur corresponds to an r -tuple
(b1, . . . , br ) ∈ B r generating B.
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Questions

Question 1. Are the upper bounds on number of generators implied by
Theorem B the best possible?

Theorem B applies only to finite type k-rings R where k is an infinite field,
whereas Theorem A applies to all rings.

Question 2. What can be said about the number of generators of forms A
when k and R are general noetherian rings?
Specifically, can any Azumaya algebra of degree n over a d-dimensional
ring be generated by 2 + b d

n−1c elements?
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Thank you!


