
Pattern avoiding permutations are context-sensitive

Murray Elder
School of Computer Science
University of St. Andrews
North Haugh, St. Andrews
Fife, KY16 9SS, Scotland
murray@mcs.st-and.ac.uk

January 7, 2005

Abstract

In this talk we try to connect the fields of formal language theory from Computer Science,
and pattern avoidance from Combinatorics.

In particular, we set out to describe the set of all permutations that avoid some pattern
q in terms of formal languages, in an attempt to enumerate them. We prove that there is
a bijection between the set of permutations which avoid q and a context-sensitive language.
This language is a variation of the “insertion encoding” of Albert and Ruskuc.

In formal language theory there is a hierarchy of languages of increasing complexity,
starting from regular languages, then context-free, indexed, context-sensitive, decidable and
recursively enumerable languages, each one strictly contained in the previous one.

Chomsky and Schutzenberger proved that regular languages have rational generating
functions, while (unambiguous) context-free languages have algebraic generating functions.
Beyond this, little is known about generating functions for the higher languages. A natural
question is to ask whether there is a formal language corresponding to D-finite generating
functions. We give examples of indexed and context-sensitive languages whose generating
functions are not D-finite.

In spite of this, the connections between languages and pattern avoidance is still worth
pursuing, and I hope to put this point across through this talk.

The “insertion encoding” of a permutation is defined as follows. The idea is to build up
a permutation by successively inserting the next highest entry in an open “slot,” starting
with a single open slot, until all slots are filled. One can insert in one of four ways:

1



Middle: Place the next entry in the “middle” of the slot, creating two slots from one.

Left: Place the next entry on the left of a slot.

Right: Place the next entry to the right of a slot.

Fill: Replace a slot by the next highest entry, thus decreasing the total number of slots by
one.

For example, the instructions: “middle, right, left, fill, fill” or mrlff build the permutation
34215 as follows:

∗ → ∗1∗ → ∗21∗ → 3 ∗ 21∗ → 3421∗ → 34215

In this example, not knowing any better, we performed each insertion on the left-most
open slot. If we want to use any other slot, we precede the instruction by some number of
the letter t for “translate,” so that you shift one slot to the right for each t preceding the
instruction.

So the instructions mrtltff build the permutation 52134 as follows:

∗ → ∗1∗ → ∗21∗ → ∗213∗ → ∗2134 → 52134

We can describe any permutation uniquely using these five symbols. Note that the length
of the permutation equals the number of non-t-letters in the codeword, and the number of
m-letters equals the number of f -letters minus 1. In addition, the number of t’s preceding
any non-t-letter is always at most the number of m’s minus the number of f ’s to the left of
the letter.

We can formalise these rules to describe the set of all codewords that come from legitimate
permutations in terms of an indexed language.

We then consider how to describe the set of all codewords for permutations that avoid
some fixed pattern q, and we can do this using a context-sensitive language.

In both cases, we make use of the machine-version of the language (rather than the
grammar version) to come up with the languages. In the case of indexed languages we
use “nested-stack automata” and for context-sensitive languages we use “linear bounded
automata.” In the talk, we will define these machines, and show how they prove our theorems.

2


