The Number of Occurrences of Patterns in a Random Permutation

Lauren Evans
Swarthmore College
Carol Henley
Trevecca Nazarene University

Anant Godbole
East Tennessee State University
Daphne Williams
Clark Atlanta University

January 10, 2005

Abstract

Let $k=3$ and consider the patterns 123 or 132 . Or, let k be arbitrary and let the pattern be $123 \ldots k$ or $k(k-1) \ldots 321$. Let X denote the number of occurrences of the stated pattern in a random permutation on $[n]$. Then we prove results along the following general lines: (i) $E(X)$ and $\operatorname{Var}(X)$ are computed exactly for small k and the leading term is extracted for large k (of course $E(X)$ is trivial). (ii) It is proved that the distribution of X approaches a standard normal at rate $1 / \sqrt{n}$ if k is fixed and n goes to infinity. (iii) The central limit theorem "gets into trouble" as k gets larger roughly than $\log n$. After that the situation gets quite volatile, culminating of course in the delicate behavior of the longest monotone subsequence and the Tracy-Widom distribution when k is roughly $2 \sqrt{n}$.

Patterns with repetition are studied as well, with specific results being presented for 112 patterns.

