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Abstract. We prove that there exists an absolute constant c > 0 such that for
any finite set A ⊆ Z with |A| ≥ 2 and any positive integer m < c|A|/ ln |A| there are
at most m integers b > 0 satisfying |(A+b)\A| ≤ m; equivalently, there are at most
m positive integers possessing |A| −m (or more) representations as a difference of
two elements of A.

This is best possible in the sense that for each positive integer m there exists
a finite set A ⊆ Z with |A| > m log2(m/2) such that |(A + b) \ A| ≤ m holds for
b = 1, . . . ,m + 1.

1. Introduction

For a finite subset A of an abelian group and a group element b let

∆A(b) := |(A + b) \ A|.

Thus, |A|−∆A(b) is the number of representations of b as a difference of two elements

of A. Also, if b is of infinite order, then ∆A(b) is the smallest number of arithmetic

progressions with difference b into which A can be partitioned.

The function ∆A was used, for instance, by Olson in [O68] and (in a somewhat

implicit form) by Erdős and Heilbronn in [EH64]. Its basic properties are as follows:

(i) ∆A(0) = 0;

(ii) ∆A(−b) = ∆A(b) for any group element b;

(iii) ∆A(b1 + b2) ≤ ∆A(b1) + ∆A(b2) for any group elements b1 and b2, and conse-

quently ∆A(hb) ≤ h∆A(b) for any group element b and integer h ≥ 1.

Property (i) is trivial, property (ii) is almost immediate from the definition, property

(iii) is not difficult to prove and the reader can either regard this as an exercise, or

check any of [EH64, O68].

What one normally seeks in connection with the function ∆A is to show that any

sufficiently large subset of the group contains an element b with ∆A(b) relatively large;

that is, to show that ∆A does not assume “too many small values”. We investigate

this problem in the case where the underlying group is the group of integers, for which

we use the standard notation Z. By N we denote the set of all positive integers.
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If A is a block of consecutive integers, then for every m ∈ [1, |A|−1] there is exactly

one positive integer b with ∆A(b) = m; consequently, there are exactly m positive

integers b with ∆A(b) ≤ m. A theorem of Gabriel [G32, Theorem 2] implies that

this is the worst case “in average”: if A ⊆ Z and B ⊆ N are finite, A is a block of

consecutive integers with |A| = |A|, and B = [1, |B|], then∑
b∈B

∆A(b) ≥
∑
b∈B

∆A(b). (1)

On a historical note we mention that Gabriel’s theorem extends an earlier result of

Hardy and Littlewood [HL28]; see also [HLP88, Theorem 374] or [L98, Theorem C].

Alternatively, (1) can be derived from a theorem of Pollard [P74].

We observe that under the extra assumption |B| ≤ |A|, from (1) it is easy to deduce∑
b∈B

∆A(b) ≥ 1

2
|B|(|B|+ 1);

consecutively, if 0 < |B| ≤ |A|, then there exists b ∈ B with

∆A(b) ≥ 1

2
(|B|+ 1). (2)

In the absence of evident counter-examples one can expect that, in fact, the con-

secutive integers case is critical not only in average, but also “pointwise”; that is,

for any finite sets A ⊆ Z and B ⊆ N with |B| ≤ |A| there exists b ∈ B such that

∆A(b) ≥ |B|. In other words, for any m ∈ [1, |A|] the function ∆A assumes on N at

most m − 1 values, smaller than m. Clearly, the assumption |B| ≤ |A| cannot be

dropped here: if |B| > |A|, then ∆A(b) ≥ |B| does not hold as the values of ∆A never

exceed |A|. It turns out that this assumption is actually too weak : in the Appendix

we prove that if m is a positive integer,

A =
⋃

0≤k<log2 m

[
km, (k + 1)m− 2k

)
,

and B = [1, m], then ∆A(b) ≤ m − 1 holds for each b ∈ B, while it is easy to check

that |B| < (ln 2 + o(1))|A|/ ln |A| as m →∞. The goal of this paper is to show that

no such examples exist if |B| < c|A|/ ln |A| with an appropriate absolute constant

c > 0.

For finite subsets A and B of an abelian group we write

µA(B) := max{∆A(b) : b ∈ B},

subject to the agreement that the maximum of the empty set is 0.

Theorem 1. There is an absolute constant c > 0 such that µA(B) ≥ |B| holds for

all finite sets A ⊆ Z, B ⊆ N with |A| > 1 and |B| < c|A|/ ln |A|.
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The constant c of Theorem 1 can be computed explicitly from our argument, but

the value we can obtain is very small. For this reason, and also to exhibit a surprising

connection with the famous Graham g.c.d. conjecture, we also prove the following

asymptotically weaker result.

Theorem 2. We have µA(B) ≥ |B| for all finite sets A ⊆ Z, B ⊆ N with |B| ≤
√
|A|.

Theorem 2 is proved in Section 2. In Section 3 we reduce Theorem 1 to the special

case where B = [1, |B|]; this case, which will be separately stated as the Main Lemma,

is treated in Section 4.

2. Proof of Theorem 2

Suppose that A ⊆ Z is a finite set and that B = {b1, . . . , bm} ⊆ N, where 1 ≤ m ≤√
|A|; we want to show that there exists j ∈ [1, m] with ∆A(bj) ≥ m. Assuming this is

wrong, fix arbitrarily i, j ∈ [1, m]. By the assumption, A is a union of ∆A(bi) ≤ m−1

arithmetic progressions with difference bi. At least one of these progressions has m

or more terms in view of |A| > (m − 1)2; accordingly, suppose that a + kbi ∈ A for

k = 1, . . . ,m. Since, on the other hand, A is a union of ∆A(bj) ≤ m − 1 arithmetic

progressions with difference bj, there are 1 ≤ k1 < k2 ≤ m satisfying a+k2bi ≡ a+k1bi

(mod bj). Letting k := k2 − k1 we get bj | kbi whence bj/(bi, bj) is a divisor of k and

therefore bj/(bi, bj) < m. This, however, contradicts a theorem of Balasubramanian

and Soundararajan [BS96] which, confirming a conjecture of Graham [G70], says that

max{s′/(s′, s′′) : s′, s′′ ∈ S} ≥ |S| for any finite set S ⊆ N.

This proves Theorem 2.

3. The Main Lemma

Given an integer m ≥ 1, we say that the finite subset A ⊆ Z is m-coverable if

µA([1, m]) < m; that is, for any d ∈ [1, m] the set A is a union of at most m − 1

arithmetic progressions with difference d. Notice that by Theorem 2 we have

|A| < m2 (3)

for any m-coverable set A.

We derive Theorem 1 from the following assertion.

Main Lemma. There is an absolute constant C ≥ 1 such that if m ≥ 2 is an integer

and A is an m-coverable set, then |A| < Cm ln m.

Notice that the Main Lemma is essentially a particular case of Theorem 1, obtained

for B = [1, m].
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Postponing the (quite involved) proof of the Main Lemma to Section 4, we show

in the remainder of the present section how this lemma implies the assertion of The-

orem 1.

For an integer h ≥ 1 and a subset S of an abelian group by hS we denote the h-fold

sumset of S:

hS := {s1 + · · ·+ sh : s1, . . . , sh ∈ S}.
For further references we record in terms of the quantity µA(B) two observations

which have already appeared above.

Lemma 1. Let A and B be finite subsets of an abelian group. If h is a positive

integer, then

µA(hB) ≤ hµA(B). (4)

Furthermore, if the underlying group is the group of integers and 0 < |B| ≤ |A|, then

µA(B) ≥ 1

2
(|B|+ 1). (5)

Proof. The first estimate follows from the property (iii) at the beginning of the In-

troduction, for the second estimate see (2). �

We need the following result on the rate of growth of the sumsets hB.

Theorem 3 ([L96, Corollary 1]). Let S be a finite set of integers, not contained in an

arithmetic progression with difference, larger than 1. Write n := |S| and l := max S−
min S and suppose that κ is an integer, satisfying κ(n−2)+1 ≤ l ≤ (κ+1)(n−2)+1.

Then for any integer h ≥ 1 we have

|hS| ≥

{
h(h+1)

2
(n− 2) + h + 1 if h ≤ κ,

κ(κ+1)
2

(n− 2) + κ + 1 + (h− κ)l if h ≥ κ.

Corollary 1. Let S be a finite set of integers, not contained in an arithmetic pro-

gression with difference, larger than 1. If max S −min S ≥ 3|S| − 5, then

|3S| ≥ 6|S| − 8.

Proof. If |S| = 2, then S consists of two consecutive integers and the assertion is

immediate. If |S| ≥ 3, set l := max S −min S and κ := b(l− 1)/(|S| − 2)c and apply

Theorem 3 with h = 3, observing that κ ≥ 3. �

The following lemma shows that if S is a dense set of integers, then the difference

set

S − S := {s′ − s′′ : s′, s′′ ∈ S}
contains long blocks of consecutive integers.
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Lemma 2 ([L06, Lemma 3]). Let S be a finite, non-empty set of integers. If max S−
min S < 2k−1

k
|S| − 1 with an integer k ≥ 2, then S − S contains all integers from the

interval (−|S|/(k − 1), |S|/(k − 1)).

We are now prepared for the main task of this section.

Deduction of Theorem 1 from the Main Lemma. Let A ⊆ Z and B ⊆ N be finite sets

with |A| > 1 and |B| < (36C)−1 |A|/ ln |A|, where C is the constant of the Main

Lemma. Assuming that

µA(B) ≤ |B| − 1 (6)

we obtain a contradiction.

The cases where B = ∅ or |A| = 2 are immediate; suppose therefore that B 6= ∅
and |A| ≥ 3. Write d := gcd B, B∗ := {b/d : b ∈ B}, and

Aj := {(a− j)/d : a ∈ A, a ≡ j (mod d)}; j ∈ [0, d− 1].

Fix an integer N so that the sets Aj+jN are pairwise disjoint and let A∗ := ∪d−1
j=0(Aj+

jN). Evidently, we have ∆A(b) ≥ ∆A∗(b/d) for every b ∈ B, and thus it follows

from (6) that µA∗(B
∗) ≤ µA(B) ≤ |B∗| − 1. Since |A∗| = |A|, |B∗| = |B|, and

gcd B∗ = 1, passing from our original sets A and B to the sets A∗ and B∗, we ensure

that gcd B = 1.

Set B± := (−B)∪{0}∪B so that µA(B±) = µA(B) by properties (i) and (ii) at the

beginning of the Introduction, and B± is not contained in an arithmetic progression

with difference, larger than 1, in view of gcd B = 1.

We have ∑
b∈3B±

∆A(b) =
∑

b∈3B±

(
|A| − |A ∩ (A + b)|

)
≥ |A||3B±| − |A|2,

whence

µA(3B±) ≥ |A|
(

1− |A|
|3B±|

)
.

Consequently, if |3B±| ≥ 2|A|, then µA(3B±) ≥ |A|/2 and using (4) we obtain

µA(B) = µA(B±) ≥ 1

3
µA(3B±) ≥ 1

6
|A| ≥ |B|,

as wanted; accordingly, we assume |3B±| < 2|A|. This allows us to apply (5) to the

set (3B±)+ of all positive elements of 3B±; using (4) and (6) we get then

1

2
(|3B±| − 1) = |(3B±)+| < 2µA((3B±)+)

= 2µA(3B±) ≤ 6µA(B±) = 6µA(B) ≤ 6(|B| − 1) = 3(|B±| − 3)
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and hence

|3B±| ≤ 6|B±| − 18. (7)

Let l := max(B±)−min(B±) and κ := b(l−1)/(|B±|−2)c. By (7) and Corollary 1,

we have l ≤ 3|B±| − 6, and consequently κ ≤ 2; hence

|6B±| − 1 ≤ 6l ≤ 6(κ + 1)(|B±| − 2) ≤ 18(|B±| − 2) < 36|B| < C−1|A|/ ln |A|.

It follows that |A| > |6B±| − 1 whence, indeed,

|A| > C(|6B±| − 1) ln |A| > C(|6B±| − 1) ln(|6B±| − 1). (8)

On the other hand, applying Theorem 3 with S = B± and h = 6 and recalling that

κ ≤ 2 we get

|6B±| > 1 + (6− κ)l ≥ 4l + 1 >
2

3
(6l + 1)

and therefore

max(6B±)−min(6B±) = 6l <
3

2
|6B±| − 1.

By Lemma 2 (applied with S = 6B± and k = 2) we have

[1, |6B±| − 1] ⊆ 6B± − 6B± = 12B±. (9)

Since the function µA is monotonic in the sense that B1 ⊆ B2 implies µA(B1) ≤
µA(B2), using (4) and the Main Lemma (which is applicable in view of (8)), from (9)

we derive that

12µA(B) = 12µA(B±) ≥ µA(12B±) ≥ µA([1, |6B±| − 1])

≥ |6B±| − 1 ≥ 6(|B±| − 1) = 12|B|,

contradicting (6). �

To establish Theorem 1 it remains to prove the Main Lemma.

4. Proof of the Main Lemma

For finite sets A, S ⊆ Z we write gA(S) := |S\A| (to be interpreted as the number of

gaps in S). Assuming that m ∈ N and A ⊆ Z are implicitly defined by the context,

by a problem we mean a pair of the form (a, a + d) with a ∈ A, a + d /∈ A, and

d ∈ [1, m]; we say that this problem is created by a. Evidently, if A is m-coverable,

then for each fixed d ∈ [1, m] there are at most m− 1 problems of the form (a, a+ d),

hence at most m(m− 1) problems totally.

We split the proof of the Main Lemma into a number of auxiliary statements.

Lemma 3. Let m ∈ N and let A be an m-coverable set. If J is a block of consecutive

integers with |J | ≤ dm/2e, then each of the dm/4e largest elements of the set A ∩
(−∞, min J) creates at least min{m/4, gA(J)} problems.
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Proof. Write J = [u + 1, u + v], so that v ≤ dm/2e, and suppose that a is one of

the dm/4e largest elements of the set A ∩ (−∞, u]. If a ≥ u + v − m, then (a, b)

is a problem for every b ∈ J \ A, and hence a creates at least gA(J) problems. If

a < u + v −m, then (a, b) is a problem for every b ∈ [a + 1, u] \ A with b − a ≤ m.

Consequently, if u− a ≤ m, then the assertion follows from

|[a + 1, u] \ A| ≥ u− a− (dm/4e − 1) ≥ m− v − dm/4e+ 2

≥ m− dm/2e − dm/4e+ 2 ≥ m/4,

and if u− a > m, then it follows from

|[a + 1, a + m] \ A| ≥ m− (dm/4e − 1) ≥ m/4.

�

To use Lemma 3 efficiently we have to show that there are many blocks of consecu-

tive integers with large number of gaps. This constitutes the major difficulty and we

postpone the corresponding part of the argument, demonstrating first how the proof

of the Main Lemma is completed once this is done.

Proposition 1. Let m ∈ N and let A be an m-coverable set. Suppose that 0 < ε ≤ 1/2

and L ≥ m are real numbers such that for any integer u there is an integer w with

|w − u| ≤ L, satisfying gA([w + 1, w + m]) ≥ εm. Then |A| < 30ε−1L.

Proof. We set I1 := [min A−m, min A−1] and inductively construct blocks I2, I3, . . . of

consecutive integers as follows. Assume that Ik has been constructed for some k ∈ N.

Applying the assumption of the proposition with u := max Ik + bLc, we find integer

w ∈ [max Ik, max Ik+2L] with gA([w+1, w+m]) ≥ εm, and set Ik+1 := [w+1, w+m].

We continue the process until we hit for the first time a block It with min It > max A.

By the construction, the blocks I1, . . . , It satisfy

gA(Ik) ≥ εm; k ∈ [1, t]

and

0 < min Ik+1 −max Ik ≤ 2L + 1; k ∈ [1, t− 1].

In each block Ik we find a sub-block Jk with |Jk| = dm/2e and gA(Jk) ≥ 0.5εm and

let

Fk := [min Jk, min Jk+1); k = 1, . . . , t− 1.

Notice that A ⊆ F1 ∪ · · · ∪ Ft−1, and that

|Fk| = min Jk+1 −min Jk ≤ (min Ik+1 + bm/2c)− (max Ik −m + 1) ≤ 2L + 3m/2

for each k ∈ [1, t− 1].
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Letting nk := min{dm/4e, |Fk ∩ A|} for k = 1, . . . , t− 1, by Lemma 3 we conclude

that the elements of Fk∩A create at least 0.5εmnk problems. Since the total number of

problems is at most m(m−1), the number of those k ∈ [1, t−1] with nk = dm/4e is less

than 8ε−1, and hence the number of elements of A, lying in the corresponding sets Fk,

is less than 8ε−1(2L+3m/2). On the other hand, the number of elements of A, lying

in the sets Fk corresponding to those k ∈ [1, t−1] with nk = |Fk∩A|, does not exceed

n1 + · · ·+nt−1, which is at most 2ε−1m in view of 0.5εm(n1 + · · ·+nt−1) ≤ m(m−1).

It follows that

|A| < 8ε−1(2L + 3m/2) + 2ε−1m < 30ε−1L.

�

To prove the Main Lemma it suffices to show that there exists an absolute constant

ε > 0 such that for any m-coverable set A, the assumption of Proposition 1 holds

with L = O(m ln m). This is achieved in the series of lemmas that follow.

For x ∈ Z and d ∈ N set

P−
d (x) := {x, x− d, x− 2d, . . .}, P+

d (x) := {x, x + d, x + 2d, . . .},

and

Pd(x) := P−
d (x) ∪ P+

d (x).

Lemma 4. Let m ∈ N and let A be an m-coverable set. Suppose that d ∈ [1, m]

is an integer, g > 0 is a real number, and I is a block of consecutive integers. If

gA(I) ≥ g and m − g/5 ≤ |I| ≤ d, then either there are at least g/5 integers x ∈ I

with P−
d (x) ∩ A = ∅, or there are at least g/5 integers x ∈ I with P+

d (x) ∩ A = ∅.

Proof. Set G := I \A and G0 := {x ∈ G : P−
d (x)∩A 6= ∅, P−

d (x)∩A 6= ∅}; it suffices

to show that |G \G0| ≥ 2g/5.

We notice that for any x ∈ I ∩A there is an element a ∈ Pd(x)∩A with a+ d /∈ A,

and for any x ∈ G0 there are at least two elements a ∈ Pd(x) ∩ A with a + d /∈ A.

Moreover, if x1 and x2 are distinct elements of I, then the progressions Pd(x1) and

Pd(x2) are disjoint in view of |I| ≤ d. Since the number of problems of the form

(a, a + d) is at most m− 1, we have

|I ∩ A|+ 2|G0| ≤ m− 1

whence

|G \G0| = |G| − |G0| ≥ |I \ A| − 1

2

(
m− 1− |I ∩ A|

)
=

1

2

(
|I|+ 1

)
+

1

2
gA(I)− 1

2
m >

1

2
gA(I)− 1

10
g ≥ 2

5
g,

as required. �
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Lemma 5. Let m ∈ N and let A be an m-coverable set. Suppose that d is an integer,

g > 0 is a real number, and I is a block of m consecutive integers. If gA(I) ≥ g

and m − g/10 ≤ d ≤ m, then either there are at least g/10 integers x ∈ I with

P−
d (x) ∩ A = ∅, or there are at least g/10 integers x ∈ I with P+

d (x) ∩ A = ∅.

Proof. Since d ≥ m−g/10 > m/2, we can represent I as a union of two (intersecting)

blocks, consisting of d consecutive integers each. At least one of these two blocks, say

I ′, satisfies gA(I ′) ≥ g/2. It remains to apply Lemma 4 with I replaced by I ′ and g

replaced by g/2. �

Our next lemma, along with Proposition 1, is the key ingredient in the proof of the

Main Lemma.

Lemma 6. There exists an integer K ≥ 2 with the following property: if m ∈ N and

A is an m-coverable set, then for any integer u with K ≤ gA([u + 1, u + m]) ≤ m/K

there is an integer w such that |w − u| ≤ Km and

gA([w + 1, w + m]) > 2gA([u + 1, u + m]).

Proof. Suppose that K and m are positive integers, A is an m-coverable set, and u is

an integer with K ≤ gA([u + 1, u + m]) ≤ m/K. We want to show that if K is large

enough (where “enough” is independent of m, A, and u), then there exists an integer

w as in the statement of the lemma.

Write I := [u + 1, u + m] and g := gA(I). By Lemma 5, to any d ∈ [m− g/10, m]

there corresponds a subset Id ⊆ I \A with |Id| ≥ g/10 such that either P−
d (x)∩A = ∅

for each x ∈ Id, or P+
d (x) ∩ A = ∅ for each x ∈ Id. We assume for definiteness that

P+
d (x) ∩ A = ∅; x ∈ Id

holds for at least g/20 values of d, and accordingly there are at least g2/200 pairs

(d, x) with d ∈ [m − g/10, m] and x ∈ I \ A, satisfying P+
d (x) ∩ A = ∅. Since there

are at most g options for the second component of these pairs, there exists x0 ∈ I \A

such that P+
d (x0) ∩ A = ∅ holds for at least g/200 values of d. We denote the set of

these values by D; thus,

D ⊆ [m− g/10, m], |D| ≥ g/200, and P+
d (x0) ∩ A = ∅ for every d ∈ D.

For k ∈ [1, K] write Wk := {(m − d)k : d ∈ D} and let W := W1 ∪ · · · ∪ WK , so

that

W ⊆ [0, m− 1]. (10)

We have |Wk| ≥ g/200 for k = 1, . . . , K and consequently, for every integer C ∈ [1, K],

|W | ≥

∣∣∣∣∣
K⋃

k=K−C+1

Wk

∣∣∣∣∣ ≥ Cg

200
− 1

2
C2 max

K−C<k<l≤K
|Wk ∩Wl|. (11)
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We observe that |Wk ∩Wl| is the number of solutions of the equation

kd1 − ld2 = (k − l)m

in the variables d1, d2 ∈ D. Since this equation uniquely determines the residue class

of d1 ∈ [m− g/10, m] modulo l/ gcd(k, l), its number of solutions is at most

g/10

l/ gcd(k, l)
+ 1 ≤ g

10

l − k

l
+ 1 <

g

10

C

K − C
+ 1 <

Cg

K

provided that, say, 10 ≤ C ≤ K/2. Hence, for C = 2000 and K large enough, (11)

gives

|W | > 5g. (12)

Next, we notice that there are m− g progressions Pm(a) with a ∈ I ∩A, and every

such progression contains a problem of the form (a′, a′ + m) with some a′ ∈ A. Since

the total number of problems of this form is at most m− 1, there are at most g − 1

infinite arithmetic progressions with difference m, containing two or more problems.

On the other hand, by the definition of the set W , for each v ∈ W there exists

k ∈ [1, K] such that x0 − v + km /∈ A; consequently, if for some v ∈ W we have

x0 − v ∈ A and x0 − v + Km ∈ A, then Pm(x0 − v) contains at least two problems.

Combining these observations and recalling (10) we obtain

|{v ∈ W : x0 − v ∈ A, x0 − v + Km ∈ A} < g

and it follows that

|(x0 −W ) \ A|+ |(x0 + Km−W ) \ A| > |W | − g.

Using (10) and (12) we see that the conclusion of the lemma holds true with either

w = x0 −m, or w = x0 + (K − 1)m. �

To satisfy the assumption gA([u + 1, u + m]) ≥ K of Lemma 6 we need some “seed

gaps”; these are supplied by our last lemma.

Lemma 7. Let m ∈ N and let A be an m-coverable set. Then for any integer u and

1 ≤ g ≤ m/2 there is an integer w with |w−u| < gm such that gA([w+1, w+m]) ≥ g.

Proof. Since the number of problems of the form (a, a + m) does not exceed m − 1,

there is a residue class modulo m, not represented in A. Consequently, there exists

b ∈ Z with |u − b| ≤ m/2 such that Pm(b) ∩ A = ∅. To simplify the notation we

assume that b = 0; this does not restrict generality since one can replace A by A− b

and u by u− b. Thus, A does not contain multiples of m, and |u| ≤ m/2.
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Set

J− := {j ∈ [−g + 1, g − 1] : P−
m−1(jm) ∩ A 6= ∅},

J+ := {j ∈ [−g + 1, g − 1] : P+
m−1(jm) ∩ A 6= ∅},

and

J := {j ∈ [g,m− g − 1] : Pm−1(jm) ∩ A 6= ∅}.

We notice that the progressions Pm−1(jm) with distinct j ∈ [−g + 1, m − g − 1] are

pairwise disjoint. Furthermore, for any j ∈ J− there is a ∈ Pm−1(jm) ∩ A such that

a + (m− 1) /∈ A, and a < jm; next, for any j ∈ J+ there is a ∈ Pm−1(jm) ∩ A such

that a + (m− 1) /∈ A, and a > jm; finally, for any j ∈ J there is a ∈ Pm−1(jm) ∩ A

such that a + (m − 1) /∈ A. Since there are at most m − 1 problems of the form

(a, a + (m− 1)), it follows that

|J+|+ |J−|+ |J | < m,

whence either |J−| + |J |/2 < m/2, or |J+| + |J |/2 < m/2 holds. Suppose, for

definiteness, that the latter of the two inequalities is true, so that

|J+|+ |J | < 1

2
m +

1

2
|J | ≤ m− g,

and let w := (g−1)m. Then for each j ∈ [−g+1, g−1]\J+ the interval [w+1, w+m]

has a common element with the progression P+
m−1(jm), and for each j ∈ [g,m− g −

1] \ J it has a common element with the progression Pm−1(jm). Since all these

progressions are disjoint with A, we conclude that

gA([w + 1, w + m]) ≥ (2g − 1− |J+|) + (m− 2g − |J |) ≥ g,

and the result follows in view of |w − u| ≤ (g − 1)m + m/2 < gm. �

Eventually we are ready to prove the Main Lemma.

Proof of the Main Lemma. Suppose that m ≥ 2 is an integer and A is an m-coverable

set; we want to show that |A| < Cm ln m with an absolute constant C.

Let K be an integer, satisfying the conclusion of Lemma 6. We assume that

m ≥ 20K as otherwise |A| < 400K2 by (3) and the assertion is immediate.

Given an integer u, we apply Lemma 7 with g = K to find an integer u0 with

|u0−u| < Km and gA([u0 +1, u0 +m]) ≥ K. If gA([u0 +1, u0 +m]) ≤ m/K, then by

Lemma 6 there exists an integer u1 with |u1−u0| ≤ Km such that gA([u1+1, u1+m]) >

2K. We continue in this way finding subsequently u2, u3, . . . until we reach some ut
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satisfying gA([ut + 1, ut + m]) > m/K, and we let w = ut. By the construction, we

have |w − u| < (t + 1)Km, whereas

m/K ≥ gA([ut−1 + 1, ut−1 + m]) ≥ 2t−1K,

unless t = 0. Hence t < log2(m/K2) + 1 ≤ log2 m− 1, implying |w− u| < 2Km ln m.

This shows that the assumptions of Proposition 1 hold with ε = K−1 and L =

2Km ln m, and therefore the assertion of the Main Lemma holds with C = 60K2. �

Appendix. Large sets A with µA([1, m]) < m

We prove here that if m ≥ 2 is an integer and

A =
⋃

0≤k<log2 m

[
km, (k + 1)m− 2k

)
,

then for every d ∈ [1, m] the set A is a union of at most m−1 arithmetic progressions

with difference d, so that ∆A(d) ≤ m − 1. For d = m this is immediate, and we

assume below that d < m. Recalling the terminology of Section 4, we say that the

pair (a, a + d) is a problem (created by a) if a ∈ A and a + d /∈ A; we want to show

that to every fixed d ∈ [1, m− 1] there correspond at most m− 1 problems. To this

end for each 0 ≤ k < log2 m we let Ik :=
[
km, (k + 1)m − 2k

)
and count problems,

created by the elements of Ik.

Let K denote the smallest integer with 2K ≥ m− d, so that 0 ≤ K < log2 m + 1.

If 0 ≤ k < K and a ∈ Ik, then

a + d < (k + 1)m− 2k + d < (k + 2)m− 2k+1,

and it follows that the number of problems, created by all elements of Ik, is at most

min{m− |Ik|, |Ik|} = min{2k, m− 2k}.

Consequently, if K ≥ log2 m, then the total number of problems is at most

1 + 2 + · · ·+ 2K−2 + (m− 2K−1) = m− 1,

and the proof is over.

Suppose now that K < log2 m. If K ≤ k < log2 m− 1 and a ∈ Ik, then

(k + 1)m− 2k + d ≥ (k + 2)m− 2k+1

whence

Ik + d ⊇ Ik+1.

It follows that the total number of problems, created together by all elements of Ik

for all k ≥ K, is at most

(|IK | − |IK+1|) + (|IK+1| − |IK+2|) + · · · = |IK | = m− 2K .
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On the other hand, from the estimate above it follows that the number of problems,

created by the elements of Ik for all 0 ≤ k < K, is at most

1 + 2 + · · ·+ 2K−1 = 2K − 1.

Therefore, the total number of all problems is at most

(m− 2K) + (2K − 1) = m− 1

and the assertion follows.
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