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1 Introduction

As we know several people tried to get many structures for fine numbers (see [31, Sequence
A000957]), while others on Catalan numbers (see [31, Sequence A000108]). Stanley [34,35] gave
more than 130 Catalan structures while Deutsch and Shapiro [11] also discovered many settings
for the Fine numbers. The structures for Fine numbers and Catalan numbers are intimately
related from the list of Fine number occurences in [11], which motivated us to find out more and
more super-Catalan structures by the tight link between Catalan numbers and super-Catalan
numbers, whose first several terms are 1, 1, 3, 11, 45, 197, · · · (see [31, Sequence A001003]).

The purpose of this paper is to give a unified presentation of many new super-Catalan
structures. We start the project with the idea of giving a restricted bi-color to the existed
Catalan structures, and have included a selection of results in [18]. In the remainder of this
section, we present a brief account of background for our investigation.

The sequence of super-Catalan number was introcuced by Friedrich Wilhelm Karl Ernst
Schröder in his paper [29] during his discusses on four “bracketing problems” and the term
“Schröder number” seems to have been first used by Rogers [28]. Ernst Schöder gave the
n-th super-Catalan number s(n) is the total number of bracketings of a string of n letters,
but he did not mention any other combinatorial interpretations. While in 1994, David Hough
discovered that the super-Catalan number were apparently known to Hipparchus in the second
century B.C. (at least s(9) = 103049). The connection between bracketings and plane trees
was known to Cayley [2]. The bijection between plane trees and polygon dissections appears in
Etherington [15]. Currently, many good combinatorial structures enumerated by super-Catalan
numbers are obtained by the references, from which we know the super-Catalan number not
only counts the dissections of a convex polygon and plane trees, but also partitions (see [17]),
various lattice paths (see [38]), permutations avoiding given patterns (see [8]), and so on. And
in [36], Stanley narrated how the super-Catalan numbers are even more classical than has been
believed before. He also recalled the three-term linear recurrence (see [6, 7, p.75])

3(2n− 1)s(n− 1) = (n + 1)s(n) + (n− 2)s(n− 2) (n ≥ 2),
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with s(0) = s(1) = 1, of super-Catalan number. To give a combinatorial proof of this formula,
Foata and Zeilberger [16] introduced a new combinatorial interpretation, well-weighted binary
plane trees, for super-Catalan numbers.

Stanley studied 6 super-Catalan structures (see [34, Exercise 6.39(b),(d),(e),(h),(i) and (p)]).
We can also get several structures from On-Line Encyclopedia of Integer Sequences [31, A001003].
Besides, the hilly poor noncrossing partition and (2, 3)-Motzkin path given by Yan and Yang [38],
matchings on [2n] avoiding both patterns 12312 and 121323 studied by Chen, Mansour and
Yan [8] and small percolations referred in Fan, Mansour and Pang [17] are all combinatorial
structures enumerated by super-Catalan numbers which we have known.

Recall that the number of Schröder paths of semilength n without peak at level one is the
super-Catalan number sn. By decompositon method, we get the generating function s(x) for
such Schröder paths satisfies

s(x) = 1− xs(x) + 2xs2(x),

which gives us the recursive relation sn = −sn−1 + 2
∑n

k=0 sk−1sn−k for n ≥ 1.
As we know, a refinement of Catalan number gives Cn =

∑n
k=0 Nn,k, where Nn,k = 1

n

(
n
k

)(
n

k−1

)
is the Narayana number with 1 6 k 6 n and Nn,0 = 0. In this paper, we derive the super-Catalan
structures by giving bi-color to the statistic with Narayana distribution, i.e., according to the
equation sn =

∑n
k=1 2k−1Nn,k. Furthermore, we can get the equation Sn = 2sn =

∑n
k=1 2kNn,k

for the n-th large Schröder number(see [31, Sequence A006318]) by bi-color the first parameter
again for the super-Catalan structures. Generally, if we define the Narayana polynomial by
N(q) =

∑n
k=0 Nn,kq

k, it corresponds to give a q-color to the statistic of Narayana distribution
in Catalan structures, i.e., each parameter in the statistic can be colored by one of q colors.

Besides, a subdivision of super-Catalan number is also studied in [8, 17], from which we get
sn =

∑n−1
k=0

1
n+k+2

(
n+k+2

k+1

)(
n−1

k

)
. The number 1

n+k+2

(
n+k+2

k+1

)(
n−1

k

)
has been studied by many

people [3, 15, 17, 22, 27, 34], and appears in [31, Sequence A033282]. It counts dissections of a
convex (n + 2)-gon with k diagonals not intersecting in their interiors [15, 34], standard Young
tableaux of shape (k + 1, k + 1, 1n−1−k) [34], integer sequences (a1, a2, · · · , an+k+1) such that
either ai = −1 or ai > 1, exactly n terms are equal to −1, a1 + a2 + · · · + ai > 0 for all i, and
a1 + a2 + · · ·+ an+k+1 = 0 [15] and so on (see [17]).

In this paper, we main to give a list of super-Catalan numbers occurences.

2 A list of super-Catalan structures

Now, we give a list of super-Catalan structures and most of them are the correspondings from
[34, 35, Exercise 6.19] and reference therein and in each figure below, we represent the statistic
colored black (resp. white) by dotted (resp. solid) lines in paths, partitions and diagrams while
by bold (resp. non-bold) body in permutations and Young tableaux.Totally, we have more than
160 structures (see below), which made us believe it is also a supernatural sequence like Catalan
numbers.

(a) For triangulations of a convex (n + 2)-gon labelled with {1, 2, · · · , n + 2} clockwise into n
triangles by n− 1 diagonals that do not intersect in their interiors, color the triangle with
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the minimum edge (i.e., both of the two ends of the edge are smaller than at least one end
of any other edge) with black or white if the minimum vertex is not on any diagonal, then
delete the edges of this triangle which is not in common with other triangles. Otherwise,
color the triangle white. By omitting the isolated vertex created by the above procedure,
color the triangles by reconsidering the remaining convex polygons recursively until we get
the last triangle which is colored white uniquely (we use the shadowed triangle to represent
the black color).

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

Hint. Let A(x) be the generating function of such colored triangulations of convex polygon
with the last triangle colored by white uniquely, and B(x) be the generating function of
such colored triangulations of convex polygon with the last triangle can be colored by
black or white. Then A = 1− x + 2xA + x(A− 1)B and B = 1 + xB + xB2. Solving the
two equations, the coefficient of A, which is super-Catalan numbers, corresponds to the
enumeration of triangulations in (a).

(b) Color the binary trees of n vertices with two colors, black and white, such that the root
must be black and the right child of any vertex must be white.

Hint. See [34, Exercise 6.39(d)] and [17], where such trees are called small-binary trees
in [17].

(b’) Color the full binary trees of 2n + 1 vertices with two colors, black and white, such that
the root must be black , the right child of any vertex and the leaves must be white.

Hint. There is an obvious bijection between (b) and (b’).

(c) For the binary parenthesizations of a string of n + 1 letters(including adding a pair of
parentheses containing all the elements), color two pairs of parentheses with their left part
consecutive black or white (we use square brackets to represent the color of the parentheses
being black). Otherwise, color the pair of parentheses white.

(((xx)x)x) [[(xx)x]x] ([[xx]x]x) [[[xx]x]x] (x((xx)x)) (x[[xx]x])
((x(xx))x) [[x(xx)]x] (x(x(xx))) ((xx)(xx)) [[xx](xx)]

Hint. In (b’), label each leaf by x and each internal vertex (except the root) by a pair of
parentheses. For any vertex v, have the string corresponding to the tree rooted at v in the
parentheses corresponding to v, we get a bijection between (b’) and (c).

(d) Color each pair of edges at the same level and have a common vertex with black or white
in the plane binary trees with 2n + 1 vertices (or n + 1 endpoints) if the common vertex
is the right child of some vertex, and color it white otherwise.
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Hint. This is a clear result from (b’).

(e) For the plane trees with n + 1 vertices, color the leaves with black or white except the
leaves at level one being colored only with white.

Hint. See [18] for a bijection between small binary trees in (b) and (e).

(f) For the planted (i.e., root has degree one) trivalent plane trees with 2n + 2 vertices, color
each pair of edges at the same level and have a common vertex with black or white if the
common vertex is the right child of some vertex, and color it white otherwise.

Hint. Adding a planted edge for each tree in (d), we get (f).

(g) For the plane trees with n + 2 vertices such that the rightmost path of each subtree of
the root has even length, consider each subtree of the root and color the leaves of the first
subtree at level greater than 1 with black or white while color all the leaves of any other
subtree with black or white (the root of the subtree is not considered as a leaf).

Hint. There is a bijection between (e) and (g). For a plane tree with n+2 vertices in (g),
we get an ordered forest by deleting the root. Adding a planted edge for each tree in the
forest except the first tree, and then combine the root of all trees in order, we get a plane
tree with n + 1 vertices. Having the corresponding leaves the same color, (g) holds from
(e).

(h) For the Dyck paths from (0, 0) to (2n, 0), i.e., lattice paths with steps (1, 1) and (1,−1),
never falling below the x-axis, we also have several cases to get super-Catalan number.

(1) Color each peak black or white except the first one;

(2) Color each valley black or white;

(3) Color each double (1, 1) steps black or white;
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(4) Color each double (1,−1) steps black or white;

(5) Color each peak with height greater than 1 black or white.

Hint. Dyck paths with given number of peaks, valleys, double ascents and double descents
are enumerated by Narayana numbers [9]. By the equation sn =

∑n
k=1 2k−1Nn,k, where

Nn,k is the Narayana number 1
n

(
n
k

)(
n

k−1

)
, we can get the desired result. Besides, there

are many other statistics having the Narayana distribution, such as high peaks, evenly
positioned ascents and nonfinal maximal constant subpaths of length greater than one
(See [32]).

(i) For the lattice paths from (0, 0) to (n, n) with steps (0, 1) or (1, 0), never rising above the
line y = x, we have four cases to obtain super-Catalan numbers.

(1) Color each peak black or white except the first one;

(2) Color each valley black or white;

(3) Color each double (1, 0) steps black or white;

(4) Color each double (0, 1) steps black or white;

(5) Color each peak with height greater than 1 black or white.

Hint. There is an obvious bijection between the corresponding structures in (i) and (h).

(j) For Dyck paths (as defined in (h)) from (0, 0) to (2n+2, 0) such that any maximal sequence
of consecutive steps (1,−1) ending on the axis has odd length, color each valley black or
white if the (1,−1) steps in the valley is not following the first (1, 1) step.
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Hint. There is a bijection between (h2) and (j). In the bijection, we need to consider the
subpath ending with the rightmost maximal sequence of consecutive steps (1,−1) ending
on the axis has even length. If it is not empty, add a (1, 1) at the beginning and a (1,−1)
at the end of this subpath, otherwise, add a peak at the beginning. Then we can get a
Dyck path satisfying the condition in (j) and each valley in (h) corresponds to a valley not
followed by the first (1, 1) steps in (j), and furthermore, we get a bijection by restricting
corresponding valley the same color.

(k) For Dyck paths (as defined in (h)) from (0, 0) to (2n + 2, 0) with no peaks at height two,
color the peaks at height more than 2 black or white.

Hint. Let A(x) (resp. B(x)) be the generating function of Dyck paths with no peak at
level two (resp. no peak at level one) and each peak at level greater than 1 colored black
or white, then A(x) = 1 + xA(x) + x(B(x) − 1)A(x) and B(x) = 1 + xB(x)(C(x) − 1),
where C(x) is the generating function of Dyck path with each peak colored black or white.
Therefore, C(x) = 1 + 2xC(x) + x(C(x)− 1)C(x).

(l) For (unordered) pairs of lattice paths with n + 1 steps each, starting at (0, 0), using steps
(1, 0) or (0, 1), ending at the same point, and only intersecting at the beginning and end,
color each (0, 1) steps black or white except the first one for the lattice path below. Another
way, each column of the Zebra (figure) can be colored black and white sucth that the first
colored black.

Hint. see math.boisestate.edu/ sulanke/paper1/PergolaSulanke/node3.html.

(m) For (unordered) pairs of lattice paths with n− 1 steps each, starting at (0, 0), using steps
(1, 0) or (0, 1), ending at the same point, such that one path never rises above the other
path, color each (1, 0) step on the lattice path below black or white.
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Hint. Regarding a path as a sequence of steps, remove the first and last steps from the
two paths in (l). This variation was suggested by L. W. Shapiro (see [34, solution for
(m)]).

(n) For n nonintersecting chords joining 2n points which are labelled from 1 to 2n clockwise
on the circumference of a circle, color the chords (i, i + 1) from i = 1 to i = 2n− 1 black
or white except the first one.
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5 4

36

1 2

5 4

36

1 2

5 4

36

1 2

5 4

36

1 2

5 4

36
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5 4
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5 4
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5 4

36

1 2

5 4

Hint. Starting clockwise from 1, at each vertex draw an up step (1,1) if encountering
a chord for the first time and a down step (1,-1) otherwise. This gives a bijection with
(h)(1)(see [34, solution for (n)]). Have each chord (i,i+1) the same color as its correspond-
ing peak.

(o) Ways of connecting 2n points in the plane lying on a horizontal line by n nonintersecting
arcs, each arc connecting two of the points and lying above the points, and the edges
(i, i + 1) not the first one being colored black or white where 1 6 i 6 n− 1.

Hint. Cut the circle in (n) between 1 and 6 and “straighten out” (see [34, solution for
(o)]).

(o’) Ordered trees with n edges such that the first leaf when we transfer the tree in pre-order
is colored black and all other leaves are colored black or white.

Hint. An easy involution on plane trees is given in [18], by which we can get (o’) from
(e).

(p) Ways of drawing in the plane n+1 points lying on a horizontal line L and n arcs connecting
them such that (1) the arcs do not pass below L, (2) the graph thus formed is a tree, (3)
no two arcs intersect in their interiors (i.e., the arcs are noncrossing), (4) at every vertex,
all the arcs exit in the same direction (left or right), and (5) each end point not the first
one is colored black or white.
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Hint. This is direct from (o’).

(q) Ways of drawing in the plane n+1 points lying on a horizontal line L and n arcs connecting
them such that (1) the arcs do not pass below L, (2) the graph thus formed is a tree, (3)
no arc (including its endpoints) lies strictly below another arc, (4) at every vertex, all the
arcs exit in the same direction (left or right), and (5) for each vertex, the edges from it on
its right (but not the bottom) are colored black or white.

Hint. For a vertex v, assume there are rv neighbors on its right. Considering the vertices
from left to right, we can get a Dyck path by drawing rv up steps followed by a down steps
in order. This is a bijection with (h3) (see to [34, solution for (q)]).

(r) Sequences of n 1’s and n −1’s such that (1) every partial sum is nonnegative and (2) each
string 11 can be colored black or white (with −1 denoted simply as - below).

111--- 111--- 111--- 111--- 11-1-- 11-1-- 11--1- 11--1- 1-11-- 1-11-- 1-1-1-

Hint. There is an easy bijection between (h3) and (r) by considering 1 to be an up step
and -1 to be a down step.

(s) Sequences 1 6 a1 6 · · · 6 an of integers satisfying ai 6 i and each ai with ai > ai−1(i > 2)
can be colored black or white.

111 112 112 113 113 122 122 123 123 123 123

Hint. Consider a lattice path P of the type (i)(ii) in (h). Let ai− 1 be the area above the
x-axis between x = i−1 and x = i, and below P , from which ai with ai > ai−1 corresponds
to a valley in P . This sets up a bijection (see [34, solution for (s)]).

(t) Sequences 0 = a0 < a1 < a2 < · · · < an−1 of integers satisfying 1 6 ai 6 2i, 1 ≤ i ≤ n− 1,
and each ai with ai > ai−1 + 1 can be colored black or white.

012 013 013 014 014 023 023 024 024 024 024

Hint. Subtract i− 1 from ai for i ≥ 1 and append a 0 at the beginning to get a bijection
with (s) (see [34, solution for (t)]), in which we have the corresponding statistics the same
color.

(u) Sequences a1, a2, · · · , an of integers such that (1) a1 = 0, (2) 0 6 ai+1 6 ai + 1, and (3)
each ai with ai > ai−1 can be colored black or white.

000 001 001 010 010 011 011 012 012 012 012

Hint. Let bi = ai − ai+1 + 1. Replace ai with one 1 followed by bi -1’s for 1 ≤ i ≤ n(with
an+1 = 0) to get (r) (see [34, solution for (u)]), where each string 11 in (r) corresponds to
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a ai with ai > ai−1 in (u). We can also get the conclusion from (xxx). In the tree T of
(xxx), label the root by 0 and its three children by 0,1 and 1. Then for vertex labelled by
i, it has i + 3 children and label them by 0, 1, 2, · · · , i, i + 1, i + 1. Then a saturated chain
from the root to a vertex at level n− 1 is thus labelled by a sequence (a1, a2, · · · , an) and
the occurrence number of a sequence (a1, a2, · · · , an) is 2j , where j is its ascent number.

(v) Sequences of a1, a2, · · · , an−1 of integers such that (1) ai 6 1, (2) all partial sums are
nonnegative, and (3) each ai = 1 can be colored black or white.

00 01 01 1− 1 1− 1 10 10 11 11 11 11

Hint. Take the first differences of the sequence in (u), and each 1 corresponds to an ai

with ai > ai−1 (see [34, solution for (v)]).

(w) Sequences a1, a2, · · · , an of integers such that (1) ai > −1, (2) all partial sums are non-
negative and a1 + a2 + · · ·+ an = 0, and (3) each −1 can be colored black or white.

000 01-1 01-1 10-1 10-1 1-10 1-10 2-1-1 2-1-1 2-1-1 2-1-1

Hint. Do a depth-first search through a leaves-colored tree with n + 1 vertices as in (e)
from right to left. When a vertex is encountered for the first time, record one less than its
number of successors, except that the leftmost leaf is ignored, and color each −1 the same
color as its corresponding leaf. This gives a bijection with (e) (see [34, solution for (w)]).

(x) Sequences a1, a2, · · · , an of integers such that (1) 0 6 ai 6 n− i, (2) if i < j, ai > 0, aj > 0
and ai+1 = ai+2 = · · · = aj−1 = 0 then j − i > ai − aj ,and

(3) each nonzero element can be colored black or white.

000 010 010 100 100 200 200 110 110 110 110

(3’) each zero element not the first can be colored black or white.

000 000 000 000 010 010100 100 200 200 110

Hint. Proof of (3). For each 321-avoiding permutation π1π2 · · ·πn in (ee), define a se-
quence a1a2 · · · an with ai is the number of element πj such that j > i and πj < πi

(see [34, solution for (x)]). Then we get sequences in (x). From this bijection, each exce-
dence in the permutation of (ee) corresponds to a nonzero element in the sequence of (x).
So we get the desired result.

Proof of (3’). Let w = a1a2 . . . an be any sequence satisfies (1)-(2), then there exists
s minimal such that w′ = a1 . . . as−1 is a sequence satisfies (1)-(2), as = 0 and w′′ =
as+1 . . . an is a sequence satisfies (1)-(2). In such a case w′ is said minimal sequence. Let
A(x) be the generating function for the number of such sequences of length n. Then
A(x) = 1

1−xA(x) . This leads to A(x) is the generating function for the Catalan numbers,
as required.
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(y) Sequences a1, a2, · · · , an of integers such that (1) i 6 ai 6 n, (2) aj 6 ai if i 6 j 6 ai and
(3) each ai with ai > ai+1 can be colored black or white.

123 133 133 223 223 323 323 333 333 333 333

Hint. If we replace ai by n − ai and color each ai with ai ≤ ai+1 black or white, then
consider each ai is just the number of element πj with j > i and πj < πi in 213-avoiding
permutations. We get a bijection between (y) and 213-avoiding permutations with each
ascent colored black or white. Such colored permutations are in obvious bijection with the
colored 312-avoiding permutations of (ee). Then we get (y).

(z) Sequences a1, a2, · · · , an of integers such that (1) 1 6 ai 6 i, (2) ai−r 6 j − r for all
1 6 r 6 j − 1 if ai = j and (3) each ai = 1 except the last one (or the first one) can be
colored black or white.

111 111 111 111 112 112 113 113 121 121 123

Hint. Given a sequence a1, · · · , an of type being counted, define recursively a binary tree
T (a1, · · · , an) as follows. Set T (∅) = ∅. If n > 0, then let the left subtree of the root of
T (a1, · · · , an) be T (a1, · · · , an−an) and the right subtree of the root be T (an−an+1, an−an+2,
· · · , an−1). This sets up a bijection with (c) (see [34, solution for (z)]), and we can see
each 1 except the last one corresponds to a left child of some vertex. Having them the
same color, we obtain (z).

(aa) For equivalence classes B of words in the alphabet [n− 1] such that any three consecutive
letters of any word in B are distinct, under the equivalence relation uijv ∼ ujiv for any
words u, v and any i, j ∈ [n− 1] satisfying |i− j| > 2, color the second letter of each two
consecutive letters xy with x < y (assume a 0 at the first position in the word is omitted
for nonempty word) black or white.

∅ 1 1 2 2 12 12 12 12 21 21

Hint. Use the bijection with (ee) which appeared in [34, Solution for (aa)], we can get
the desired the result. We color the second letter y of each two consecutive letters xy with
x < y (assume a 0 at the first position in the word is omitted for nonempty word) black
or white just like that we color each excedance in (ee).

(bb) For the Young diagram of partitions λ = (λ1, · · · , λn−1) with λ1 ≤ n− 1 (so the diagram
of λ is contained in an (n − 1) × (n − 1) square), such that if λ′ = (λ′1, λ

′
2, · · · ) denotes

the conjugate partition to λ then λ′i ≥ λi whenever λi ≥ i, color each row of the Durfee
squares black or white and other rows white.

∅ ¤ ¥ ¤¤ ¤¥ ¤¤¤ ¤¥¤ ¤¤¤¤ ¥¤¥¤ ¤¥¥¤ ¥¥¥¥

Hint. There is a bijection between (bb) and (m)(see [34, solution for (bb)]), which maps
each row in the Durfee square of a diagram in (bb) to a (0,1) step on the path above in
its corresponding lattice paths. As (1,0) steps and (0,1) steps have the same distribution
in (m), we get the solution easily.
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(cc) Permutations a1a2 · · · a2n of the multiset {12, 22, · · · , n2} such that: (i) the first occur-
rences of 1, 2, · · · , n appear in increasing order, and (ii) there is no subsequence of the
form αβαβ with each pair of consecutive letters of pattern αα can be colored black or
white except the first one.

112233 112233 112233 112233 112332 112332 122331 122331 123321 122133 122133

Hint. Obviously there is a bijection between such sequences and nonintersecting arcs of
(o). If we remove the first occurrence of each number, what remains is a permutation w of
[n] that uniquely determines the original sequence. These permutations are precisely the
reverse ones in (ff).

(dd) Permutations a1a2 · · · a2n of the set [2n] such that: (i) 2, 4, · · · , 2n appear in increasing
order, and (ii) 2i− 1 appears before 2i, 1 ≤ i ≤ n, with the latter of each two consecutive
even numbers can be colored black or white.

123456 123546 123546 132456 132456 132546 132546 135246 135246 135246 135246

Hint. Replace each odd number by an up step and even number by a down step to get a
bijection with Dyck path which corresponds each two consecutive even number to double
down steps (see [34, solution for (dd)]). Since double up steps in Dyck path and double
down steps have the same distribution, we get the it by coloring each two consecutive even
number from (h).

(ee) 321-avoiding permutations of [n] with each letter ai > i colored black or white, and all
others are colored white.

123 213 213 132 132 312 312 231 231 231 231

Hint. See [14], the number of 321-avoiding permutations with given number excedances
(i.e., ai > i) are counted by Narayana numbers, then we get the desired result.

(ff) 312-avoiding permutations with each ai, 1 ≤ i ≤ n− 1, satisfying ai > ai+1 colored black
or white.

123 132 132 213 213 231 231 321 321 321 321

Hint. See the notes in (cc), where we have given a proof of this result.

(gg) Permutations w of [2n] with n cycles of length two, such that the product (1, 2, · · · , 2n) ·w
has n + 1 cycles, with each cycle (x, x + 1) except the first can be colored black or white.

(1, 2)(3, 4)(5, 6) (1, 2)(3, 6)(4, 5) (1, 2)(3,6)(4, 5) (1, 4)(2, 3)(5, 6) (1,4)(2, 3)(5, 6)
(1, 6)(2, 3)(4, 5) (1,6)(2, 3)(4, 5) (1, 6)(2, 5)(3, 4) (1,6)(2, 5)(3, 4) (1, 6)(2,5)(3, 4)
(1,6)(2,5)(3, 4)

Hint. The involutions here are the same as those in (kk)(see [34, solution for (gg)]).

(hh) (open)
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Pairs (u, v) of permutations of [n] such that u and v have a total of n + 1 cycles and
uv = (1, 2, · · · , n), with each cycle of the permutation u colored by black or white except
the first one.

(1)(2)(3) · (1, 2, 3) (1)(2)(3) · (1, 2, 3) (1)(2)(3) · (1, 2, 3) (1)(2)(3) · (1, 2, 3)
(1)(2, 3) · (1, 2)(3) (1)(2,3) · (1, 2)(3) (12)(3) · (13)(2) (12)(3) · (13)(2)
(13)(2) · (1)(23) (13)(2) · (1)(23) (123) · (1)(2)(3)

(ii) Permutations a1a2 · · · an of [n] that can be put in increasing order on a single stack,
defined recursively as follows: If ∅ is the empty sequence, then let S(∅) = ∅. If w = unv is a
sequence of distinct integers with largest term n, then S(w) = S(u)S(v)n. A stack-sortable
permutation w is one for which S(w) = w. (231-avoiding permutations) After that, each
element who is ai of an consecutive increasing subsequence aiai+1 can be colored black or
white.

123 123 123 123 132 132 213 213 312 312 321

Hint. See [34, solution for (ii)] for the bijection with (r), from which we get a bijection
between (ii) and Dyck path. Draw an up step when ai is put on the stack, and draw a down
step when ai is taken off, then we know each ai with ai < ai+1 in permutation corresponds
to a valley in Dyck path. We can also get (ii) directly from (ff) as the permutations in (ii)
are just 231-avoiding permutations.

(jj) For Permutations a1a2 · · · an of [n] that can be put in increasing order on two parallel
queues, (321-avoiding permutations) with each letter ai > i colored black or white, and
all others colored white.

123 213 213 132 132 312 312 231 231 231 231

Hint. Same set as (ee).

(kk) Fixed-point free involutions w of [2n] such that if i < j < k < l and w(i) = k, then w(j) 6= l
(in other words, 3412-avoiding fixed-point free involutions), color each cycle (xx + 1) not
the first by black and white.

(12)(34)(56) (12)(34)(56) (12)(34)(56) (12)(34)(56) (12)(36)(45) (12)(36)(45)
(14)(23)(56) (14)(23)(56) (16)(23)(45) (16)(23)(45) (16)(25)(34)

Hint. Obviously there is a bijection with matchings of (o).

(ll) (Open)

Cycles of length 2n + 1 in S2n+1 with descent set {n} is enumerated by Catalan number
(see Theorem 9.4 in [19]). Then whether we can get a corresponding structure counted by
super-Catalan number by coloring each two letters xy at the right position of n such that
y − x > 1 black or white, such as

2371456 2371456 2571346 2571346 2571346 2571346
3471256 3471256 3671245 3671245 5671234

for n = 3, if “yes”, is there a bijective proof?

12



(mm) Baxter permutations of [2n] (or of [2n + 1]) such that (1) they are reverse alternating and
whose inverses are reverse alternating, and (2) each πi, 2 ≤ i ≤ 2n− 1, with πi > πi+1 >
πi−1 in the permutation π1π2 · · ·π2n can be colored black or white (or similarly each πi,
3 ≤ i ≤ 2n, with πi > πi−1 > πi+1 in π1π2 · · ·π2n+1).

132546 132546 132546 132546 153426 153426
354612 354612 561324 561324 563412

or
1325476 1327564 1327564 1534276 1534276 1735462

1735462 1756342 1756342 1756342 1756342

Hint. This result is due to the bijection given by O. Guibert and S. Linusson [21]. From
their bijection, we can see each Baxter permutation corresponds to a complete binary tree
and each πi satisfying the condition (2) corresponds to a left internal vertex in complete
binary tree, i.e., which induces a bijection between (mm) and (b’).

(nn) Permutations w of [n] such that if w has ` inversions then for all pairs of sequences
(a1, a2, . . . , a`), (b1, b2, . . . , b`) ∈ [n − 1]` satisfying w = sa1sa2 . . . sa`

= sb1sb2 . . . sb` where
sj is the adjacent transposition (j, j + 1), we have that the multisets {a1, . . . , a`} and
{b1, . . . , b`}, and then color each letter πi > i black or white, and all others white.

123 213 213 132 132 312 312 231 231 231 231

Hint. Same set as (ee).

(oo) 132-avoiding permutations of [n] with each ai > i colored black or white, and all others
colored white.

123 213 213 231 231 231 231 312 312 321 321

Hint. See [14], the number of 132-avoiding permutations with given number excedances
(i.e., ai > i) are counted by Narayana numbers, then we get the desired result. Also the
132-avoiding permutations with given number descents (i.e., ai < i) are also counted by
Narayana numbers.

(pp) Noncrossing partitions of [n], i.e., partitions π = {B1, · · · , Bk} ∈ Πn such that (1) if
a < b < c < d and a, c ∈ Bi and b, d ∈ Bj , then i = j, and (2) each edge can be colored
black or white.

Hint. There is a bijection θ between (pp) and small-binary trees. For a noncrossing
partition P of [n], traverse each element from left to right, for the element i encountered,
we have two cases:

Case 1: if 1 is an initiated vertex of an edge e = (1, j), set the partition covered by
e is P ′ and P ′′ is the partition got from P by omitting P ′ and the element 1, then
θ(P ) = LrR, where L = θ(P ′′) and R = θ(P ′) (see the left side of Figure 1);
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Case 2: if 1 is an isolated vertex and P ′ is the partition got from P by omitting 1,
then θ(P ) = rR, where R = θ(P ′) (see the right side of Figure 1).

Then we can see the end vertex of each edge in partition corresponds to a left child in the
tree, color this left child the same color as that of the edge. From the rule, we can see it
is really a one to one correspondence.

¥ ¥¥
P ′ P ′′

-¾
θP ′θP ′′ ¥¥

P ′
-¾

θP ′

Figure 1: bijection θ.

(qq) Partitions {B1, · · · , Bk} of [n] such that (1) if the numbers 1, 2, · · · , n are arranged in
order around a circle, then the convex hulls of the blocks B1, · · · , Bk are pairwise disjoint,
and (2) each part except the first part (the part containing the first node) can be colored
black or white and the first part is colored black.

Hint. If we number the nodes in clockwise order, then we can give a bijection between them
and (pp) in the following way: (1) two nodes are connected by an edge are corresponding
to that two isolated nodes in (pp); (2) two adjacent nodes (i, j) without an edge between
them are corresponding to an arc between (i, j) in (pp). Then color each part by the same
way.

(rr) Noncrossing Murasaki diagrams with n vertical lines and each connected line can be colored
black or white and the first one colored black.

Hint. Obviously there is a bijection between such diagrams and partitions in (qq). Each
vertical line is corresponding to a node of (qq).

(ss) Noncrossing partitions of some set [k] with n + 1 blocks, such that (1) any two elements
of the same block differ by at least three, and (2) each edge (i, j) colored black and white.

1-2-3-4 14-2-3-5 14-2-3-5 15-2-3-4 15-2-3-4 25-1-3-4
25-1-3-4 16-25-3-4 16-25-3-4 16-25-3-4 16-25-3-4

Hint. Let g(x) be the generating function for the number of such noncorssing partitions
with n blocks. Then, if we consider the number letters in the first block then we arrive at

g(x) = 1 + xg(x) + x
∑

j≥1

(2(g(x)− 1− x))jg(x) = 1 +
xg(x)

1− 2(g(x)− 1− x)
.

Hence, g(x) = 1 + x1+x−√x2−6x+1
4x , as required.

14



(tt) Noncrossing partitions of [2n + 1] into n + 1 blocks, such that (1) no block contains two
consecutive integers, and (2) each block at least two numbers except the first can be colored
black or white and the first one is colored white.

137-46-2-5 137-46-2-5 1357-2-4-6 157-24-3-6 157-24-3-6 17-246-3-5
17-246-3-5 17-26-35-4 17-26-35-4 17-26-35-4 17-26-35-4

Hint. Label the vertices 1, 2, · · · , 2n + 1 of a tree in (b’) in preorder. Define i and j to be
in the same block of π ∈ Π2n+1 if j is a right child of i(see [34, solution for (tt)]). Then we
can see each block with at least two numbers corresponds to a left internal vertex except
the block containing 1 corresponds to the root, then we obtain a bijection by requiring the
corresponding statistics the same color.

(uu) Nonnesting partitions of [n], i.e., partitions of [n] such that (1) if a, e appear in a block B
and b, d appear in a different block B′ where a < b < d < e, then there is ac ∈ B satisfying
b < c < d, and (2) each edge can be colored black or white.

Hint. For a given noncrossing partition, consider its standard linear representation. Omit-
ting the singleton blocks, we can get a noncrossing matching from which we can get a
nonnesting partition by bijection(see [35, Solution for (g4)]). Then have the singleton block
into the nonnesting partition, which have the same label as before. Since the noncrossing
partitions on [n] with m edges has the same distribution as the nonnesting partitions on
[n] with m edges, (uu) counted by super-Catalan number is obvious.

(vv) Young diagrams that fit in the shape (n−1, n−2, · · · , 1) and each horizontal step is colored
black or white.

∅

Hint. For a given Young diagram of shape (λ1, λ2, · · · , λn−1) which fits in the shape
(n− 1, n− 2, · · · , 1), we can get a Dyck Path of length 2n starts with an up step followed
by λn−1 down steps, then has, for each 2 ≤ j ≤ n−1, one up step followed by λn−i−λn−i+1

down steps, and finally ends with an up steps followed by n− λ1 down steps. This gives a
bijection between the Young diagram and Dyck Path, from which we can see the distinct
parts in the corresponding partition of the conjugate Young diagram corresponds to the
peaks in Dyck path except the first one. Therefore (vv) holds by having these two statistics
the same color from (h) (the statistics peaks and double up steps has the same distribution
in (vv)).

(ww) Standard Young tableaux of shape (n, n) (or equivalently, of shape (n, n − 1)), and each
segment (i, i+1) in the first row can be colored black or white (the same for that of shape
(n, n− 1)).

123 123 123 123 124 124 125 125 134 134 135
456 456 456 456 356 356 346 346 256 256 246
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or

123 123 123 123 124 124 125 125 134 134 135
45 45 45 45 35 35 34 34 25 25 24

Hint. We can get (ww) directly by applying a bijection between Dyck path and standard
Young tableaux (see [34, Solution for (ww)]). From the bijection, set the ith step (1, 1)
if i is in the first row and (1,−1) if i is in the second row for a (n, n) standard Young
tableaux, then we get a Dyck path. It is clear double (1, 1) steps in Dyck path corresponds
to a segment (i, i + 1) in the first row of standard Young tableaux. So we can have them
the same color.

(xx) For pairs (P, Q) of standard Young tableaux of the same shape, each with n squares and
at most two rows, where each number i of the first row of P or number j of the second
row of Q can be colored black and white if i− 1 appears in the second row of P or 2n− j
appears in the second row of P or j + 1 appears in the first row of Q.

123,123 12,12 12,12 12,13 12,13 13,12 13,12 13,13 13,13 13,13 13,13
3 3 3 3 3 2 3 2 2 3 2 3 2 2 2 2 2 2 2 2

Hint. See solution of [34, Exercise 6.19(ff)] for the bijection between (ww) and (xx)
without color for Catalan number. From the bijection, we can see each number i of the
first row with i−1 in the second row of P and number j of the second row of Q with 2n−j
in the second row of P or j + 1 in the first row of Q corresponds to number i of the first
row in (ww) with i− 1 in the second row. From the bijection between the Young tableaux
and Dyck path in solution of (ww), we can see the number i of the first row with i− 1 in
the second row has the same distribution with (i, i + 1) segment in the Young tableaux,
then we get (xx) easily from (ww).

(yy) Column-strict plane partitions of shape (n− 1, n− 2, · · · , · · · , 1), such that (1) each entry
in the ith row is equal to n − i or n − i + 1, and (2) row i can be colored black or white
if the number of occurrences of the letter n− i + 1 in row i is greater than the number of
occurrence of the letter n− i in row i + 1.

33 33 33 33 33 33 32 32 32 32 22
2 2 2 2 1 1 2 2 1 1 1

Hint. Use the bijection with (s) given by Stanley [34, Solution for (yy)]: Let bi be
the number of entries in row i that are equal to n − i + 1 (so bn = 0). The sequences
bn + 1, bn−1 + 1, · · · , b1 + 1 obtained in this way are in bijection with (s). Then color the
corresponding row as that color the letter in (s).

(zz) (how to color is unsolved)

Convex subsets S of the poset Z× Z, up to translation by a diagonal vector (m,m), such
that if (i, j) ∈ S then 0 < i− j < n.

∅ {(1, 0)} {(2, 0)} {(1, 0), (2, 0)} {(2, 0), (2, 1)}

Hint. (zz) is (zz) in Stanley’s homepage.
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(aaa) Linear extensions of the poset 2× n with each element ai, 1 ≤ i ≤ 2n − 1, satisfying
ai > ai+1 colored by black or white.

1

4
6

5

2 3

123456 123546 123546 132456 132456 132546

132546 132546 132546 135246 135246

Hint. For each linear extension, consider each number from left to right, and draw an up
step for each odd number while a down step for each even number. Since each ai with
ai > ai+1 corresponds to an up step of a peak at level greater than 1, color it the same
color as the peak, then we get a bijection between (aaa) and (h5).

(bbb) Order ideals of Int(n−1), the poset of intervals of the chain n−1, then color the maximal
element of each poset black or white, where x is maximal if there is no v in the poset such
that x < v.

a b

c

Int(2)

∅ a a b b ab ab ab ab abc abc

Hint. According to [34, Solution for (bbb)] there is an obvious bijection with order ideals
I of Int(n) that contain every one-element interval of n where each maximal element of
I colored black and white. But the upper boundary of the Hasse diagram of I looks like
the Dyck paths of (h) where each peak not at high one colored black and white. So the
result follows from (h)(5).

(ccc) (how to color is unsolved)

Order ideals of the poset An obtained from the poset (n − 1) × (n − 1) by adding the
relations (i, j) < (j, i) if i > j.

∅ {11} {11, 21} {11, 21, 12} {11, 21, 12, 22}

Hint.(ccc) is (ccc) is Stanley’s homepage.

(ddd) (how to color is unsolved)

Nonisomorphic n-element posets with no induced subposet isomorphic to 2 + 2 or 3 + 1.

Hint.(ddd) is (ddd) is Stanley’s homepage.

(eee) (how to color is unsolved)

Nonisomorphic (n + 1)-element posets that are a union of two chains and that are not a
(nontrivial) ordinal sum, rooted at a minimal element.
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Hint.(eee) is (eee) is Stanley’s homepage.

(fff) Relations R on [n] that are reflexive (iRi), symmetric (iRj ⇒ jRi), and such that if
1 ≤ i < j < k ≤ n and iRk, then iRj and jRk (in the example below we write ij for the
pair (i, j), and we omit the pairs ii). Then color the pair ij black or white such that i > j,
ij have the biggest differences for i, pairs (i− 1, j), · · · , jj are also in this relation set, and
no pairs jk such that j > k appear in this set (see the Hint).

∅ {12, 21} {12,21} {23, 32} {23,32} {12, 21, 23, 32} {12,21, 23, 32}
{12, 21, 13, 31, 23, 32} {12,21, 13, 31, 23, 32} {12, 21, 13,31, 23, 32} {12,21, 13,31, 23, 32}

Hint. Without considering the colorings, there is a bijection between present item and
(s). Let ai denote the smallest element j such that iRj and first adding pairs ii on each
relation set. Then we get the bijection obviously. We already know there is a bijection
between (s) and Dyck paths. So we obtain a bijection between present item and Dyck
paths. The colorings of the paris are just the colorings of subsequence ii of (s) or double
ascents on Dyck paths.

(ggg) After joining some of the vertices of a convex (n − 1)-gon by disjoint line segments, and
circling a subset of the remaining vertices, color each edge and each circle black or white
while others white.

Hint. If f(x) is the generating function for the number of such figures on n vertices, then
f(x) = 1 + 3xf(x) + 2x2f2(x), which gives f(x) = 1−3x−√1−6x+x2

4x2 . Hence, the number
of such figures on n− 1 vertices equals the n-th super-Catalan number. In fact, from the
expression of f(x), we can see it is the same as that of (2, 3)-Motzkin path. So there is a
bijection between (ggg) and (yyy). Initiating at a fixed vertex of given (n−1)-gon, draw a
horizontal steps for each isolated vertex, and draw a up step for encountering an edge the
first time while a down step the second time. There is three possibilities for each isolated
vertex, i.e., uncircled, circled by white or black circle. And for each initiating vertex of an
edge, there is two possibilities corresponding to the edge is black or white. Therefore, we
can get the bijection obviously.

(hhh) Ways to stack black and white coins in the plane such that the bottom row consisting of n
consecutive black coins and there is no adjacent coins in the same row (except the bottom
one) being the same color.

Hint. See [18, solution for (k)].
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(iii) For n-tuples (a1, a2, · · · , an) of integers ai ≥ 2 such that in the sequence 1a1a2 · · · an1, each
ai divides the sum of its two neighbors, with each aj , 1 ≤ j ≤ n− 1, satisfying aj > aj+1

colored black or white.

14321 14321 14321 14321 13521 13521 13231 13231 12531 12531 12341

Hint. For a sequence in (iii), find the rightmost number ai with ai = ai−1 + ai+1 for
1 ≤ i ≤ n and set a0 = 1, an+1 = 1. Insert a mark before ai−1. Now consider the same
sequence by omitting this ai, and do the above process recursively. Then we get a sequence
with n marks. By replacing the mark and each number by 1 and -1 respectively, we get
a bijection between (iii) and (r) without color and given by J. H. van Lint [25]. From the
bijection, we can see each descent in (iii) corresponds to two consecutive marks (i.e., 11).
Therefore, (iii) is desired from (i).

(jjj) (Unproved)

n-element multisets on Z/(n + 1)Z whose elements sum to 0 with each x followed by
another x immediately colored black or white.

000 000 000 000 013 022 022 112 112 233 233

Hint.(jjj) is (jjj) in Stanley’s homepage.

(kkk) (Unproved)

n-elements subsets S of N×N such that if (i, j) ∈ S then i ≥ j and there is a lattice path
from (0, 0) to (i, j) with steps (0, 1), (1, 0), and (1, 1) that lies entirely inside S, with each
element (x, y), satisfying (x− 1, y − 1) ∈ S, colored black or white.

{(0, 0), (1, 0), (2, 0)} {(0, 0), (1, 0), (1, 1)} {(0, 0), (1, 0), (1,1)} {(0, 0), (1, 0), (2, 1)}
{(0, 0), (1, 0), (2,1)} {(0, 0), (1, 1), (2, 1)} {(0, 0), (1,1), (2, 1)} {(0, 0), (1, 1), (2, 2)}

{(0, 0), (1,1), (2, 2)} {(0, 0), (1, 1), (2,2)} {(0, 0), (1,1), (2,2)}

Hint.(kkk) is (kkk) in Stanley’s homepage.

(lll) Regions into which the cone x1 > x2 > · · · > xn in Rn is divided by the hyperplanes
xi − xj = 1, for 1 6 i < j 6 n (the diagram below shows the situation for n = 3,
intersected with the hyperplane x1 + x2 + x3 = 0), then we give a labelling to each region
by 1, · · · , n by the method in [1]. Obviously the labelling is a partition. Then we can color
each edge of the matching for each region black or white.

x1 = x2

x1-x2 = 1

x2-x3 = 1

x2 = x3

6

x1-x3 = 1

123 121 122

113 111
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Hint. We use the bijection used in [1] to give the methods to color the regions of hyper-
planes.

(mmm) For positive integer sequences a1, a2, · · · , an+2 for which there exists an integer array (nec-
essarily with n + 1 row)

1 1 1 · · · 1 1 1 · · · 1 1
a1 a2 a3 · · · an+2 a1 a2 · · · an−1

b1 b2 b3 · · · bn+2 b1 · · · bn−2
...

r1 r2 r3 · · · rn+2 r1

1 1 1 · · · 1

such that any four neighboring entries in the configuration sr
ut satisfy st = ru + 1, color

each minimal element in the sequence black or white and others white, where we define the
minimal element as below. For a Convex (n+2)-gon P with vertices 1, 2, · · · , n+2 labelled
in clockwise order. Let T be a triangulation of such polygon, and let ai be the number
of triangles incident to i, which gives a bijection with (a). From the color process in (a),
we get a sequence of graphs initiating with a (n + 2)-gon and ending with a triangular.
Considering vertex i in the sequence, if there exists a graph except the last one in the
sequence such that i is on the minimal edge(defined in (a)) as a minimum number and it
is not on any diagonal, then ai is called the minimum element in (mmm).

12213 12213 12213 12213 22131 22131 21312 21312 13122 13122 31221

Hint. From the narration of (mmm), we can know the objects enumerated by super-
Catalan number obviously from (a). The coloring in (mmm) is somehow difficult, so it
is a challenge to find out a direct coloring method to get the structures enumerated by
super-Catalan numbers.

(nnn) (how to color is unsolved)

n-tuples (a1, · · · , an) of positive integers such that the tridiagonal matrix



a1 1 0 0 · · · 0 0
1 a2 1 0 · · · 0 0
0 1 a3 1 · · · 0 0
0 0 0 0 · · · an−1 1

...
0 0 0 0 · · · 1 an




is positive definite with determinant one

131 122 221 213 312

Hint. (nnn) is (nnn) in Stanley’s homepage.
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(ooo) For the plane trees with n− 1 internal nodes (including the root), each having degree 1 or
2, such that nodes of degree 1 occur only on the rightmost path, each internal vertex of
degree 2 with its left child vertex is not internal can be colored black or white while other
internal vertices white.

Hint. Traverse the tree in preorder. When going down an edge (i.e., away from the root)
record 1 if this edge goes to the left or straight down, and record -1 if this edge goes to the
right. Then each vertex of degree 2 corresponds to a 1 followed by a -1 immediately, we
can get a bijection by requiring the corresponding statistic the same color(see [33, solution
for (ooo)]).

(ppp) (how to color is unsolved)

Plane trees with n vertices, such that going from left to right all subtrees of the root first
have an even number of vertices and then an odd number of vertices, with those subtrees
with an odd number of vertices colored either red or blue.

Hint. This (ppp) corresponds to (ppp) in Stanley’s homepage.

(qqq) Plane trees with n vertices whose leaves at height 1 are colored by red or blue or green
while the leaves at height greater than 1 are colored by blue or green.

b g
r r r b r g b r g r b b g b b g g g

Hint. See [18] for the enumeration of such leaves-colored trees.

(rrr) Left factors L of Dyck paths such that L has n−1 up steps with each peak can be colored
black or white.

Hint. Add one further up step and then down steps until reaching (2n,0). This gives a
bijection with (h1)(the peaks except the first one and the peaks except the last one have
the same distribution)(see [33, solution for (sss)]).

(sss) Dyck paths of length 2n + 2 whose first downstep is followed by another downstep with
each valley (or peak except the first one) colored by black or white.
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Hint. Deleting the first peak gives a bijection with (h2)(see [33, solution for (ttt)]).

(ttt) For Dyck paths with n−1 peaks and without three consecutive up steps or three consecutive
down steps, color each double (1, 1) steps (or double (1,−1) steps) black or white.

Hint. In the (2,3)-Motzkin paths of (yyy), replace the step (1,1) with the sequence of steps
(1, 1)+ (1, 1)+ (1,−1), the step (1,-1) with the sequence of steps (1, 1)+ (1,−1)+ (1,−1),
the red step (1,0) with (1, 1) + (1,−1), and the other (1,0) step with (1, 1) + (1, 1) +
(1,−1) + (1,−1)(see [33, solution for (uuu)]). Color each double (1,1) steps white if its
corresponding edge in (yyy) is red or green and double (1,1) steps black if its corresponding
edge is blue.

(uuu) (Unproved)

Dyck paths P from (0, 0) to (2n + 2, 0) such that (1) there is no horizontal line segment L
with endpoints (i, j) and (2n + 2− i, j), with i > 0, such that the endpoints lie on P and
no point of L lies above P , (2) all the peaks in the same block (a block of a Dyck path is
a segment of the path with only two endpoints being on x-axis) with height at least 2 can
be colored black and white while others white.

Hint. This (uuu) corresponds to (vvv) in Stanley’s homepage.

(vvv) For the points of the form (m, 0) on all Dyck paths from (0, 0) to (2n− 2, 0), color one of
such points uniquely on a Dyck path with s colors, where s = 2# of valleys of the path+1 for
the last point and s = 2# of valleys of the path for the others (we denote s colors for each
point by {1, 2, · · · , s}).

1 2 1 2 1 2 3 4 1 1 2

Hint. To obtain a bijection with the Dyck paths of (h) add a (1,1) step immediately
following a path point (m,0) and a (1,-1) step at the end of the path(see [33, solution for
(www)]). From this bijection, we can get a path P in (h) with the same number of valleys
as its corresponding path in (vvv) if (m,0) is not the last point on x-axis while P has one
more valley than its corresponding path in (vvv) if (m,0) is the last point. As the valleys
in Dyck Path have the Narayana distribution, we get (vvv).

(www) Dyck paths from (0, 0) to (2n, 0) having peaks at height one, with only one peak can by
colored by 2i colors, where i = # of peaks at height one before the colored peak +# of
peaks with height at least 2.
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1 1 2 1 2 3

4 1 2 1 2

Hint. Denote the generating function for the number of Dyck paths of length 2n with r
peaks at high one and s peaks at high at leats 2 by C(x; p, q). Then, C(x; p, q) satisfies
C(x; p, q) = 1+xpC(x; p, q)+xC(x; p, q)(C(x; q, q)−1). If F (x) is the generating function
for the number of Dyck paths in the question of length 2n, then it is not hard to see that
F (x) = 1 + C(x; 2, 2)− C(x; 1, 2) = 1+x−√1−6x+x2

4x , as required.

(xxx) Vertices of height n of the tree T defined by the property that the root has degree 3, and if
the vertex x has degree k, then the children of x have degrees 3, 4, . . . , k−1, k, k +1, k +1.

Hint. See math.boisestate.edu/∼sulanke/paper1/PergolaSulanke/node3.html.

(yyy) Motzkin paths with the steps (1, 1) can be colored red or blue while the steps (1, 0) can
be colored by red, blue or green, i.e., (2, 3)-Motzkin paths (see [17]).

r b r r r b r g b r b b b g g r g b g g

Hint. (2, 3)-Motzkin paths have been studied in [17,38].

(zzz) Motzkin paths a1, · · · , a2n−2 from (0, 0) to (2n − 2, 0) such that each odd step a2i+1 is
either (1, 0) (straight) or (1, 1) (up), and each even step a2i is either (1, 0) (straight) or
(1,−1) (down), with each step (1,1) can be colored black or white.

Hint. See the bijection between Motzkin paths and noncrossing partitions given in [35,
solution for (d4)]. Then by Coloring the up step in Motzkin path the same color as the
edge initiatin at the vertex corresponding to the up step, we sets up a bijection between
(zzz) and (pp).

(a4) Lattice paths from (0, 0) to (n − 1, n − 1) with steps (0, 1), (1, 0), and (1, 1), never going
below the line y = x, such that the steps (1, 1) only appear on the line y = x, each peak
being colored black or white.
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Hint. We know that such paths are called Schröder paths. Changing each peak to be a
horizontal step, and each horizontal step (1, 1) to be a peak, we get a Schröder path from
(0, 0) to (n− 1, n− 1) without high peaks, which is just as the same as that of (r6).

(b4) Lattice paths of length n−1 from (0, 0) to the x-axis with steps (±1, 0) and (0,±1), never
going below the x-axis, and each right and up steps are colored black or white. (or left
and down, or right and down, or left and up steps.)

(−1, 0) + (−1, 0) (−1, 0) + (1, 0) (−1, 0) + (1,0) (0, 1) + (0,−1) (0,1) + (0,−1)
(1, 0) + (−1, 0) (1,0) + (−1, 0) (1, 0) + (1, 0) (1,0) + (1, 0) (1, 0) + (1,0) (1,0) + (1,0)

Hint. Let A(x) be the generating function of such lattice paths with each right and up
step colored black or white. Then A = 1+3xA+2x2A2, from which we can get the desired
result.

(c4) For the Nonnesting matchings on [2n], i.e., ways of connecting 2n points in the plane lying
on a horizontal line by n arcs, each arc connecting two of the points and lying above the
points, such that no arc is contained entirely below another, color each edge e = (i, j) if
there is exist an edge e′ = (i + 1, k) with j < k.

Hint. For the left end of each arc on a matching, draw a up step and down one for each
right end, we get a bijection between it and Dyck path. Color each double ascent (two
consecutive up steps) black or white, we get the desired result (see (h3)).

(d4) For the ways of connecting 2n points in the plane lying on a horizontal line by n arcs,
each arc connecting two of the points and lying above the points, such that the following
condition holds: for every edge e let n(e) be the number of edges e′ that nest e (i.e., e lies
below e′), and let c(e) be the number of edges e′ that begin to the left of e and that cross
e, then n(e)− c(e) = 0 or 1, color each edge with n(e)− c(e) = 1 black or white.

Hint. In [33] Stanley gave a bijection with (r), where f(i) = d i
2e and (r) is, in fact, a

Dyck path. And then color each high peak black or white.

(e4) Ways of connecting any number of points in the plane lying on a horizontal line by non-
intersecting arcs lying above the points, such that the total number of arcs and isolated
points is n. Then color each arc (i, i + 1) black or white and the other arcs black.
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Hint. Reading the points from left-to-right, replace each isolated point and each point
which is the left endpoint of an arc with 1, and replace each point which is the right
endpoint of an arc with −1. We obtain a bijection with (p4). This is the method used
in [33], then color arcs by the same way of that in (p4).

(f4) Ways of connecting n points in the plane lying on a horizontal line by noncrossing arcs
above the line such that if two arcs share an endpoint p, then p is a left endpoint of both
the arcs. Then color each edge by black or white.

Hint. Label the points 1, 2, · · · , n from left-to-right. Given a noncrossing partition of [n]
as in (pp), draw an arc from the first element of each block to the other elements of that
block yielding a bijection with the current item. We get the same number of arcs as that of
(pp). Color the arcs black or white we get such objects enumerated by the super-Catalan
numbers.

(g4) Ways of connecting n+1 points in the plane lying on a horizontal line by noncrossing arcs
above the line such that no arc connects adjacent points and the right endpoints of the
arcs are all distinct. Then each edge is colored black or white.

Hint. Use the bijection with binary trees mentioned in [33], we get the desired result by
the objects given in [34, Exercise 6.39(d)] which are counted by super-Catalan numbers.

(h4) Lattice paths in the first quadrant with n steps from (0, 0) to (0, 0), where each step
is of the form (±1,±1), or goes from (2k, 0) to (2k, 0) or (2(k + 1), 0), or goes from
(0, 2k) to (0, 2k) or (0, 2(k + 1)), with (1) for the second lattice point, if it is (1, 1), color
it black or white, otherwise, color it black, (2) for the other lattice point (a, b) with
(a′′, b′′) → (a′, b′) → (a, b), color it by 2i colors, where i = χ(a = 1, a′ = 0 or a′′ = a =
a′ + 1) + χ(b = 1, b′ = 0 or b′′ = b = b′ + 1) and χ is the characteristic function of a and b.

(0, 0) → (0, 0) → (0, 0) → (0, 0)
(0, 0) → (0, 0) → (1, 1) → (0, 0)
(0, 0) → (0, 0) → (1, 1) → (0, 0)
(0, 0) → (0, 0) → (1,1) → (0, 0)
(0, 0) → (0, 0) → (1,1) → (0, 0)
(0, 0) → (1, 1) → (0, 0) → (0, 0)
(0, 0) → (1,1) → (0, 0) → (0, 0)
(0, 0) → (2, 0) → (1, 1) → (0, 0)
(0, 0) → (2, 0) → (1,1) → (0, 0)
(0, 0) → (0, 2) → (1, 1) → (0, 0)
(0, 0) → (0, 2) → (1, 1) → (0, 0)

Hint. Elizalde gives a bijection between (h4) and (h) without color in Proposition 3.5.3(1)
of [14], from which we can get the valleys in (h) corresponds to the points with condition
(1) or (2) in the Lattice path of (h4). Therefore, (h4) holds from (h2).
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(i4) (how to color is unsolved)

Lattice paths from (0, 0) to (n,−n) such that (α) from a point (x, y) with x < 2y the
allowed steps are (1, 0) and (0, 1), (β) from a point (x, y) with x > 2y the allowed steps
are (0,−1) and (1,−1), (γ) from a point (2y, y) the allowed steps are (0, 1), (0,−1), and
(1,−1), and (δ) it is forbidden to enter a point (2y + 1, y).

Hint. This i4 corresponds to m4 in Stanley’s homepage.

(j4) Symmetric parallelogram polyominos of perimeter 4(2n+1) such that the horizontal (equiv-
alently, vertical) boundary steps on each level form an unbroken line. Then each horizontal
step of length one except the first one in the bottom polyomino can be colored black or
white, and the first one is colored black.

Hint. See [33, solution for (n4)] for a bijection between such polyominos and Dyck paths.
Here, let us linearly order the maximal horizontal line segments on the boundary of given
polyomino according to the level of their rightmost step. Replace such a line segment
appearing on the left-hand (resp. right-hand) path of the boundary of the polyomino by
an up (resp. a down) step, while omit the final line segment which is always on the left.
Then we can see each horizontal step of length creates a double up steps. So we get a
bijection with (h3).

(k4) All the nonintersecting chord diagrams of (n) containing at least one horizontal chord and
only one of them are distinguished such that (1) the labels of vertices of the chords are the
same as (n); (2) if (n + 1, n + 2) is not the distinguished chord, then each chord (i, i + 1)
except the first one can be colored black or white; (3) if (n + 1, n + 2) is the distinguished
chord and (2n, 1) is not a chord, then each (i, i + 1) except the first one and (n + 1, n + 2)
can be colored black or white; (4) if (n + 1, n + 2) is the distinguished chord and (2n, 1) is
also a chord, then each chord (i, i+1) except the first one can be colored black or white; (5)
all the other chords colored white(we use the circled labels of two endpoints to represent
the distinguished horizontal chord).
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Hint. There is a simple bijection between (k4) and (n) without color, i.e., for any given
nonintersecting chord diagram with a distinguished horizontal chord K, rotate the chords
so that the left-hand endpoint of K is 1 (see [33, solution for (o4)]). Then from the
bijection, the number of chords (i, i + 1) in (k4) is the same as that in (n) for cases (2)
and (4) while increases by 1 in case (3). Therefore, (k4) holds from (n).

(l4) (open) Kepler towers with n bricks, i.e., sets of concentric circles, with “bricks” (arcs)
placed on each circle, as follows: the circles come in sets called walls from the center
outwards. The circles (or rings) of the ith wall are divided into 2i equal arcs, numbered
1, 2, · · · , 2i clockwise from due north. Each brick covers an arc and extends slightly beyond
the endpoints of the arc. No two consecutive arcs can be covered by bricks. The first
(innermost) arc within each wall has bricks at positions 1, 3, 5, · · · , 2i − 1. Within each
wall, each brick B not on the innermost ring must be supported by another brick B′ on
the next ring toward the center, i.e., some ray from the center must intersect both B
and B′. Finally, if i > 1 and the ith wall is nonempty, then wall i − 1 must also be
nonempty. Such Kepler towers are enumerated by Catalan number. The question is what
is the corresponding statistic from Viennot and Knuth’s bijection [23] to give it a bi-color
and get the structures for super-Catalan number, and whether the statistic that bricks in
the left half side is right. If the answer is “yes” for the second question, can you give a
bijective proof?

(m4) Compositions of n whose parts equal to k are colored with one of Sk colors (colors are
indicated by subscripts below), where Sk is the k-th large Schöder number.

1a + 1a + 1a 1a + 2a 1a + 2b 2a + 1a 2b + 1a 3a 3b 3c 3d 3e 3f

Hint. In [18], the authors gave a bijection with small-binary trees to prove this result.

(n4) Sequences (a1, · · · , an) of nonnegative integers satisfying a1 + · · · + ai ≥ i and Σaj = n
with each 0 can be colored black or white.

111 120 120 210 210 201 201 300 300 300 300

Hint. Add 1 to the terms of the sequences of (w), we get the desired result. This is the
solution given by Stanley in [33], where he also gave inverse of the bijection.
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(o4) Sequences a1, · · · , a2n of nonnegative integers with a1 = 1, a2n = 0 and ai − ai−1 = ±1
with each ai = ai−1 + 1 = ai−2 + 2, 2 ≤ i ≤ 2n, (assuming a0 = 0,) colored by black or
white.

123210 123210 123210 123210 121210 121210 121010 121010 101210 101210 101010

Hint. Partial sums of the sequences in (r). We consider the sequences in (r) as Dyck
path, then color each double ascents blakc or white.

(p4) Sequences of n− 1 1′s and any number of −1′s such that every partial sum is nonnegative
with each 1 followed by a −1 can be colored black or white.

1, 1 1, 1,−1 1,1,−1 1,−1, 1 1,−1, 1 1, 1,−1,−1
1,1,−1,−1 1,−1, 1,−1 1,−1, 1,−1 1,−1,1,−1 1,−1,1,−1

Hint. In (rrr) replace an up step with 1 and a down step with −1.

(q4) Sequences a1a2 · · · a2n−2 of n − 1 1′s and n − 1 −1′s such that if ai = −1 then either
ai+1 = ai+2 = · · · = a2n−2 = −1 or ai+1 + ai+2 + · · ·+ ai+j > 0 for some j ≥ 1 with each
1 followed by a −1 can be colored black or white.

1, 1,−1,−1 1,1,−1,−1 1,−1, 1,−1 1,−1, 1,−1 1,−1,1,−1 1,−1,1,−1
−1, 1, 1,−1 − 1, 1,1,−1 − 1, 1,−1, 1 − 1,1,−1, 1 − 1,−1, 1, 1

Hint. See the bijection given in [33].

(r4) Sequences a1a2 · · · an of integers such that (1) a1 = 1, an = ±1, ai 6= 0 for 1 ≤ i ≤ n, (2)
ai+1 ∈ {ai, ai + 1, ai − 1,−ai} , and each ai+1 with ai+1 = ai or |ai+1| = |ai| + 1 can be
colored black and white for 1 ≤ i ≤ n− 1 while other elements colored white.

1, 1, 1 1,1, 1 1, 1,1 1,1,1 1, 1,−1 1,1,−1
1,−1, 1 1,−1,−1 1,−1,−1 1, 2, 1 1,2, 1

Hint. There is a bijection between (l) and (r4)(see [33, solution for (w4)]) without coloring.
From the bijection, we can get each new row corresponds to bi with bi+1 = bi + 1, or
bi+1 = bi such that the top lattice square in bi+1 squares above the top lattice square in bi

squares, which gives a bijection between (l) and (r4).

(s4) Sequences a1a2 · · · an of nonnegative integers such that aj = #{i : i < j, ai < aj} for
1 6 j 6 n, and each ai, 1 ≤ i ≤ n− 1, with ai ≥ ai+1 can be colored black or white.

000 000 000 000 002 002 010 010 011 011 012

Hint. For a 312-avoiding permutation a1a2 · · · an in (ff), we can get a sequence b1b2 · · · bn

in (s4) by considering bj = #{i : i < j, ai < aj}. From this bijection, we can see each
ai with ai > ai+1 in 312-avoiding permutation corresponds to a bi with bi ≥ bi+1 in the
sequence of (s4).
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(t4) Sequences a1a2 · · · an−1 of nonnegative integers such that each nonzero term initiates a
factor (subsequence of consecutive elements) whose length is equal to its sum, and each 0
can be colored black or white.

00 00 00 00 01 01 10 10 11 20 20

Hint. Given a plane tree with n edges, traverse the edges in preorder and record for each
edge except the first pendant one the degree of the vertex terminating the edge. This is a
similar bijection with (o’) as that in [33]. The color of each letter is the same.

(u4) For sequences a1a2 · · · a2n+1 of positive integers such that a2n+1 = 1, some ai = n + 1,
the first appearance of i + 1 follows the first appearance of i, no two consecutive terms
are equal, no pair ij of integers occur more than once as a factor (i.e., as two consecutive
terms), and if ij is a factor then so ij, color each ai such that ai > ai−1, ai > ai+1 black
or white except the first one, and all other letters are colored white.

1213141 1213141 1213141 1213141 1213431 1213431
1232141 1232141 1232421 1232421 1234321

Hint. Traverse a plane tree with n+1 vertices in preorder. Do a depth first search through
the tree and write down the vertices in the order they are visited (including repetitions).
This establishes a bijection with (o’).

(v4) Sequences (a1, . . . , an) ∈ Nn for which there exists a distributive lattice of rank n with ai

join-irreducible of rank i, 1 ≤ i ≤ n, where colored black to white if i > 1.

300 210 210 120 120 201 201 111 111 111 111

Hint. The sequences 1, 1 + an, 1 + an + an−1, · · · , 1 + an + an−1 + · · ·+ a2 coincide with
those of (s) if we do not consider the colors. Then color the corresponding letter or part
black or white as that of (s).

(w4) Pairs of sequences 1 6 i1 < i2 < · · · < ik 6 n − 1 and 2 6 j1 < · · · < jk 6 n such that
ir < jr for all r, and each element of the 2ed sequence (not the ∅) can be colored black or
white.

(∅, ∅) (1, 2) (1,2) (1, 3) (1,3) (2, 3) (2,3) (12, 23) (12,23) (12, 23) (12,23)

Hint. As Stanley mentioned in [33], there is a bijection with 321-avoiding permutations,
we color the corresponding second sequence of this item black or white as that in (ee).

(x4) For the ways two persons can each start with 0 and alternating add positive integers to
their numbers so that they first have equal numbers when that number is n (notation
such as 1, 2; 4, 3; 5, 5 means that the first person adds 1 to 0 to obtain 1, then the second
person adds 2 to 0 to obtain 2, then the first person adds 3 to 1 to obtain 4, etc.),
color each segment (ai, ai+1) black or white with ai+1 > ai after setting the sequence
a1, a2; a3, a4; a5 · · · and other segments only white.

3, 3 2, 3; 3 2,3; 3 2, 1; 3, 3 2,1;3, 3 1, 2; 3, 3
1,2; 3, 3 1,2;3, 3 1,2;3, 3 1, 3; 3 1,3; 3
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Hint. See [33, solution for (x4)] for a bijection between (c5) and lattice paths as in (i),
from which the segments (ai, ai+1) with ai+1 > ai and valleys in lattice paths of (i) have
the same distribution.

(y4) The representative sequences of cyclic equivalence classes (or necklaces) of sequences of
n+1 1’s and n 0’s in which any first factor has more 1 than 0. Then each two consecutive
00 can be colored black or white.

1111000 1111000 1111000 1111000 1110100 1110100
1110010 1110010 1101100 1101100 1101010

Hint. The sequence must initiate with 1 since any first factor has more 1 than 0. By
omitting the first 1, draw an up step for each 1 and draw a down step for each 0, then we can
get a Dyck path, and each 00 corresponds to double down steps, which is a bijection with
(h4). In fact, we can also color 11 or 01 except the first one or just 01, which correspond
to (h3), (h2) and (h1) respectively, to get the structures enumerated by super-Catalan
numbers.

(z4) (how to color is unsolved)

Integer partitions which are both n-cores and (n+1)-cores, in the terminology of Exercise
7.59(d).

∅ 1 2 11 311

Hint. This z4 corresponds to the solution of (e5) in Stanley’s homepage.

(a5) Equivalence classes of the equivalence relation on the set Sn = {a1, · · · , an) ∈ Nn :
∑

ai =
n} generated by (α, 0, β) ∼ (β, 0, α) if β (which may be empty) contains no 0’s. Then each
sequence of the class except the first can be colored black or white, and the first is colored
black.

{300, 030, 003} {300,030, 003} {300, 030,003} {300,030,003}
{210, 021} {210,021} {120, 012} {120,012} {201, 102} {201,102} {111}

Hint. Each equivalence class contains a unique element (a1, · · · , an) satisfying a1 + a2 +
· · · ai ≥ i for 1 ≤ i ≤ n(see [33, Exercise 6.19(f5)]), which gives a proof followed from (n4)
since the number of sequences in an equivalent class is 1+# of zeros in any representative
element.

(b5) Pairs (α, β) of compositions of n with the same number of parts, such that α > β (domi-
nance order, i.e., α1 + · · ·+ αi > β1 + · · ·+ βi for all i), and each two consecutive elements
of the 2ed composition can be colored black or white.

(111, 111) (111,111) (111, 111) (111,111) (12, 12) (12,12)
(21, 21) (21,21) (21, 12) (21,12) (3, 3)

Hint. Define a Dyck path by going up α1 steps then down β1 steps, then up α2 steps,
then down β2 steps, etc. This gives a bijection with (i) if we do not consider the colors
of letters. The number of peaks minus 1 equals the number of consecutive elements of
composition β. By (i1), we know such pairs of compositions are counted by super-Catalan
numbers.
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(c5) (open)

Weak ordered partitions (P, V, A, D) of [n] into four blocks such that there exists a per-
mutation w = a1a2 · · · an ∈ Sn (with a0 = an+1 = 0) satisfying

P = {ai ∈ [n] : ai−1 < ai > ai+1}, V = {ai ∈ [n] : ai−1 > ai < ai+1}
A = {ai ∈ [n] : ai−1 < ai < ai+1}, D = {ai ∈ [n] : ai−1 > ai > ai+1}.

Then each x ∈ P ∪A not the first one can be colored black or white.

(3, ∅, 12, ∅) (3, ∅,12, ∅) (3, ∅, 12, ∅) (3, ∅,12, ∅) (3, ∅, 1, 2) (3, ∅,1, 2)
(23, 1, ∅, ∅) (23, 1, ∅, ∅) (3, ∅, 2, 1) (3, ∅,2, 1) (3, ∅, ∅, 12)

(d5) (open) Permutations ω ∈ Sn satisfying the following conditions: let ω = Rs+1Rs · · ·R1 be
the factorization of ω into maximal ascending runs (so s = des(ω), the number of descents
of ω). Let mk and Mk be the smallest and largest elements in the run Rk. Let nk be the
number of symbols in Rk for 1 ≤ k ≤ s+1; otherwise set nk = 0. Define Nk =

∑
i<k ni for

all k ∈ Z. Then ms+1 > ms > · · · > m1 and Mi ≤ Ni+1 for 1 ≤ i ≤ s + 1. For example,
when n = 3, the permutations are

123 213 231 312 321.

Such permutations are enumerated by Catalan number, given in [33, Exercies 6.19]. It is a
challenge to find the corresponding statistic to give a color and get the structure counted
by super-Catalan number.

(e5) (open) Permutations ω ∈ Sn satisfying, in the notation of (d5) above, ms+1 > ms >
· · · > m1 and mi+1 > Ni−1 + 1 for 1 ≤ i ≤ s, such as

123 213 231 312 321

for n=3, are enumerated by Catalan number given in [33, Exercise 6.19]. Then it is
a challenge to find the corresponding statistic to give a color and obtain the structure
counted by super-Catalan number.

(f5) 321-avoiding permutations w ∈ S2n+1 such that i is an excedance of w (i.e., w(i) > i) if
and only if i 6= 2n + 1 and w(i) − 1 is not an excedance of w (so that w has exactly n
excedances), and each two consecutive execedances can be colored black or white.

4512736 4512736 3167245 3167245 3152746
4617235 4617235 5671234 5671234 5671234 5671234

Hint. Replace an excedance of w with an up step and a nonexcedance with a down step,
except for the nonexcedance 2n + 1 at the end of w. This sets up a bijection with (i3),
whose double ascents are colored black or white.
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(g5) For the 321-avoiding alternating permutations π1π2 · · ·π2n in S2n, color each π2i−1, 1 ≤
i ≤ n− 1, satisfying π2i+1 − π2i−1 > 1 black or white.

214365 214365 214365 214365 215364 215364
314265 314265 315264 315264 415263

Hint. There is a bijection with (ww) without color(see [33, Exercise 6.19(l5)]). Let
a1a2 · · · a2n be a permutation being counted, and we can get a standard Young tableaux
by associating it with the array

π2 π4 π6 · · · π2n
π1 π3 π5 · · · π2n−1

And then draw an up step for the i-th step if i is in the first a row while draw a down
step if i is in the second row, from which we can see each π2i−1 with π2i+1 − π2i−1 > 1
corresponds to a valley in the Dyck path. Therefore, we get a bijection between (g5) and
(h2).

(g5’) For 321-avoiding alternating permutation π1π2 · · ·π2n−1 in S2n−1, color each π2i−1, 1 ≤
i ≤ n−2, satisfying π2i+1−π2i−1 > 1 black or white, and also π2n−3 iff π2n−1−π2n−3 = 1.

21435 21435 21435 21435 21534 21534 31425 31425 31524 31524 41523

Hint. Associate the standard Young tableaux with the array

π2 π4 π6 · · · π2n−2 π2n−1
π1 π3 π5 · · · π2n−3 2n

Then by the same rule as (g5), we can get a bijection with (h2).

(h5) 321-avoiding fixed-point-free involutions π1π2 · · ·π2n of [2n] with each πi, 1 ≤ i ≤ 2n− 1,
satisfying πi + 1 on its right can be colored black or white except the first one.

214365 214365 214365 214365 215634 215634341265 341265 351624 351624 456123

Hint. By the RSK algorithm, we can get a bijection between this item and standard
Young tableaux of (ww) without color(see [33, Exercise 6.19(m5)]). Then for each Young
tableaux obtained, draw the i-th steps an (1,1) if i is in the first row while draw a (1,-1)
if i is in the second row, from which each πi with πi + 1 on its right in the involution
corresponds to a peak in Dyck path, i.e., a bijection between (h5) and (h1).

(i5) 321-avoiding involutions of [2n − 1] with one fixed point, and then find subsequence 1 =
a1 < a2 < · · · < an in π ∈ S2n−1 and color each form of aiai+1 such that ai+1 = ai + 1
black or white.

13254 13254 14523 14523 14523 1452321354 21354 21435 34125 34125

Hint. The solution of (n5) in [33] gave a bijection with standard Young tableaux of shape
(n, n − 1) of (ww). Then as in (h5), we can also get a bijection with (h3) such that each
aiai+1 such that ai+1 = ai + 1 corresponds to a double up steps.
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(j5) For 213-avoiding fixed-point-free involutions π1π2 · · ·π2n of [2n], color each πi, 1 ≤ i ≤
n− 1, with πi < πi+1 black or white.

456123 456123 456123 456123 465132 465132564312 564312 645231 645231 654321

Hint. The solution to (o5) of [33] gave a bijection with Dyck path of (i).

(k5) For 213-avoiding involutions π1π2 · · ·π2n−1 of [2n− 1] with one fixed point, color each πi,
1 ≤ i ≤ n, with πi < πi+1 black or white.

14523 14523 14523 13523 15432 15432 45312 45312 52431 52431 54321

Hint. Similar to (j5).

(l5) 3412-avoiding (or noncrossing) involutions of a subset of [n − 1], with each left to right
maximal element colored black or white.

∅ 1 1 2 2 12 12 12 12 21 21

Hint. Obvious bijection with (aa).

(m5) For the standard Young tableaux with at most two rows and with first row of length n−1,
color each x in the second row black or white if x− 1 is in the first row.

1 2 1 2
3

1 2
3

1 3
2

1 3
2

1 2
3 4

1 2
3 4

1 3
2 4

1 3
2 4

1 3
2 4

1 3
2 4

Hint. Given a standard Young tableau T of the type being counted, construct a Dyck
path of length 2n as follows. For each entry 1, 2, · · · , m of T , if i appears in row 1 then
draw an up step, while if i appears in row 2 then draw a down step. Afterwards draw
an up step followed by down steps to the x-axis. This bijection is given in [33], where we
color the letter corresponding to the peaks except the first one black or white, as the same
as that (i1).

(n5) For the standard Young tableaux with at most two rows and with first row of length n,
such that for all i the ith entry of of row 2 is not 2i, and color each x in the second row
black or white if x− 1 is in the first row.

1 2 3 1 2 3
4

1 2 3
4

1 2 4
3

1 2 4
3

1 2 3
4 5

1 2 3
4 5

1 2 4
3 5

1 2 4
3 5

1 2 4
3 5

1 2 4
3 5

Hint. The bijection of (m5) yields a Dyck path of length 2n + 2 which never touches the
x-axis except first and last steps. Remove them get a bijection with (i1). This was given
in [33].
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(o5) For the standard Young tableaux of shape (2n+1, 2n+1) such that adjacent entries have
opposite parity, color each x followed by y with y − x > 1 in the first row black or white.

[
1 2 3 4 5 6 7
8 9 10 11 12 13 14

] [
1 2 3 4 5 8 9
6 7 10 11 12 13 14

]

[
1 2 3 4 5 8 9
6 7 10 11 12 13 14

] [
1 2 3 4 5 10 11
6 7 8 9 12 13 14

]

[
1 2 3 4 5 10 11
6 7 8 9 12 13 14

] [
1 2 3 6 7 8 9
4 5 10 11 12 13 14

]

[
1 2 3 6 7 8 9
4 5 10 11 12 13 14

] [
1 2 3 6 7 10 11
4 5 8 9 12 13 14

]

[
1 2 3 6 7 10 11
4 5 8 9 12 13 14

] [
1 2 3 6 7 10 11
4 5 8 9 12 13 14

]

[
1 2 3 6 7 10 11
4 5 8 9 12 13 14

]

Hint. Remove all entries except 3, 5, 7, · · · , 4n + 1 and shift all the entries to the left in
the same row after replacing 2i+1 by i. This is a bijection with standard Young tableaux
of shape (n,n) in (ww)(see [33, Exercise 6.19(t5)]). By the definition of the item in (o5),
we can see each 2i + 1 (except 1) must follow 2i immediately. Then for a tableaux in (o5),
if there is y−x > 1 in the first row, there must be x′ followed by y′ with y′−x′ > 1 in the
first of the corresponding Young tableaux. From the bijection for the solution of (ww),
we derived a bijection between (o5) and Dyck path, where such x′ corresponds to a valley,
i.e., a bijection between (o5) and (h)(2).

(p5) Plane partitions with largest part at most two and contained in a rectangle of perimeter
2(n − 1) (including degenerate 0 × (n − 1) and (n − 1) × 0 rectangles). Then color each
row by black or white. (the line or point in the top is the 0th row.)

0 0 1 1 2 2

Hint. Given a plane partition π, let L be the lattice path from the lower left to upper
right that has only 2’s above it and no 2’s below. Similarly, let L′ be the lattice path from
the lower left to upper right that has only 0’s below it and no 0’s above, then we get a
bijection between (p5) and (m) without color(see [33, Exercise 6.19(u5)]), from which each
row in (p5) corresponds to a (0,1) step on the lattice path below in (m). Since the (1,0)
steps and (0,1) steps on the lattice paths below in (m) have the same distribution, we can
get the required conclusion.

(q5) For triples (A,B, C) of pairwise disjoint subsets of [n − 1] such that #A = #B and if
write the element of A and B in increasing order, every element of A is less than the
corresponding element of B, color each element in A and C black or white.

(∅, ∅, ∅) (∅, ∅, 1) (∅, ∅,1) (∅, ∅, 2) (∅, ∅,2) (∅, ∅, 12)
(∅, ∅,12) (∅, ∅, 12) (∅, ∅,12) (1, 2, ∅) (1, 2, ∅)
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Hint. In the (2, 3)-Motzkin paths of (yyy), number the steps 1, 2, · · · , n − 1 from left to
right. Place the up red or blue steps (1, 1) in A with white or black letter respectively,
the steps (1,−1) in B, and the red or blue steps (1, 0) in C with white or black letter
respectively.

(r5) For subsets Sn = N−Tn of N such that 0 in N and such that if i in Sn then i+n, i+n+1
in Sn, each number a in Tn can be colored black and white if and only if there no numbers
b, c in Tn with b greater than a and a = b + n + 1 + c + n.

N N− {1} N− {1} N− {2} N− {2}
N− {12} N− {12} N− {12} N− {12} N− {125} N− {125}

Hint. The solution to (w5) in [33] also gives a bijection between present item and (bbb).

(s5) (n + 1)-element multisets on Z/nZ whose elements sum to 0 and each string of the form
xx except the first one can be colored black and the first one is colored white.

0000 0000 0000 0000 0012 0111 0111 0222 0222 1122 1122

Hint. Similarly as that of (jjj).

(t5) Ways to write (1, 1, · · · , 1,−n) ∈ Zn+1 as a sum of vectors ei−ei+1 and ej−en+1, without
regard to order, where ek is the kth unit coordinate vector in Zn+1, and if set a0 = 0 and
ai is the coefficient of ei− ei+1, 1 ≤ i ≤ n− 1, each ai with ai > ai−1 can be colored black
or white while other coefficients colored white.

1(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1) 1(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1)
1(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1) 1(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1)
1(1, 0, 0,−1) + 1(0, 1,−1, 0) + 2(0, 0, 1,−1) 1(1, 0, 0,−1) + 1(0, 1,−1, 0) + 2(0, 0, 1,−1)
1(1,−1, 0, 0) + 2(0, 1, 0,−1) + 1(0, 0, 1,−1) 1(1,−1, 0, 0) + 2(0, 1, 0,−1) + 1(0, 0, 1,−1)

1(1,−1, 0, 0) + 1(0, 1,−1, 0) + 1(0, 1, 0,−1) + 2(0, 0, 1,−1)
1(1,−1, 0, 0) + 1(0, 1,−1, 0) + 1(0, 1, 0,−1) + 2(0, 0, 1,−1)
1(1, 0, 0,−1) + 1(0, 1, 0,−1) + 1(0, 0, 1,−1)

Hint. This is a direct result from the bijection with (u) given by A. Postnikov and R.
Stanley(see [33, Exercise 6.19(y5)]).

(u5) Horizontally convex polyominoes of width n + 1 such that each (1) row begins strictly to
the right of the beginning of the previous row and ends strictly to the right of the end of
the previous row, and (2) each row except the first row are colored black or white and the
first row is colored white.

¤¤¤¤ ¤¤¤¤¤ ¤¤¤¥¥ ¤¤¤¤¤¤ ¤¤¤¥¥¥ ¤¤¤¤¤ ¤¤¥¥¥ ¤¤¤¤¤¤
¤¤¥¥¤¤

¤¤¤¤¥¥
¤¤¥¥¥¥

Hint. The bijection in [33, solution for (z5)] maps each peak except the first one in Dyck
paths to a row in the polyomino. Setting the corresponding peak and row the same color
sets up a bijection between (u5) and Dyck paths of length 2n with colored peaks.
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(v5) Tilings of the staircase shape (n, n − 1, · · · , 1) with n rectangles. Then each rectangle of
shape (1, n) except the first one can be colored black or white, and the first one is colored
white.

¥
¥

¥
¥

¥
¥

¥

Hint. There is a simple bijection with binary trees with root colored white, and no left
vertex colored white, similar as (b), which are also counted by super-Catalan numbers.
The root of T corresponds to the rectangle containing the upper right-hand corner of the
staircase. Remove this rectangle we get two smaller staircase tilings on its left and bottom,
which are corresponding to the left subtree and right one of the root, making the bijection
obviously.

(w5) Nonisomorphic 2(n + 1)-element posets that are a union of two chains, that are not a
(nontrivial) ordinal sum, and that have a nontrivial automorphism. Then each crossing is
colored black or white.

Hint. For a crossing, define its crossing length to be the number of edges between the two
end-vertices of the crossing on the right line. Then for each vertex of the right line from
top to bottom, if it is an end vertex of a crossing and below the crossing, record it by the
crossing length minus 1, otherwise record a 0 and delete the first two element of the final
sequence(the first two element must be 00). For example, in the sixth figure above, the
corresponding sequence is 11. Then we can get a bijection with sequences b1b2 · · · bn−2 such
that b1 + b2 + · · ·+ bi ≤ i. Besides, a sequence c0c2 · · · cn−1 is obtained by defining c0 = 0
and ci =

∑i
j=1 bj + i for 1 ≤ i ≤ n − 1. Then obviously, 0 = c0 < c1 < c2 < · · · < cn−1

satisfies 1 ≤ ci ≤ 2i (except c0 = 0) and each ai with ai > ai−1 + 1 corresponds to a
crossing in (w5), and such sequences are just the sequences in (t).

(x5) n × n N-matrices M = (mij) where mij = 0 unless i = n or i = j or i = j − 1, with row
and column sum vector (1, 2, · · · , n), and if set m00 = 0, each mii, 1 ≤ i ≤ n − 1, with
mii > mi−1,i−1 can be colored black or white while other entries in the matrix colored
white.




1 0 0
0 2 0
0 0 3







1 0 0
0 2 0
0 0 3







1 0 0
0 2 0
0 0 3







1 0 0
0 2 0
0 0 3







0 1 0
0 1 1
1 0 2







0 1 0
0 1 1
1 0 2







1 0 0
0 0 2
0 2 1







1 0 0
0 0 2
0 2 1







1 0 0
0 1 1
0 1 2







1 0 0
0 1 1
0 1 2







0 1 0
0 0 2
1 1 1
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Hint. Let

(1, 1, · · · , 1,−n) =
n−1∑

i=1

(ai(ei − ei+1) + bi(ei − en+1) + an(en − en+1))

in (t5). Then set mii = ai and mni = bi, which uniquely determines the matrix M and
sets up a bijection with (t5)(see [33, Exercise 6.19(c6)]).

(y5) Bounded regions into which the cone x1 > x2 > · · · > xn+1 in Rn+1 is divided by the
hyperplanes xi− xj = 1, 1 6 i < j 6 n + 1 (compare (lll), which illustrates the case n = 2
of the present item), see that of (lll) for coloring.

Hint. See (lll) and [1].

(z5) (open) The extreme rays of closed convex cone generated by a all flag f -vectors(i.e., the
functions β(P, S) of Section 3.12) of graded posets of rank n with 0̂ and 1̂ (the vectors
below lie on the extreme rays, with the coordinates ∅, {1}, {2}, {1, 2} in that order), such
as

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 1, 1) (1, 1, 1, 1),

for n = 3, are enumerated by Catalan number(see [33, Exercise 6.19(e6)]), then it is a
challenge to find out the corresponding statistic and get the structures counted by super-
Catalan numbers by coloring them.

(a6) Bootstrap percolations of (n + 1) × (n + 1) permutation matrices such that we can get
matrix with all elements of 1 by adding a 1 to the empty positions adjacent to at least
two 1s recursively, and the 1 in the first column is in a higher position than the 1 in the
second column, where a permutation matrix is a matrix such that each row and column
has exactly one element of 1, and the others are all empty. (see [17,30]).

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Hint. If the 1 in the first column is not required to be higher than the 1 in the second
column, they are called percolations. (n + 1) × (n + 1)-percolations are enumerated by
the n-th large Schröder number, which is proved by generating function method in [30].
In [17] they gave a bijection between percolations with the 1 in the first column being
higher than the 1 in second column and small-binary trees (see (c)).

Remark. The next 10 objects are forbidden permutations, where the both two forbidden
patterns are of length 4. Kremer [24] proved that there are exactly 10 equivalence classes
of such pattern avoiding permutations, enumerated by the large Schröder numbers. In the
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following we only list one for each equivalence class. (b6), (c6) are given by West [37], the
d6 is given by Gire [20], and (e6), (f6), (g6), (h6), (i6), (j6) are given by Gibert.

(b6) Permutations of [n+1] avoiding both patterns 3142, 2413, i.e., Sn+1(3142, 2413) such that
the first number is larger than the second number (i.e. π1 > π2).

2134 2143 3124 4123 4132 3214 3241 4213 4231 4312 4321

Hint. We have known Sn+1(3142, 2413) = S(n), where S(n) is the n-th large schröder
number. Then by the complement operation, π1π2π3 · · ·πn+1 ∈ Sn+1(3142, 2413) iff
π′1π

′
2π
′
3 · · ·π′n+1 ∈ Sn+1(3142, 2413), where π′i = n + 2 − πi. Then as π1 > π2 iff π′1 < π′2,

we get the desired result clearly.

(c6) Permutations of [n+1] avoiding both patterns 1423, 1324, i.e., Sn+1(1423, 1324) such that
the position of n is larger than the position of n− 1 (i.e. π−1

n+1 > π−1
n ).

1234 1342 2314 2341 3412 3421 2134 3124 3142 3214 3241

Hint. We have known Sn+1(1423, 1324) = S(n), where S(n) is the n-th large schröder
number. Then by the inverse operation, Sn+1(1342, 1324) = S(n). Since π1 · · ·πn−1πnπn+1 ∈
Sn+1(1342, 1324) iff π1 · · ·πn−1πn+1πn ∈ Sn+1(1342, 1324), we get the desired result clearly.

(d6) Permutations of [n+1] avoiding both patterns 3124, 3214, i.e., Sn+1(3124, 3214) such that
the position of 2 is larger than the position of 1 (i.e. π−1

2 > π−1
1 ).

1234 1243 1324 1342 1423 1432 3412 3142 4123 4132 4312

Hint. We have known Sn+1(3124, 3214) = S(n). Then by the inverse operation, we
have Sn+1(2314, 3214) = S(n). Since π1π2π3 · · ·πn+1 ∈ Sn+1(2314, 3214) if and only if
π2π1π3 · · ·πn+1 ∈ Sn+1(2314, 3214), we get the desired result clearly.

(e6) Permutations of [n+1] avoiding both patterns 1234, 2134, i.e., Sn+1(1234, 2134) such that
the first number is larger than the second number (i.e. π1 > π2).

2143 3124 3142 4123 4132 3214 3241 4213 4231 4312 4321

Hint. We have known Sn+1(1234, 2134) = S(n). Since π1π2π3 · · ·πn+1 ∈ Sn+1(1234, 2134)
iff π2π1π3 · · ·πn+1 ∈ Sn+1(1234, 2134), we get the result.

(f6) Permutations of [n+1] avoiding both patterns 1324, 2134, i.e., Sn+1(1324, 2134) such that
the first number is larger than the second number (i.e. π−1

1 > π−1
2 ).

2314 2341 2413 2431 3421 2143 3214 3241 4213 4231 4321

Hint. Many people have used generating trees to study the permutations with forbidden
patterns [20,24]. We know the root for such generating tree is the permutation 1, and the
permutations at level one are 21, 12, and the following levels are the same by adding (n+1)
in the active positions of permutations of [n] if we don’t consider the forbidden patterns.
When we face a Schröder generating tree [24], we just consider the right subtree of the
root since π−1

1 > π−1
2 . We can get that the generating tree for Sn+1(1324, 2134) such that

π−1
1 > π−1

2 is just the right subtree of the root on the generating tree for Sn+1(1324, 2134),
easily obtaining the desired result.
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(g6) Permutations of [n+1] avoiding both patterns 1342, 2341, i.e., Sn+1(1342, 2341) such that
the position of 1 is larger than the position of 2 (i.e. π−1

1 > π−1
2 ).

2134 2143 2314 2413 2431 3421 3214 3241 4213 4231 4321

Hint. We have known Sn+1(1342, 2341) = S(n). By the inverse operation, we have
Sn+1(1423, 4123) = S(n). Since π1π2π3 · · ·πn+1 ∈ Sn+1(1423, 4123) iff π2π1π3 · · ·πn+1 ∈
Sn+1(1423, 4123), we get the desired result clearly.

(h6) Permutations of [n+1] avoiding both patterns 2134, 3124, i.e., Sn+1(2134, 3124) such that
the position of 2 is larger than the position of 1 (i.e. π−1

2 > π−1
1 ).

1234 1243 1324 1342 1423 1432 3412 3142 4123 4132 4312

Hint. Similar to (f6), we can get that the generating tree for Sn+1(2134, 3124) such that
π−1

2 > π−1
1 is just the left subtree of the root on the generating tree for Sn+1(2134, 3124),

easily obtaining the desired result.

(i6) Permutations of [n+1] avoiding both patterns 2314, 3124, i.e., Sn+1(2314, 3124) such that
the position of 2 is larger than the position of 1 (i.e. π−1

2 > π−1
1 ).

1234 1243 1324 1342 1423 1432 3412 3142 4123 4132 4312

Hint. Use the same method of the Solution for (h6) by just considering the left subtree
of the root the generating tree for Sn+1(2314, 3124).

(j6) Permutations of [n+1] avoiding both patterns 3412, 3421, i.e., Sn+1(3412, 3421) such that
the (n + 1)th number is larger than the nth number (i.e. πn+1 > πn).

1234 1324 1423 2134 2314 2413 3124 3214 4123 4213 4312

Hint. Since π1 · · ·πn−1πnπn+1 ∈ Sn+1(3412, 3421) iff π1 · · ·πn−1πn+1πn ∈ Sn+1(3412, 3421),
we get result similar as above.

(k6) Permutations of [n+1] avoiding both patterns 1342, 3142, i.e., Sn+1(1342, 3142) such that
the 1th number is larger than the 2th number (i.e. π1 > π2).

2134 2143 3124 4123 4132 3214 3241 4213 4231 4312 4321

Hint. Since π1π2π3 · · ·πn+1 ∈ Sn+1(1342, 3142) iff π2π1π3 · · ·πn+1 ∈ Sn+1(1342, 3142), we
get result similar as above.

(l6) Ordered trees with n + 1 leaves in which no node has outdegree equal to 1, i.e., bushes
with n + 1 leaves. (see [34, Exercise 6.39(b)]).
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Hint. Bushes are studied in [10, 12]. In [10] Deutsch use a bijective proof to get this
result. Bushes are also studied in [17], where they gave many applications.

(m6) Ordered trees with n+1 leaves in which root has outdegree equal to 1 and no other vertex
has outdegree equal to 1, i.e., planted bushes with n + 1 leaves.

Hint. In fact, in [12], they called bushes for bushes in (l6) and planted bushes, where
called short bushes or tall bushes respectively. By (l6) we can get this result just as that
(d) to (f).

(n6) Schröder paths of length 2n without hills.

Hint. Schröder paths without hills are also called hill-free Schröder paths. They have
been studied in [5, 17, 18].

(o6) Schröder paths of length 2n without horizontal steps at x-axis.

Hint. Schröder paths without horizontal steps at x-axis are also counted by super-Catalan
numbers as that we can change each peak to be horizontal step of length 2.

(p6) Schröder paths of length 2n with at least one hill.

Hint. Since Schröder paths are enumerated by Schröder numbers, and by (n6), we get the
result.
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(q6) Schröder paths of length 2n with at least one horizontal step at x-axis.

Hint. The same reason as that of (p6) by (o6).

(r6) Schröder paths of length 2(n − 1) without high peaks and the horizontal steps colored
black or white, and all other steps colored black. (similar as that of (a4)).

Hint. Use the bijection between leaves-colored plane trees and colored Schröder paths
in [18], the Corollary of the bijection showed this result [18].

(s6) Schröder paths of length 2n with only one peak, and all horizontal steps appearing after
the peak and colored black or white. All other steps are colored black.

Hint. Use the bijection between leaves-colored plane trees and colored Schröder paths
in [18], such paths are corresponding to leaves-colored plane trees as that of (o’).

(t6) Schröder paths of length 2n with no peak and all horizontal steps except the first one
colored black or white. All other steps are colored black.

Hint. From (s6), we change the first peak of each path into a horizontal step, the result
is obvious.

(u6) Matchings on [2n] avoiding both patterns 12312 and 121323.

112233 112332 122133 122331 121233 112323
122313 121332 123231 123213 123321

Hint. Matchings avoiding given pattern have been studied in [8], where gave the bijection
between Schröder paths without hill and matchings avoiding both patterns 12312 and
121323. They are also studied in [17] with some applications.
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(v6) Hilly poor noncrossing partitions with n blocks.

Hint. Hilly poor noncrossing partitions are studied in [8, 38], where in [38] they gave a
bijection between themselves and (2, 3)-Motzkin paths in (yyy).

(w6) Dissections of a convex (n+2)-gon that do not intersect in their interiors (see [34, Exercise
6.39(h)].

Hint. Dissections of a convex (n+2)-gon are studied in [35,36], where in [36] Stanley also
gave the history of Schröder numbers, and in [35] stated a bijection between dissections of
convex polygons and Standard Young Tableaux.

(x6) Lattice paths in the (x, y) plane from (0, 0) to the x-axis using steps (1, k), where k ∈ P
or k = −1, never passing below the x-axis, and with n steps of the form (1,−1) (see [34,
Exercise 6.39(e)]).

Hint. See [34, Solution to Exercise 6.39(e)].

(y6) Lattice paths in the (x, y)-plane from (0, 0) to the (n, n) using steps (k, 0) or (0, 1) with
k ∈ P, and never passing above the line y = x (see [34, Exercise 6.39(f)]).

Hint. See [34, Solution to Exercise 6.39(f)].

(z6) Sequences i1i2 · · · ik, where ij ∈ P or ij = −1 (and k can be arbitrary), such that n =
#{j : ij = −1}, i1 + · · ·+ ij ≥ 0 for all j, and i1 + · · ·+ ik = 0 (see [34, Exercise 6.39(i)]).

3-1-1-1 2-1-11-1 1-12-1-1 12-1-1-1 21-1-1-1 2-11-1-1
1-11-11-1 11-1-11-1 1-11-11-1 1-111-1-1 111-1-1-1

Hint. See [34, Solution to Exercise 6.39(i)].
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(a7) Graphs G (without loops and multiple edges) on the vertex set [n + 2] with the following
two properties: (1) All of the edges {1, n + 2} and {i, i + 1} are edges of G, and (2)
G is noncrossing, i.e., there are not both edges {a, c} and {b, d} with a < b < c < d
(see [34, Exercise 6.39(p)]).

Hint. See [34, Solution to exercise 6.39(p)].

(b7) Ways to insert parentheses in a string of n+1 symbols. The parentheses must be balanced
but there is no restriction on the number of pairs of parentheses. The number of letters
inside a pair of parentheses must be at least 2. Parentheses enclosing the whole string are
ignored. (see [34, Exercise 6.39(a)]).

(xx)xx x(xx)x xx(xx) (xx)(xx) (xxx)x x(xxx)
((xx)x)x (x(xx))x x((xx)x) x(x(xx)) xxxx

Hint. See [34, Solution to Exercise 6.39(a)] though here we use different expressions for
this kind of objects.

(c7) Pairs (u;v) of same-length compositions of n, 0s allowed in u but not in v, and u dominates
v (meaning u1 > v1, u1 + u2 > v1 + v2, and so on) (D. Callan).

(3; 3) (3,0; 2, 1) (3, 0; 1, 2) (3, 0, 0; 1, 1, 1) (2, 1; 2, 1) (2, 1; 1, 2) (1, 2; 1, 2)
(2, 1, 0; 1, 1, 1) (1, 2, 0; 1, 1, 1) (2, 0, 1; 1, 1, 1) (1, 1, 1; 1, 1, 1)

Hint. See [31] (David Callan).

(d7) Length of list produced by a variant of the Catalan producing iteration: replace each
integer k by the list 0, 1, .., k, k+1, k, ..., 1, 0 and get the length sn of the resulting (flattened)
list after n + 1 iterations.

Hint. See [31] (Wouter Meeussen).

(e7) Possible schedules for n time slots in the first-come first-served (FCFS) printer policy.

Hint. See [31].
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