A few words about the Vector Field Problem

Shilpa Suresh Gondhali

I.S.I., Kolkata

July 27, 2013
Mathematical structures defined on set/class help us in understanding set/class in better manner.
Mathematical structures defined on set/class help us in understanding set/class in better manner. If we have more than one structure (for example ring structure or vector space structure) then it is natural to ask whether these structures are compatible with each other or not.
Mathematical structures defined on set/class help us in understanding set/class in better manner. If we have more than one structure (for example ring structure or vector space structure) then it is natural to ask whether these structures are compatible with each other or not.

For example suppose we have group structure on a set and a topology then one would want to know whether multiplication and inverse are continuous functions or not.
Mathematical structures defined on set/class help us in understanding set/class in better manner. If we have more than one structure (for example ring structure or vector space structure) then it is natural to ask whether these structures are compatible with each other or not.

For example suppose we have group structure on a set and a topology then one would want to know whether multiplication and inverse are continuous functions or not. When it happens, the set in consideration is called topological group.
Mathematical structures defined on set/class help us in understanding set/class in better manner. If we have more than one structure (for example ring structure or vector space structure) then it is natural to ask whether these structures are compatible with each other or not.

For example suppose we have group structure on a set and a topology then one would want to know whether multiplication and inverse are continuous functions or not. When it happens, the set in consideration is called topological group. One of the obvious question is following: given a topology on a set, can we find a compatible group structure which would make it a topological group?
Mathematical structures defined on set/class help us in understanding set/class in better manner. If we have more than one structure (for example ring structure or vector space structure) then it is natural to ask whether these structures are compatible with each other or not.

For example suppose we have group structure on a set and a topology then one would want to know whether multiplication and inverse are continuous functions or not. When it happens, the set in consideration is called **topological group**. One of the obvious question is following: given a topology on a set, can we find a compatible group structure which would make it a topological group?

Similarly one wonders when can a differentiable manifold be given compatible **Lie group** structure?
A differentiable manifold X is connected and locally looks like a ball in \mathbb{R}^n with no corners. Here n is fixed and it is known as the dimension of X.
Differentiable manifold

X = connected + locally looks like a ball in \mathbb{R}^n + no corners. Here n is fixed and it is known as dimension of X.

Figure: Self intersection
A differentiable manifold X is connected and locally looks like a ball in \mathbb{R}^n with no corners. Here n is fixed and it is known as the dimension of X.

Figure: Self intersection

Figure: Homeomorphism doesn’t preserve differentiable structure
Differentiable manifold

\[X = \text{connected} \oplus \text{locally looks like a ball in } \mathbb{R}^n \oplus \text{no corners}. \text{ Here } n \text{ is fixed and it is known as dimension of } X. \]

Figure: Self intersection

![Figure: Self intersection](image)

Figure: Homeomorphism doesn’t preserve differentiable structure

![Figure: Homeomorphism doesn’t preserve differentiable structure](image)

Example- Circle, Torus(product of manifolds), Sphere, etc.
Suppose X is a differentiable manifold.
Let $x \in X$.
Suppose X is a differentiable manifold.
Let $x \in X$.
Suppose $\alpha : (-\varepsilon, \varepsilon) \longrightarrow X \subseteq \mathbb{R}^m$ is a differentiable map.

Then $\dot{\alpha}(0) = \frac{d}{dt} \alpha(0)$ is defined.
This is called a Tangent Vector of X at x.

For example, one can see that every vector $v \in \mathbb{R}^l$ is vector to any point $x \in \mathbb{R}^l$.
Suppose X is a differentiable manifold. Let $x \in X$. Suppose $\alpha : (-\varepsilon, \varepsilon) \rightarrow X \subseteq \mathbb{R}^m$ is a differentiable map. Then $\dot{\alpha}(0) = \frac{d}{dt} \alpha(0)$ is defined. This is called a Tangent Vector of X at x. For example, one can see that every vector $v \in \mathbb{R}^l$ is a vector to any point $x \in \mathbb{R}^l$.

\begin{tikzpicture}
 \draw (0,0) .. controls (1,1) and (2,-1) .. (3,0);
 \draw[->] (2,1) -- (2,2);
 \node at (2,2.5) {x};
\end{tikzpicture}
Suppose X is a differentiable manifold. Let $x \in X$.
Suppose $\alpha : (-\varepsilon, \varepsilon) \rightarrow X \subseteq \mathbb{R}^m$ is a differentiable map.

Then $\dot{\alpha}(0) = \frac{d}{dt}\alpha(0)$ is defined.
This is called a Tangent Vector of X at x.
Suppose X is a differentiable manifold. Let $x \in X$.
Suppose $\alpha : (-\varepsilon, \varepsilon) \rightarrow X \subseteq \mathbb{R}^m$ is a differentiable map.

Then $\dot{\alpha}(0) = \frac{d}{dt}\alpha(0)$ is defined.
This is called a Tangent Vector of X at x.

For example- one can see that every vector $v \in \mathbb{R}^l$ is vector to any point $x \in \mathbb{R}^l$.
Let's consider S^2.
Vector space formed by all possible linearly independent tangent vectors is called the Tangent space of X at x and is denoted by $\tau_x X$.
Vector space formed by all possible linearly independent tangent vectors is called the Tangent space of X at x and is denoted by $\tau_x X$.

Since any manifold X locally looks like an open subset of sphere of dimension m so arguing in similar manner we have $\tau_x X$ is vector space of dimension m.
Let’s consider an assignment of tangent vector for each point in a manifold such that nearby points have nearby direction.
Let’s consider an assignment of tangent vector for each point in a manifold such that nearby points have nearby direction. Let’s consider following diagram of S^1 to make point clear-
Let’s consider an assignment of tangent vector for each point in a manifold such that nearby points have nearby direction. Let’s consider following diagram of S^1 to make point clear-
Let’s consider an assignment of tangent vector for each point in a manifold such that nearby points have nearby direction. Let’s consider following diagram of S^1 to make point clear-

This behaviour is called VARYING CONTINUOUSLY. Such a map is called vector field.
Let’s consider an assignment of tangent vector for each point in a manifold such that nearby points have nearby direction. Let’s consider following diagram of S^1 to make point clear-

This behaviour is called VARYING CONTINUOUSLY. Such a map is called vector field. A vector field v is called nowhere vanishing vector field if $v(x) \neq 0$ for any $x \in M$.
Existence

Lets try to see how a vector field on sphere would look.

We can see in this case that there are two points where vector field takes value zero. In fact— if we consider any continuous vector field on S^2, it takes value 0 at some point. Using degree of a map, one can check that if n is even then there can not be a nowhere vanishing vector field on S^n.
Existance(???)

Lets try to see how a vector field on sphere would look.

We can see in this case that there are two points where vector field takes value zero.

In fact, if we consider any continuous vector field on S^2, it takes value zero at some point.

Using degree of a map, one can check that if n is even then there can not be a nowhere vanishing vector field on S^n.

Lemma

Let M be a connected, compact, differentiable manifold. There exist a nowhere vanishing vector field on M if and only if Euler characteristic $\chi(M) = 0$.

Existsence(???)

Let's try to see how a vector field on sphere would look.

We can see in this case that there are two points where vector field takes value zero.
In fact- if we consider any continuous vector field on S^2, it takes value 0 at some point.
Let's try to see how a vector field on a sphere would look.

We can see in this case that there are two points where the vector field takes the value zero.

In fact, if we consider any continuous vector field on S^2, it takes the value 0 at some point. Using the degree of a map, one can check that if n is even, then there cannot be a nowhere vanishing vector field on S^n.
Lets try to see how a vector field on sphere would look.

We can see in this case that there are two points where vector field takes value zero.
In fact- if we consider any continuous vector field on S^2, it takes value 0 at some point.
Using degree of a map, one can check that if n is even then there can not be a nowhere vanishing vector field on S^n.

Lemma

*Let M be a connected, compact, differentiable manifold. There exist a nowhere vanishing vector field on M if and only if Euler characteristic $\chi(M) = 0$.***
Similarly we can ask whether we can find v_x, w_x for $x \in X$ such that v_x and w_x are linearly independent for every $x \in X$.

Consider torus T in \mathbb{R}^2. We know $T = S^1 \times S^1$. Let v denote nonzero everywhere linearly independent vector field for first copy of S^1 and w for second copy. Then $(v,0)$ and $(0,w)$ are nonzero everywhere linearly independent vector fields.

Note that if M is a differentiable manifold of dimension n then we can have at most n everywhere linearly independent vector fields.
Similarly we can ask whether we can find \(v_x, w_x \) for \(x \in X \) such that \(v_x \) and \(w_x \) are linearly independent for every \(x \in X \).

Consider torus \(T \) in \(\mathbb{R}^2 \). We know \(T = S^1 \times S^1 \).
Let \(v \) denote nonzero everywhere linearly independent vector field for first copy of \(S^1 \) and \(w \) for second copy. Then \((v, 0) \) and \((0, w) \) are nonzero everywhere linearly independent vector fields.
Similarly we can ask whether we can find v_x, w_x for $x \in X$ such that v_x and w_x are linearly independent for every $x \in X$.

Consider torus T in \mathbb{R}^2. We know $T = S^1 \times S^1$. Let v denote nonzero everywhere linearly independent vector field for first copy of S^1 and w for second copy. Then $(v, 0)$ and $(0, w)$ are nonzero everywhere linearly independent vector fields.
Similarly we can ask whether we can find v_x, w_x for $x \in X$ such that v_x and w_x are linearly independent for every $x \in X$.

Consider torus T in \mathbb{R}^2. We know $T = S^1 \times S^1$. Let v denote nonzero everywhere linearly independent vector field for first copy of S^1 and w for second copy. Then $(v, 0)$ and $(0, w)$ are nonzero everywhere linearly independent vector fields.

![Diagram of a torus with vectors v and w](image)

Note that if M is a differentiable manifold of dimension n then we can have at most n everywhere linearly independent vector fields.
It is a fact that if M is a Lie group of dimension n then we can find exactly n everywhere linearly independent vector fields.
It is a fact that if M is a Lie group of dimension n then we can find exactly n everywhere linearly independent vector fields.

Definition (Span of a differentiable manifold)

Let M be a differentiable manifold.

$\text{Span}(M) = \max\{r | \text{there are } r \text{ everywhere linearly independent vector fields on } M\}$

It is a fact that if M is a Lie group of dimension n then we can find exactly n everywhere linearly independent vector fields.

Definition (Span of a differentiable manifold)

Let M be a differentiable manifold.

$\text{Span}(M) = \max\{r \mid \text{there are } r \text{ everywhere linearly independent vector fields on } M\}$

If for a manifold M, we have $\text{span}(M) = \dim M$ then M is called parallelizable.
It is a fact that if M is a Lie group of dimension n then we can find exactly n everywhere linearly independent vector fields.

Definition (Span of a differentiable manifold)

Let M be a differentiable manifold.

$\text{Span}(M) = \max \{ r | \text{there are } r \text{ everywhere linearly independent vector fields on } M \}$

If for a manifold M, we have $\text{span}(M) = \dim M$ then M is called parallelizable.

Definition (Vector field problem)

For a given smooth, connected manifold M, the vector field problem asks for determining the span of M.
Milnor showed that the only parallelizable spheres are S^1, S^3 and S^7 using a theorem of Bott.
Milnor showed that the only parallelizable spheres are S^1, S^3 and S^7 using a theorem of Bott.

Also, from the works of Hurwitz and Radon, one obtains the following lower bound for the span of spheres:

Define $\rho(n) := 2c + 8d$, then

$$\text{span}(S^{n-1}) \geq \rho(n) - 1.$$
Milnor showed that the only parallelizable spheres are S^1, S^3 and S^7 using a theorem of Bott.

Also, from the works of Hurwitz and Radon, one obtains the following lower bound for the span of spheres: Write $n = (2a + 1)2^b$ and $b = c + 4d$ where a, b, c, d are integers and $0 \leq c \leq 3$.

One of the most efficient approaches to determine span of a differentiable manifold M is by considering tangent bundle τM as a bundle over M (not just as a manifold in its own right) and noticing that vector field is a section of τM.
Milnor showed that the only parallelizable spheres are S^1, S^3 and S^7 using a theorem of Bott.

Also, from the works of Hurwitz and Radon, one obtains the following lower bound for the span of spheres: Write $n = (2a + 1)2^b$ and $b = c + 4d$ where a, b, c, d are integers and $0 \leq c \leq 3$. Define $\rho(n) := 2^c + 8d$, then $\text{span}(S^{n-1}) \geq \rho(n) - 1$.
Milnor showed that the only parallelizable spheres are S^1, S^3 and S^7 using a theorem of Bott.

Also, from the works of Hurwitz and Radon, one obtains the following lower bound for the span of spheres: Write $n = (2a + 1)2^b$ and $b = c + 4d$ where a, b, c, d are integers and $0 \leq c \leq 3$. Define $\rho(n) := 2^c + 8d$, then $\text{span}(S^{n-1}) \geq \rho(n) - 1$.

Adams settled the vector field problem for spheres completely by proving that $\text{span}(S^{n-1}) \leq \rho(n) - 1$, which also implied that the only parallelizable spheres are S^1, S^3 and S^7.
Milnor showed that the only parallelizable spheres are \(S^1 \), \(S^3 \) and \(S^7 \) using a theorem of Bott.

Also, from the works of Hurwitz and Radon, one obtains the following lower bound for the span of spheres: Write \(n = (2a + 1)2^b \) and \(b = c + 4d \) where \(a, b, c, d \) are integers and \(0 \leq c \leq 3 \). Define \(\rho(n) := 2^c + 8d \), then
\[
\text{span}(S^{n-1}) \geq \rho(n) - 1.
\]

Adams settled the vector field problem for spheres completely by proving that
\[
\text{span}(S^{n-1}) \leq \rho(n) - 1,
\]
which also implied that the only parallelizable spheres are \(S^1 \), \(S^3 \) and \(S^7 \).

One of the most efficient approach to determine span of a differentiable manifold \(M \) is by considering tangent bundle \(\tau M \) as a bundle over \(M \) (not just as a manifold in its own right) and noticing that vector field is a section of \(\tau M \).
Milnor showed that the only parallelizable spheres are S^1, S^3 and S^7 using a theorem of Bott.

Also, from the works of Hurwitz and Radon, one obtains the following lower bound for the span of spheres: Write $n = (2a + 1)2^b$ and $b = c + 4d$ where a, b, c, d are integers and $0 \leq c \leq 3$. Define $\rho(n) := 2^c + 8d$, then $\text{span}(S^{n-1}) \geq \rho(n) - 1$.

Adams settled the vector field problem for spheres completely by proving that $\text{span}(S^{n-1}) \leq \rho(n) - 1$, which also implied that the only parallelizable spheres are S^1, S^3 and S^7.

One of the most efficient approach to determine span of a differentiable manifold M is by considering tangent bundle τM as a bundle over M (not just as a manifold in its own right) and noticing that vector field is a section of τM i.e.

\[
\begin{align*}
M & \xrightarrow{\nu} \tau M \\
\xrightarrow{id} & \\
\tau M & \xrightarrow{\pi_1} M
\end{align*}
\]
Definition (Parallelizability, stable parallelizability)

- M is differentiable manifold.
- M is parallelizable $\iff \tau_M \sim \mathbb{R}^{\dim(M)} \oplus \epsilon \mathbb{R}$
- M is stably parallelizable $\iff \tau_M \oplus \epsilon \mathbb{R} \sim \mathbb{R}^{\dim(M) + 1} \oplus \theta$ for some vector bundle θ.

Definition (Span, stable span)

- $\text{span}(M) := \max \{ r | \tau_M \sim \mathbb{R}^r \oplus \eta \}$ for some vector bundle η.
- $\text{stable span}(M) := \max \{ s | \tau_M \oplus \epsilon \mathbb{R} \sim \mathbb{R}^{s+1} \oplus \theta \}$ for some vector bundle θ.

Definition (Vector field problem)

For a given smooth, connected manifold M, the vector field problem asks for determining the span of M.
Definition (Parallelizability, stable parallelizability)

M - differentiable manifold.

M is parallelizable $\iff \tau_M \sim \mathbb{R}^{\dim(M)} \oplus \mathbb{R}^s$ for some vector bundle η.

M is stably parallelizable $\iff \tau_M \oplus \mathbb{R}^s \sim \mathbb{R}^{\dim(M) + 1} \oplus \theta$ for some vector bundle θ.

Definition (Span, stable span)

$\text{span}(M) := \max \{ r \mid \tau_M \sim \mathbb{R}^r \oplus \eta \}$ for some vector bundle η.

$\text{stable span}(M) := \max \{ s \mid \tau_M \oplus \mathbb{R}^s \sim \mathbb{R}^{s+1} \oplus \theta \}$ for some vector bundle θ.

Definition (Vector field problem)

For a given smooth, connected manifold M, the vector field problem asks for determining the span of M.

Definition (Parallelizability, stable parallelizability)

M - differentiable manifold.

M is parallelizable $\iff \tau M \cong_R (\dim(M))\varepsilon_R$

Definition (Span(M), stable span(M))

$\text{span}(M) := \max \{ r \mid \tau M \cong_R \varepsilon_R \oplus \eta \text{ for some vector bundle } \eta \}$

$\text{stable span}(M) := \max \{ s \mid \tau M \oplus \varepsilon_R \cong_R (s + 1) \varepsilon_R \oplus \theta \text{ for some vector bundle } \theta \}$
Definition (Parallelizability, stable parallelizability)

M - differentiable manifold.

M is parallelizable $\iff \tau M \cong_{\mathbb{R}} (\dim(M))\varepsilon_{\mathbb{R}}$

M is stably parallelizable $\iff \tau M \oplus \varepsilon_{\mathbb{R}} \cong_{\mathbb{R}} (\dim(M) + 1)\varepsilon_{\mathbb{R}}$.
Definition (Parallelizability, stable parallelizability)

\(M \) - differentiable manifold.

\(M \) is parallelizable \(\iff \) \(\tau M \cong_{\mathbb{R}} (\dim(M))\varepsilon_{\mathbb{R}} \)

\(M \) is stably parallelizable \(\iff \) \(\tau M \oplus \varepsilon_{\mathbb{R}} \cong_{\mathbb{R}} (\dim(M) + 1)\varepsilon_{\mathbb{R}} \).

Definition (Span(\(M \)), stable span(\(M \)))
Definition (Parallelizability, stable parallelizability)

M - differentiable manifold.

M is parallelizable $\iff \tau M \cong_{\mathbb{R}} (\dim(M))\mathbb{R}$

M is stably parallelizable $\iff \tau M \oplus \mathbb{R} \cong_{\mathbb{R}} (\dim(M) + 1)\mathbb{R}.$

Definition (Span(M), stable span(M))

$\text{span}(M) := \max\{r \mid \tau M \cong_{\mathbb{R}} r\mathbb{R} \oplus \eta \text{ for some vector bundle } \eta\}.$
Definition (Parallelizability, stable parallelizability)

M - differentiable manifold.

M is parallelizable $\iff \tau M \cong_{\mathbb{R}} (\dim(M))\varepsilon_{\mathbb{R}}$

M is stably parallelizable $\iff \tau M \oplus \varepsilon_{\mathbb{R}} \cong_{\mathbb{R}} (\dim(M) + 1)\varepsilon_{\mathbb{R}}$.

Definition (Span(M), stable span(M))

$\text{span}(M) := \max \{ r \mid \tau M \cong_{\mathbb{R}} r\varepsilon_{\mathbb{R}} \oplus \eta \text{ for some vector bundle } \eta \}$.

stable span(M) := $\max \{ s \mid \tau M \oplus \varepsilon_{\mathbb{R}} \cong_{\mathbb{R}} (s + 1)\varepsilon_{\mathbb{R}} \oplus \theta \text{ for some vector bundle } \theta \}$.
Definition (Parallelizability, stable parallelizability)

M - differentiable manifold.

M is parallelizable $\iff \tau M \cong_{\mathbb{R}} (\dim(M))\mathbb{R}$

M is stably parallelizable $\iff \tau M \oplus \mathbb{R} \cong_{\mathbb{R}} (\dim(M) + 1)\mathbb{R}$.

Definition (Span(M), stable span(M))

$\text{span}(M) := \max\{r \mid \tau M \cong_{\mathbb{R}} r\mathbb{R} \oplus \eta \text{ for some vector bundle } \eta\}$.

stable span$(M) := \max\{s \mid \tau M \oplus \mathbb{R} \cong_{\mathbb{R}} (s + 1)\mathbb{R} \oplus \theta \text{ for some vector bundle } \theta\}$.

Definition (Vector field problem)

For a given smooth, connected manifold M, the vector field problem asks for determining the span of M.
Notice following:
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$.

Problem is that we can't differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible.

We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Let's recall some of them here.

(i) If $n \equiv 0 \pmod{2}$, then $\text{span}(M) = 0$ or stable $\text{span}(M)$.

(ii) If $n \equiv 1 \pmod{4}$ and $w_2(M) = 0$, then $\text{span}(M) = 1$ or stable $\text{span}(M)$.

(iii) If $n \equiv 3 \pmod{8}$ and $w_1(M) = w_2(M) = 0$, then $\text{span}(M) = 3$ or stable $\text{span}(M)$.

Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then $\text{span}(M) = 0$ or $\text{stable span}(M)$.

(ii) If $n \equiv 1 \pmod{4}$ and $w_2(M) = 0$, then $\text{span}(M) = 1$ or $\text{stable span}(M)$.

(iii) If $n \equiv 3 \pmod{8}$ and $w_1(M) = w_2(M) = 0$, then $\text{span}(M) = 3$ or $\text{stable span}(M)$.
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating span(M). Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Lets recall some of them here.
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Let’s recall some of them here.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then $\text{span}(M) = 0$ or $\text{stable span}(M)$.

(ii) If $n \equiv 1 \pmod{4}$ and $w_2(M) = 0$, then $\text{span}(M) = 1$ or $\text{stable span}(M)$.

(iii) If $n \equiv 3 \pmod{8}$ and $w_1(M) = w_2(M) = 0$, then $\text{span}(M) = 3$ or $\text{stable span}(M)$.

Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can't differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Lets recall some of them here.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then

$$\text{span}(M) = 0 \text{ or stable span}(M)$$
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Lets recall some of them here.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then

$$\text{span}(M) = 0 \text{ or stable } \text{span}(M)$$

(ii) If $n \equiv 1 \pmod{4}$ and $w_1^2(M) = 0$, then

$$\text{span}(M) = 1 \text{ or stable } \text{span}(M).$$
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can't differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Let's recall some of them here.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then

$$\text{span}(M) = 0 \text{ or } \text{stable span}(M)$$

(ii) If $n \equiv 1 \pmod{4}$ and $w_1^2(M) = 0$, then

$$\text{span}(M) = 1 \text{ or stable span}(M).$$

(iii) If $n \equiv 3 \pmod{8}$ and $w_1(M) = w_2(M) = 0$, then

$$\text{span}(M) = 3 \text{ or stable span}(M).$$
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):

\[W_{n,k} = \text{space of all unitary } k \text{-frames in } \mathbb{C}^n. \]

That is, \((v_1, \ldots, v_k) \in W_{n,k} \) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1 \) and \(\langle v_i, v_j \rangle = 0 \) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\).

Equivalently we have \(W_{n,k} = U(n) / U(n-k) \) where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).

Let \(m \in \mathbb{N}\). \(\Gamma_m \subset S^1\), \(\Gamma_m\) subgroup generated by a primitive \(m\)-th root of unity.

\(\Gamma_m\) acts on \(W_{n,k}\) by \(z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k)\) where \(z \in \Gamma_m\).

We denote the orbit space by \(W_{n,k}; m\) and it will be referred to as the \(m\)-projective Stiefel manifolds.

Notice that when \(k = 1\), \(W_{n,1}; m = L_n(m)\) lens space.
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):

\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):

\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]

That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\).
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):
\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \] That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\). Equivalently we have
\[W_{n,k} = U(n)/U(n-k) \] where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):

\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]

That is, \((\nu_1, \ldots, \nu_k) \in W_{n,k}\) if and only if \(\nu_i \in \mathbb{C}^n, \langle \nu_i, \nu_i \rangle = 1\) and \(\langle \nu_i, \nu_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\). Equivalently we have

\[W_{n,k} = U(n)/U(n-k) \]

where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).

Let \(m \in \mathbb{N}\).
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):
\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]
That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\). Equivalently we have
\[W_{n,k} = U(n)/U(n-k) \]
where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).
Let \(m \in \mathbb{N}\).
\(\Gamma_m \subset S^1\), \(\Gamma_m\) subgroup generated by a primitive \(m\text{-th}\) root of unity.
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):
\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]
That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\). Equivalently we have
\[W_{n,k} = U(n)/U(n-k) \]
where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).

Let \(m \in \mathbb{N}\).
\(\Gamma_m \subset S^1\), \(\Gamma_m\) subgroup generated by a primitive \(m\)-th root of unity.
\(\Gamma_m\) acts on \(W_{n,k}\) by
\[
z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \quad \text{where } z \in \Gamma_m.
\]
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):
\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]
That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n\), \(\langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\). Equivalently we have
\[W_{n,k} = U(n)/U(n - k) \]
where \(U(n - k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).

Let \(m \in \mathbb{N}\).

\(\Gamma_m \subset S^1\), \(\Gamma_m\) subgroup generated by a premitive \(m\text{-th}\) root of unity.
\(\Gamma_m\) acts on \(W_{n,k}\) by
\[z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \text{ where } z \in \Gamma_m. \]

We denote the orbit space by \(W_{n,k;m}\) and it will be referred to as the \(m\text{-projective Stiefel manifolds}\).
We are considering following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):
\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]
That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\). Equivalently we have
\[W_{n,k} = U(n)/U(n-k) \]
where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).

Let \(m \in \mathbb{N}\).
\(\Gamma_m \subset S^1\), \(\Gamma_m\) subgroup generated by a premitive \(m\)-th root of unity.
\(\Gamma_m\) acts on \(W_{n,k}\) by

\[z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \quad \text{where } z \in \Gamma_m. \]

We denote the orbit space by \(W_{n,k;m}\) and it will be referred to as the \(m\)-projective Stiefel manifolds. Notice that when \(k = 1\), \(W_{n,1;m} = L^n(m)\) lens space.
We are considering the following manifold (which is a quotient of complex Stiefel manifold by a finite central subgroup):

\[W_{n,k} = \text{space of all unitary } k\text{-frames in } \mathbb{C}^n. \]
That is, \((v_1, \ldots, v_k) \in W_{n,k}\) if and only if \(v_i \in \mathbb{C}^n, \langle v_i, v_i \rangle = 1\) and \(\langle v_i, v_j \rangle = 0\) if \(i \neq j\) where \(\langle , \rangle\) denotes the standard Hermitian metric on \(\mathbb{C}^n\).

Equivalently we have

\[W_{n,k} = U(n)/U(n-k) \]
where \(U(n-k)\) is imbedded in \(U(n)\) as the subgroup that fixes the first \(k\) standard basis vectors \(e_1, \ldots, e_k \in \mathbb{C}^n\).

Let \(m \in \mathbb{N}\).

\(\Gamma_m \subset S^1\), \(\Gamma_m\) subgroup generated by a primitive \(m\)-th root of unity.
\(\Gamma_m\) acts on \(W_{n,k}\) by

\[z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \quad \text{where} \quad z \in \Gamma_m. \]

We denote the orbit space by \(W_{n,k;m}\) and it will be referred to as the \(m\)-projective Stiefel manifolds.

Notice that when \(k = 1\), \(W_{n,1;m} = L^n(m)\) lens space.

One can see that \(W_{n,k;m} = U(n)/(\mathbb{Z}_m \times U(n-k))\).
Proposition

Let $2 \leq k < n$ and let $m \geq 2$. One has

$$\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})$$

in each of the following cases: (i) k is even, (ii) n is odd, and (iii) $n \equiv 2 \pmod{4}$.

Theorem

If there exists an $r \geq 1$ such that $(nk)^r$ is not divisible by m^2, then $W_{n,k;m}$ is not stably parallelizable. In particular, if $W_{n,k;m}$ is stably parallelizable, then m divides nk.

We are trying to refine these results and wish to solve vector field problem for m-projective space completely.
Proposition

Let \(2 \leq k < n\) and let \(m \geq 2\). One has

\[
\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})
\]

in each of the following cases: (i) \(k\) is even, (ii) \(n\) is odd, and (iii) \(n \equiv 2 \pmod{4}\).

Theorem

If there exists an \(r \geq 1\) such that \(\binom{nk}{r}\) is not divisible by \(m^{2r}\), then \(W_{n,k;m}\) is not stably parallelizable. In particular, if \(W_{n,k;m}\) is stably parallelizable, then \(m\) divides \(nk\).
Proposition
Let $2 \leq k < n$ and let $m \geq 2$. One has

$$\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})$$

in each of the following cases: (i) k is even, (ii) n is odd, and (iii) $n \equiv 2 \pmod{4}$.

Theorem

If there exists an $r \geq 1$ such that $\binom{nk}{r}$ is not divisible by m_{2r}, then $W_{n,k;m}$ is not stably parallelizable. In particular, if $W_{n,k;m}$ is stably parallelizable, then m divides nk.

We are trying to refine these results and wish to solve vector field problem for m-projective space completely.
Thank you!