
RESTRICTED SET ADDITION IN GROUPS, I.

THE CLASSICAL SETTING

VSEVOLOD F. LEV

Abstract. We survey the existing and prove several new results for the cardinality of
the restricted doubling 2̂ A = {a′+a′′ : a′, a′′ ∈ A, a′ 6= a′′}, where A ⊆ G is a subset of
the set of elements of an (additively written) group G. In particular, we improve known
estimates for G = Z and G = Z/pZ and give a first-of-a-kind general estimate valid for
arbitrary G.

1. Background, motivation and summary of results

Let G be an arbitrary group. We use additive notation for the group operation in G,

as all particular groups that appear in this paper (excluding the Appendix) are Abelian;

however, no commutativity is assumed in general, unless indicated explicitly.

Let A ⊆ G and B ⊆ G be finite non-empty subsets of the set of all elements of G.

How small can be the set

A+B = {a+ b : a ∈ A, b ∈ B}
of all elements representable as a sum of an element of A and an element of B? Though

this and related problems are studied in numerous papers, almost nothing is known about

the cardinality of the set

A +̂B = {a+ b : a ∈ A, b ∈ B, a 6= b}
of all sums with distinct summands. We are primarily interested in B = A and we

abbreviate 2A = A + A and 2̂ A = A +̂A.

The first case one might think of is G = Z, the group of integers. Here we can shift A

to make its minimum element 0 and then divide through all the shifted elements by their

greatest common divisor — this normalization, clearly, does not affect the cardinalities

of 2A and 2̂ A. We denote then by l the maximum element of, and by n the cardinality

of A. Thus, there is no loss of generality in writing

A ⊆ [0, l], 0, l ∈ A, gcd(A) = 1, |A| = n.

It was proved by G. Freiman over 30 years ago (see [5]) that under this notation

|2A| ≥ min{l, 2n− 3}+ n =

{
l + n, if l ≤ 2n− 3,

3n− 3 if l ≥ 2n− 2,
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equality being attained, for instance, for A = {0, . . . , n − 2} ∪ {l} in which case 2A =

{0, . . . , 2n− 4} ∪ {l, . . . , l + n− 2} ∪ {2l}.
Oddly enough, no parallel result for 2̂ A has ever been obtained, though one was

conjectured by Freiman (personal communication) and independently by the present

author.

Conjecture 1. Let A be a set of n > 7 integers such that A ⊆ [0, l], 0, l ∈ A and

gcd(A) = 1. Then

|2̂ A| ≥ min{l, 2n− 5}+ n− 2 =

{
l + n− 2, if l ≤ 2n− 5,

3n− 7, if l ≥ 2n− 4.

This is the strongest possible assertion of this kind, as letting A = {0, . . . , n − 3} ∪
{l−1, l} we get 2̂ A = {1, . . . , 2n−7}∪{l−1, . . . , l+n−3}∪{2l−1}. (More generally,

choose A = {0, d, . . . , (n1−1)d}∪{l− (n−n1−1)d, . . . , l−d, l} with 2 ≤ n1 ≤ n−2 and

d ≥ 1 small enough.) The condition n > 7 is necessary due to a singularity for n = 7:

consider A = {0, 1, m− 1, m,m+ 1, 2m− 1, 2m} with m = l/2 sufficiently large.

The trivial estimate is this.

Lemma 1. Let A,B ⊆ Z be finite sets of integers. Then

|A +̂B| ≥ |A|+ |B| − 3.

Proof. Write A = {a1, . . . , an} and B = {b1, . . . , bm}, the elements being arranged in

increasing order. Then among the n+m− 1 distinct sums

a1 + b1, . . . , a1 + bm, a2 + bm, . . . , an + bm

at most two do not belong to A +̂B. �

Notice, that equality is attained when A = B is an arithmetic progression.

Not counting Lemma 1, the only known result in this direction is proved in [6].

Theorem A (Freiman, Low, Pitman [6]). Let A be a set of n ≥ 2 integers such that

A ⊆ [0, l], 0, l ∈ A and gcd(A) = 1. Then

|2̂ A| ≥ 1

2
min{l, 2n− 3}+ 3

2
n− 7

2
=

{
0.5(l + n) + n− 3.5, if l ≤ 2n− 3,

2.5n− 5, if l ≥ 2n− 2.

In this paper we get somewhat nearer to Conjecture 1.

Theorem 1. Let A be a set of n ≥ 3 integers such that A ⊆ [0, l], 0, l ∈ A, and

gcd(A) = 1. Then

|2̂ A| ≥
{
l + n− 2, if l ≤ 2n− 5,

(θ + 1)n− 6, if l ≥ 2n− 4,

where θ = (1 +
√
5)/2 ≈ 1.61 is the “golden mean.”
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This theorem will be proved in Sections 2 and 3 using our reduction method developed

in [10, 11, 12]. Very roughly, this method can be described as follows. We consider the

image Ā ⊆ Z/lZ of A under the canonical homomorphism of Z onto Z/lZ (the set of

residues modulo l), and we derive estimates for |2̂ A| from those for |2̂ Ā|. The problem,

however, is that very little is known about |2̂ Ā|. All papers published so far concentrate

on the Erdős-Heilbronn conjecture, proposed in [4] and proved in [3]; in particular, the

moduli under consideration are prime.

Theorem B (Dias da Silva, Hamidoune; conjectured by Erdős and Heilbronn). Let

Ā ⊆ Z/pZ and B̄ ⊆ Z/pZ be sets of residues modulo a prime number p. Then

|Ā +̂ B̄| ≥ min{|Ā|+ |B̄| − 3, p}.

In [1, 2], Alon, Nathanson, and Ruzsa gave another and easier proof, which also yields

similar estimates for the number of sums a+ b with P (a, b) 6= 0, where P is an arbitrary,

fixed polynomial. (Theorem B is obtained for P (x, y) = x− y.)

For sparse sets of residues, Freiman, Low, and Pitman were able to go further: using

their Theorem A, they described all Ā ⊆ Z/pZ such that the cardinality of 2̂ Ā slightly

exceeds the minimum possible value.

Theorem C (Freiman, Low, Pitman [6]). Let Ā ⊆ Z/pZ be a set of n residues modulo

a prime p, where 60 < n < p/50. Suppose that |2̂ Ā| ≤ 2.06n− 3. Then Ā is contained

in an arithmetic progression of at most 2|2̂ Ā| − 3n+ 8 terms.

Using our Theorem 1 (instead of Theorem A) and following the method of Freiman,

Low, and Pitman otherwise, we prove in Section 4 the following.

Theorem 2. Let Ā ⊆ Z/pZ be a set of n residues modulo a prime p, where 200 ≤ n ≤
p/50. Suppose that |2̂ Ā| ≤ 2.18n− 6. Then Ā is contained in an arithmetic progression

of at most |2̂ Ā| − n+ 3 terms.

Here the expression |2̂ Ā| − n + 3 is best possible, as the above example shows, when

reduced modulo p:

Ā = {0, 1, . . . , n− 3} ∪ {l − 1, l} ⊆ Z/pZ, n− 1 ≤ l ≤ 1.18n− 4.

Conjecturally, the restriction |2̂ A| ≤ 2.18n−6 can be relaxed to |2̂ A| < 3n−7, and the

bound p/50 can be replaced by (p − C)/2 with a relatively small absolute constant C;

this, however, is far beyond the reach of our methods. In fact, the constants 50 and 200

are of a technical nature and can be varied in a certain range. In particular, 1/50 can be

increased to 1/35 at the expense of increasing 200 to a very large number, like 15, 000.

The attentive reader may have noticed a logical problem: to prove a result for residues

(Theorem 2) we need a result for integers (Theorem 1), while the proof of the latter

is based on a reduction back to the residues case. For the “regular” (not restricted)
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doubling 2A this problem is overcome by an application of Kneser’s theorem to the set

Ā ⊆ Z/lZ.
Given an Abelian group G and a set C ⊆ G, the period H = H(C) of C is defined by

H = {h ∈ G : C + h = C}.
Observe that H ⊆ G is a subgroup and that C is a union of a number of H-cosets. If

H 6= {0}, then C is said to be periodic.

Kneser’s theorem (see [8, 9]) is the following.

Theorem D (Kneser). Let A and B be finite sets of elements of an Abelian group G,

and write H = H(A+B). Suppose that |A+B| ≤ |A|+ |B| − 1. Then

|A+B| = |A+H|+ |B +H| − |H|.

Therefore, H 6= {0} when |A+B| < |A|+ |B| − 1:

Corollary 1. Let A and B be finite sets of elements of an Abelian group G, and suppose

that |A+B| < |A|+ |B| − 1. Then A +B is periodic.

Though this is not obvious at first glance, Theorem D is equivalent to Corollary 1 in

the sense that the former can be easily derived from the latter.

No analogue of Kneser’s theorem is known for the restricted sum A +̂B. However,

heuristic arguments suggest that non-trivial conclusions about A +̂B can be drawn,

provided |A +̂B| < |A| + |B| − (L + 2), where L = L(G) is the maximum number of

pairwise distinct elements of G that share a common doubling:

(1) L(G) = max
g1,...,gλ∈G

gi 6=gj (1≤i<j≤λ)
2g1=···=2gλ

λ.

We call L(G) the doubling constant of the group G. Note that for G = Z/lZ we have

L(G) = δ2(l) + 1,

δ2(l) =

{
1, if 2 | l,
0, if 2 ∤ l.

Some group-theoretic properties of the constant L(G) are discussed in the Appendix.

Actually, Kneser’s theorem can be successfully applied in the restricted doubling con-

text if A +̂B = A + B; and in the remaining case A +̂B 6= A + B (meaning that there

exists an element in A + B not representable as a + b with a 6= b) we conjecture the

following.

Conjecture 2. Let G be an Abelian group with the doubling constant L = L(G). Then

|A +̂B| ≥ |A|+ |B| − (L+ 2)

for any finite A,B ⊆ G such that A +̂B 6= A+B.
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We show that this conjecture, and even its special case B = A, yields

|2̂ A| ≥ min{l, 2n− 5− δ2(l)}+ n− 2

(where A is a set of n integers such that A ⊆ [0, l], 0, l ∈ A and gcd(A) = 1) which is

almost as strong as Conjecture 1. We believe that the “lost” 1 can be recovered, but

perhaps it makes no sense to hunt for it until Conjecture 2 is proved.

We note that a classical result of Kemperman [7, Theorem 2] implies that |A + B| ≥
|A|+ |B| −L under the same condition A +̂B 6= A+B, but his method doesn’t seem to

be applicable to estimates of |A +̂B|.
In the present paper (Section 3) we use a combinatorial argument to give a partial

proof of Conjecture 2 in the case B = A. Actually, we go somewhat further by omitting

the commutativity requirement.

Theorem 3. Let G be an arbitrary group with the doubling constant L = L(G). Then

|2̂ A| > θ|A| − (L+ 2); θ = (1 +
√
5)/2

for any finite A ⊆ G such that 2̂ A 6= 2A.

We can now outline the plan of attack on Theorems 1 and 2. Given a set of integers

A ⊆ [0, l], we consider its reduction Ā ⊆ Z/lZ. By Theorem 3 as applied to G = Z/lZ,
either |2̂ Ā| is large, or 2̂ Ā = 2Ā. In the former case it is not difficult to see that |2̂ A|
is also large; in the latter case we use Kneser’s theorem to derive structure information

about 2Ā which allows us to complete the proof of Theorem 1. Once Theorem 1 is

proved, we use it in conjunction with the method of Freiman, Low and Pitman to prove

Theorem 2.

2. Reduction method

With possible generalizations in mind, we formulate and prove the following lemma

for h-fold restricted addition, h ≥ 2. The corresponding restricted sums are defined in

the natural way:

hˆA = {a1 + · · ·+ ah : ai ∈ A (1 ≤ i ≤ h), ai 6= aj (1 ≤ i < j ≤ h)}.

Our convention for using overlined symbols: given an integer l ≥ 2, overlined characters

are used for objects (sets or elements) in Z/lZ, and same characters without the overline

sign are used for their pre-images in Z.

Lemma 2. Let A ⊆ [0, l] be a set of integers such that 0, l ∈ A. Write A′ = A\{0, l} and

let Ā ⊆ Z/lZ be the image of A under the canonical homomorphism Z → Z/lZ. Then

|hˆA| ≥ |hˆĀ|+ |(h− 1)̂ A′|.
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Proof. We have:

|hˆA|
(1)

≥
∑

c̄∈hˆĀ

#{pre-images of c̄ in hˆA}

=
∑

c̄∈hˆĀ

(
#{pre-images of c̄ in hˆA} − 1

)
+ |hˆĀ|

(2)

≥
∑

c̄∈(h−1)̂ Ā′

(#{pre-images of c̄ in hˆA} − 1) + |hˆĀ|

(3)

≥
∑

c̄∈(h−1)̂ Ā′

#{pre-images of c̄ in (h− 1)̂ A′}+ |hˆĀ|

(4)
= |(h− 1)̂ A′|+ |hˆĀ|.

Explanations follow.

(1) Each element of hˆĀ has at least one pre-image in hˆA and distinct elements,

plainly, have distinct pre-images;

(2) (h− 1)̂ Ā′ ⊆ hˆĀ, as 0 ∈ Ā \ Ā′;

(3) If c1 < · · · < cs are distinct pre-images of c̄ in (h−1)̂ A′, then c1 < · · · < cs < cs+l

are distinct pre-images of c̄ in hˆA;

(4) Each element of (h − 1)̂ Ā′ has a pre-image in (h − 1)̂ A′, and each element of

(h− 1)̂ A′ has an image in (h− 1)̂ Ā′.

�

Below, we need only a particular case of Lemma 2.

Corollary 2. Let A ⊆ [0, l] be a set of n = |A| integers such that 0, l ∈ A, and let Ā be

the canonical image of A in Z/lZ. Then

|2̂ A| ≥ |2̂ Ā|+ n− 2.

Proof. Apply Lemma 2 with h = 2 and observe that |A′| = n− 2. �

In fact, a straightforward proof of Corollary 2 would be a bit simpler than the proof

of Lemma 2: just notice that each element of 2̂ Ā has a pre-image in 2̂ A, and that the

n− 2 elements ā (where a ∈ A \ {0, l}) each have two distinct origins in 2̂ A, namely a

and a + l.

The following is a striking, but probably useless consequence.

Corollary 3. Conjecture 1 holds if l is a prime number. That is,

|2̂ A| ≥ min{l, 2n− 5}+ n− 2,

where A ⊆ [0, l], 0, l ∈ A, n = |A| and l is prime.
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Proof. Apply Corollary 2 and observe that

|2̂ Ā| ≥ min{l, 2n− 5}
by Theorem B (as 2|Ā| − 3 = 2(n− 1)− 3 = 2n− 5). �

Our next corollary is less impressive, but more important; it establishes Conjecture 1

in the particular case of “large” restricted doubling 2̂ Ā.

Corollary 4. Let A ⊆ [0, l] be a set of n = |A| ≥ 3 integers such that 0, l ∈ A, and let

Ā ∈ Z/lZ be the canonical image of A in Z/lZ. Suppose that |2̂ Ā| ≥ 2|Ā| − 3. Then

|2̂ A| ≥ 3n− 7.

Proof. This follows immediately from Corollary 2. �

Another conclusion is that Conjecture 1 holds if l ≤ 2n− 5.

Corollary 5. Let A ⊆ [0, l] be a set of n = |A| integers such that 0, l ∈ A, and suppose

that l ≤ 2n− 5. Then

|2̂ A| ≥ l + n− 2.

Proof. In view of Corollary 2, it suffices to show that 2̂ Ā = Z/lZ. Indeed, let c̄ be an

arbitrary element of Z/lZ. Since |Ā| + |c̄− Ā| = 2|Ā| = 2n − 2 ≥ l + 3, the sets Ā and

c̄ − Ā intersect by at least three distinct elements and therefore we have at least three

distinct representations

c̄ = ā′i + ā′′i ; ā′i, ā
′′
i ∈ Ā (i = 1, 2, 3).

Now, at least one of the pairs (ā′i, ā
′′
i ) satisfies ā′′i 6= ā′i — otherwise 2ā′1 = 2ā′2 = 2ā′3,

which contradicts L(Z/lZ) ≤ 2. �

While Lemma 2 provides a relatively simple application of the reduction method, the

following result is more technical. Establishing Conjecture 1 for 2̂ Ā = 2Ā, it will allow

us to restrict attention to the case when 2̂ Ā is distinct from 2Ā.

Lemma 3. Let A ⊆ [0, l] be a set of n = |A| ≥ 3 integers such that 0, l ∈ A and

gcd(A) = 1. Furthermore, let Ā be the canonical image of A in Z/lZ, and suppose that

2̂ Ā = 2Ā. Then

|2̂ A| ≥ min{l, 2n− 5}+ n− 2.

Proof. By Corollary 4, we can assume

(2) |2̂ Ā| = |2Ā| ≤ 2|Ā| − 4.

Let H = H(2Ā) be the period of 2Ā. By Kneser’s theorem (Theorem D),

|H| = 2|Ā+H| − |2Ā| ≥ 2|Ā| − (2|Ā| − 4) = 4.
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Obviously, Ā+H ⊆ 2Ā (as Ā ⊆ 2Ā), and without loss of generality we confine ourselves

to the case Ā +H $ 2Ā: otherwise,

2Ā = 2Ā+H = Ā+ (Ā +H) = 3Ā = 2Ā+H + Ā = 4Ā = · · · = Z/lZ

(as Ā generates Z/lZ in view of gcd(A) = 1) and by Corollary 2,

|2̂ A| ≥ |2̂ Ā|+ n− 2 = |2Ā|+ n− 2 = l + n− 2.

We now write

2̂ Ā = Ā ∪
(
(Ā+H) \ Ā

)
∪
(
2̂ Ā \ (Ā+H)

)

and we subdivide the elements c ∈ 2̂ A into three classes depending on the set in the

right-hand side that c̄ falls into. The total number of elements c in each class is then

counted separately.

(i) #{c ∈ 2̂ A : c̄ ∈ Ā} ≥ 2n − 3: write A = {a1, . . . , an} (where ai < ai+1, i =

1, . . . , n− 1) and consider

a1 + a2 < · · · < a1 + an−1 < a1 + an < a2 + an < · · · < an−1 + an.

(ii) #{c ∈ 2̂ A : c̄ ∈ (Ā +H) \ Ā} ≥ |Ā+H| − |Ā|: indeed, as (Ā +H) \ Ā ⊂ 2̂ Ā, any

element of (Ā+H) \ Ā has at least one pre-image in 2̂ A.

(iii) #{c ∈ 2̂ A : c̄ ∈ 2̂ Ā \ (Ā + H)} ≥ 2|Ā| − |Ā + H| − 3. This is the estimate. To

prove it, we first notice that 2̂ Ā \ (Ā + H) consists of N = (|2̂ Ā| − |Ā +H|)/|H| > 0

H-cosets, each of the form ā1 + ā2 + H with some a1, a2 ∈ A \ {0, l} and āi /∈ H . Let

Ai = {a ∈ A : ā ∈ āi +H} (i = 1, 2). Then

|Ai| = |Āi| = |H| − |(āi +H) \ Āi| = |H| − |(āi +H) \ Ā|
≥ |H| − |(Ā+H) \ Ā| = |Ā|+ |H| − |Ā+H|.

Thus by Lemma 1,

|A1 +̂A2| ≥ |A1|+ |A2| − 3 ≥ 2|Ā|+ 2|H| − 2|Ā+H| − 3,

and we denote the right-hand side by K. Therefore, the elements of each H-coset (of the

N that comprise 2̂ Ā \ (Ā+H)) have together at least K pre-images in 2̂ A. Moreover,

by (2) and Kneser’s theorem,

K ≥ |2Ā|+ 1 + 2|H| − 2|Ā+H| ≥ |H|+ 1,

and we can bound the quantity in question from below by

KN = (K − |H|)(N − 1) +K +N |H| − |H|
≥ K +N |H| − |H|
= |2̂ Ā| − 3|Ā+H|+ 2|Ā|+ |H| − 3

= 2|Ā| − |Ā+H| − 3.



RESTRICTED SET ADDITION 9

(We used here Kneser’s theorem a third time.)

Finally, putting together the estimates of (i), (ii), and (iii) we get

|2̂ A| ≥ (2n− 3) + (|Ā+H| − |Ā|) + (2|Ā| − |Ā+H| − 3)

= 2n+ |Ā| − 6

= 3n− 7,

completing the proof. �

The connection between Conjectures 1 and 2 now becomes apparent.

Corollary 6. Let A ⊆ [0, l] be a set of n = |A| ≥ 3 integers such that 0, l ∈ A and

gcd(A) = 1. Then, assuming Conjecture 2, we have

|2̂ A| ≥ min{l, 2n− 5− δ2(l)}+ n− 2.

Proof. Let Ā ∈ Z/lZ be defined as usual. By Conjecture 2 as applied to Ā, either

|2̂ Ā| ≥ 2|Ā|− δ2(l)−3 = 2n−5− δ2(l) (since L = 1+ δ2(l)), or 2̂ Ā = 2Ā. In the former

case the assertion follows by Corollary 2, in the latter case by Lemma 3. �

Above, we proved unconditionally Conjecture 1 in the very special case of prime l

(Corollary 3). Now we consider another particular case, specifically symmetric sets:

A = l − A. Of course, both these situations are fairly artificial. However, they support

the general conjecture and the proofs are good illustrations of our method.

Corollary 7. Let A ⊆ [0, l] be a set of n = |A| ≥ 3 integers such that 0, l ∈ A and

gcd(A) = 1, and suppose that A is symmetric: A = l − A. Then

|2̂ A| ≥ min{l, 2n− 5 + δ2(l)}+ n− 2.

Proof. Define Ā in the usual way. By Lemma 3 we can restrict ourselves to the situation

2̂ Ā 6= 2Ā, in which case there exists ā ∈ Ā such that 2ā /∈ 2̂ Ā. Then

|(ā− Ā) ∩ (Ā− ā)| ≤ 1 + δ2(l)

as c̄ = ā− ā′ = ā′′ − ā implies 2ā = ā′ + ā′′, whence ā′ = ā′′ and 2ā = 2ā′. It follows that

|(ā− Ā) ∪ (Ā− ā)| ≥ 2|Ā| − 1− δ2(l).

On the other hand, in view of the symmetry of A, the set Ā is also symmetric in the sense

that −Ā = Ā, and therefore both ā − Ā and Ā − ā are subsets of 2̂ Ā ∪ {2ā} ∪ {−2ā}.
Thus,

|2̂ Ā|+ 2 ≥ 2|Ā| − 1− δ2(l),

|2̂ Ā| ≥ 2|Ā| − 3− δ2(l) = 2n− 5− δ2(l)

and the result follows from Corollary 2. �
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3. The combinatorial kernel: proofs of Theorems 3 and 1

We now turn to the proof of Theorem 3 — the core result, on which both Theorems 1

and 2 are based. In the course of the proof, we use the notation A− A for the set of all

elements of G, representable as a′ − a′′ with a′, a′′ ∈ A, and −A + A for the set of all

elements of G, representable as −a′ + a′′. We have to distinguish these two sets, since G

is not assumed to be Abelian.

Proof of Theorem 3. Assume the conclusion fails:

(3) |2̂ A| < θn− L− 2,

where we write n = |A|.
(i) Obviously, there exists σ ∈ 2̂ A such that the number of representations of σ in the

form σ = a′ + a′′ (a′, a′′ ∈ A) is at least

n2 − n

θn− L− 2
>

n(n− 1)

θ(n− 1)
= (θ − 1)n.

(ii) Given c = a′′0 − a′0 ∈ A − A, we write A′ = A \ {a′0} and A′′ = A \ {a′′0}. As both

A′ + a′0 and A′′ + a′′0 are subsets of 2̂ A, we have

|(A′+ a′0)∩ (A′′ + a′′0)| ≥ |A′|+ |A′′| − |2̂ A| > 2(n− 1)− (θn−L− 2) = (2− θ)n+L.

Now any solution of a′ + a′0 = a′′ + a′′0 in a′, a′′ ∈ A yields a representation c = −a′′ + a′.

This shows that any c ∈ A− A has more than (2 − θ)n + L representations of the form

c = −a′′ + a′ (a′, a′′ ∈ A).

An immediate conclusion is that A − A ⊆ −A + A. Similarly, −A + A ⊆ A − A (fix

c = −a′′0 + a′0 ∈ A−A and estimate |(a′0 + A) ∩ (a′′0 + A)|). Therefore,
A−A = −A+ A.

(iii) Given c ∈ A − A, consider the subset of A consisting of all those a′′ which can

appear as a first term in c = −a′′ + a′. On the other hand, consider the subset of A

comprised of all those a′′ which can appear as a second term in σ = a′ + a′′. By (i) and

(ii) the sum of the cardinalities of these two subsets is greater than

(θ − 1)n+ (2− θ)n + L = n + L,

and we conclude that there are more than L common values of a′′, resulting in L + 1

equalities

σ = ai + a′′i , c = −a′′i + a′i; ai, a
′
i, a

′′
i ∈ A (i = 1, . . . , L+ 1)

and further to L+ 1 equalities

σ + c = ai + a′i.



RESTRICTED SET ADDITION 11

We observe that at least one index i satisfies ai 6= a′i: otherwise 2a1 = · · · = 2aL+1. It

follows that σ + c ∈ 2̂ A for any c ∈ A− A, that is

(4) σ + (A− A) ⊆ 2̂ A.

(iv) To get a contradiction, we show that A−A is “too large” to satisfy (4). Indeed, fix

a ∈ A such that 2a /∈ 2̂ A. (Such an a exists in view of the hypothesis 2A 6= 2̂ A which

had not yet been used.) Then

|(a− A) ∩ (−a + A)| ≤ L

as any solution of a − a′ = −a + a′′ in a′, a′′ ∈ A necessarily satisfies a′ = a′′, and

therefore there exist at most L solutions. Now both a − A and −a + A are subsets of

A−A = −A + A, hence by (3)

|A− A| ≥ |a− A|+ | − a+ A| − L = 2n− L > |2̂ A|,

contradicting (4). �

It will be noted that for commutative G certain simplifications of the proof are possible.

Theorem 1 now follows easily.

Proof of Theorem 1. By Corollary 5, it suffices to consider the case l ≥ 2n− 4. Define Ā

as usual. By Theorem 3, either 2̂ Ā = 2Ā, or |2̂ Ā| > θn− 3− δ2(l). In the former case

the result follows immediately from Lemma 3, in the latter case from Corollary 2. �

4. Proof of Theorem 2

Since the proof follows closely that of [6, Theorem 2], which in turn is very similar to

the proof of [5, Theorem 2.1] where non-restricted doubling 2A was considered, we only

sketch here the argument omitting technical details.

(i) Given C ⊆ Z/pZ and z ∈ Z/pZ, we define

SC(z) =
∑

c∈C

e2πi
cz
p ,

so that SC(0) = |C| and
p−1∑

z=0

|SC(z)|2 = p|C|,

whence

(5)

p−1∑

z=1

|SC(z)|2 = |C|(p− |C|).
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(ii) We write n = |A| and consider the sum

∑

a′,a′′∈A
a∈2A

p−1∑

z=0

e2πi
a′+a′′−a

p
z.

On the one hand, this sum equals n2p as to any a′, a′′ ∈ A there corresponds precisely

one a ∈ 2A such that a′ + a′′ = a. On the other hand, it can be represented as

∑

a′,a′′∈A
a∈2̂ A

+
∑

a′,a′′∈A
a∈2A\2̂ A

,

and here the second summand equals p|2A\ 2̂ A| ≤ np, as any a ∈ 2A\ 2̂ A has precisely

one representation a = a′ + a′′. Thus, the first summand is at least (n2 − n)p, which can

be rewritten as

p−1∑

z=0

S2
A(z)S2̂ A(−z) ≥ (n2 − n)p.

We further single out the term with z = 0 to obtain

(6)

p−1∑

z=1

S2
A(z)S2̂ A(−z) ≥ (n2 − n)p− n2T,

where for brevity we write T = |2̂ A|.

(iii) Define

M = max
1≤z≤p−1

|SA(z)|.

Then (6) implies

M

p−1∑

z=1

|SA(z)||S2̂ A(z)| ≥ (n2 − n)p− n2T

and using Cauchy-Schwarz and (5) (as applied to C = A and C = 2̂ A) we conclude that

M

n
≥ (n− 1)p− nT√

n(p− n)
√

T (p− T )
.
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As the right-hand side is easily seen to be a decreasing function of T on [0, p/2], and

2.18n < p/2, it follows that

M

n
>

(n− 1)p− 2.18n2

√
n(p− n)

√
2.18n(p− 2.18n)

=
1√
2.18

(n− 1)p− 2.18n2

np
√

1− n/p
√
1− 2.18n/p

=
1√
2.18

αp− 1− 2.18α2p

αp
√
1− α

√
1− 2.18α

=
1√
2.18

1− 2.18α− 1/n√
1− 3.18α+ 2.18α2

≥ 1√
2.18

1− 2.18α− 0.005√
1− 3.18α + 2.18α2

where α ∈ [0, 1/50] is defined by n = αp. A tedious but straightforward calculation

establishes the convexity of the right-hand side as a function of α and thus shows that

the minimum is attained at one of the endpoints. However, the values at the endpoints

are both greater than 0.6655, whence M > 0.6655n and

|SA(z0)| ≥ 0.6655n

for some z0 ∈ Z/pZ, z0 6= 0.

(iv) By [5, Lemma 2.2] (or [6, Lemma 3.2]) there exists a subset A0 ⊆ A of cardinality

|A0| >
1 + 0.6655

2
|A| > 0.8327n

and a residue u ∈ Z/pZ such that

A0 ⊆ {u, u+ z′0, . . . , u+ ((p− 1)/2)z′0},
where z′0 is the inverse of z0 in Z/pZ.
Let B0 ⊆ [0, (p− 1)/2] be the set of all integers b such that u + b̄z′0 ∈ A0. (As usual,

b̄ stands for the residue (mod p) corresponding to the integer b.) Applying appropriate

affine transformations x 7→ λx+ µ with λ 6≡ 0(mod p) to A and B0, we can ensure that

(7) min(B0) = 0, gcd(B0) = 1 and A0 = B0 (mod p).

It is worth pointing out that neither the cardinality |2̂ A|, nor the property of A to be

contained in an arithmetic progression of a given length are affected by non-singular

(λ 6≡ 0(mod p)) affine transformations. Thus, without loss of generality we assume (7).

Clearly, B0 is isomorphic to A0 in the sense that a1 + a2 = a3 + a4 holds in Z/pZ for

some elements ai ∈ A0 if and only if b1 + b2 = b3 + b4 holds in Z for the corresponding

elements bi ∈ B0; the crucial point here is B0 ⊆ [0, p/2). It follows that B0 is a “large” set

of integers (|B0| = |A0| > 0.8327n) with a “small” restricted doubling (|2̂ B0| = |2̂ A0| ≤
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|2̂ A| ≤ 2.18n− 6), and we can use Theorem 1 to show that B0 is contained in a short

interval. Formally, we write

(8) |2̂ B0| = |2̂ A0| ≤ |2̂ A| ≤ 2.18n − 6 < 2.6180 · 0.8327n − 6 < (1 + θ)|B0| − 6.

Let l0 be the maximal element of B0. By Theorem 1 and in view of (8), we have

l0 ≤ |2̂ B0| − |B0|+ 2 ≤ 2.18n− 4 < p/6.

(v) The next step is to verify that A ⊆ [−l0, 2l0] (mod p). Indeed, otherwise we could pick

any element a ∈ A outside the indicated interval and notice that (2̂ A0) ∩ (a+ A0) = ∅
implying

|2̂ A| ≥ |2̂ A0|+ |a+ A0| = |2̂ B0|+ |B0| ≥ 3|B0| − 3 > 2.4981n− 3 > 2.18n− 6,

a contradiction.

(vi) Now we have the whole set A embedded in the interval [−l0, 2l0] (mod p) of length

3l0 < p/2 and we essentially repeat the argument above.

Applying an appropriate affine transformation, we can assume that A is an image in

Z/pZ of a set of co-prime integers B ⊆ [0, l] such that 0, l ∈ B and l < p/2. Then A is

isomorphic to B and

|2̂ B| = |2̂ A| ≤ 2.18n− 6 < (1 + θ)|B| − 6;

hence by Theorem 1

l ≤ |2̂ B| − |B|+ 2 = |2̂ A| − |A|+ 2.

This completes the proof.

Appendix. A group-theoretic property of the doubling constant.

The doubling constant L(G) is, perhaps, of some group-theoretic interest. A closely

related characteristic of G which might be easier to understand and compute is L1(G),

the number of pairwise distinct elements of G whose doubling is the identity element 0:

(9) L1 = max
g1,...,gλ∈G

gi 6=gj (1≤i<j≤λ)
2g1=···=2gλ=0

λ

(cf. (1)). Clearly, L1(G) ≤ L(G) for any group G. Moreover, if G is Abelian, then

(10) L1(G) = L(G)

as 2g1 = · · · = 2gL leads to 2(g1 − gL) = · · · = 2(gL − gL) = 0 in the commutative case.

Therefore, if G =
⊕

Gi is a direct sum of cyclic groups, then L(G) = L1(G) = 2s, where

s is the number of components of even order.
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The non-commutative case is subtler. Here we can prove (10), provided that all ele-

ments of G are of finite order, not divisible by 4. Indeed, suppose that

(11) 2g1 = · · · = 2gL,

and assume first that gL (say) has odd order m. Multiplying (11) by (m+1)/2, we obtain

(m+ 1)g1 = · · · = (m+ 1)gL−1 = gL.

Thus, gL commutes with each gi (i = 1, . . . , L − 1), and it is easy to deduce, as in the

commutative case, that 2(g1− gL) = · · · = 2(gL − gL) = 0; this proves (10). Assume now

that (11) holds, and that gL is of order 2m, where m is odd. Then

2(mg1) = · · · = 2(mgL) = 0,

and all mgi are distinct, since for m odd, mgi = mgj along with 2gi = 2gj implies gi = gj .

It may come as a surprise that the non-divisibility by 4 condition is, indeed, essential:

for the group Q = {±1,±i,±j,±k} of quaternion units we have L(Q) = 6: (±i)2 =

(±j)2 = (±k)2 = −1, while L1(Q) = 2: (±1)2 = 1. (Here and in the next example we

retain the traditional multiplicative notation.)

Moreover, there are groups G, all elements of which, save for the identity element, are

of infinite order (so that L1(G) = 1), yet for any non-identity element g ∈ G there exist

infinitely many f ∈ G such that f 2 = g2 (so that L(G) = ∞). Specifically, fix an open

interval I and consider the group G of all monotonically increasing continuous bijections

of I onto itself, with composition as group operation. No element f 6= id is of finite order:

if f(x0) > x0 for some x0 ∈ I, then by monotonicity

x0 < f(x0) < f 2(x0) < · · · < fn(x0)

for any positive integer n, whence fn 6= id; and f(x0) < x0 is dealt with similarly. On

the other hand, for any g 6= id there exist infinitely many f ∈ G satisfying

(12) f 2(x) = g2(x).

We show this assuming that g has no fixed points (to which the general case easily

reduces). We first fix an arbitrary x0 ∈ I and for n ∈ Z define In = [gn(x0), g
n+1(x0)]. It

is a routine exercise to verify that I is a union of all In, disjoint except for the endpoints

where the neighboring In abut. Next, we define f to be any continuous, increasing

bijection of I0 onto I1. Finally, we extend the definition of f onto the whole interval I

by letting for x ∈ In

f(x) =

{
gnfg−n(x), if 2 | n,
gn+1f−1g−n+1(x), if 2 ∤ n.

It is easily seen that this definition is correct and produces a continuous, monotonically

increasing function f on I, that maps each interval In onto the “next” interval In+1. By a
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direct substitution one can then verify that f satisfies the required identity f 2(x) = g2(x)

for all x ∈ I.
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Erdős-Heilbronn on sums of residues, Astèrisque, to appear.
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