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Abstract. Let G be a finite abelian group of exponent m ≥ 2. For subsets A,S ⊆
G, denote by ∂S(A) the number of edges from A to its complement G \ A in the
directed Cayley graph, induced by S on G. We show that if S generates G, and A
is non-empty, then

∂S(A) ≥
e
m |A| ln |G|

|A| .

Here the coefficient e = 2.718 . . . is best possible and cannot be replaced with a
number larger than e.

For homocyclic groups G of exponent m, we find an explicit closed-form expres-
sion for ∂S(A) in the case where S is the “standard” generating subset of G, and
A is an initial segment of G with respect to the lexicographic order induced by S.
Namely, we show that in this situation

∂S(A) = |G|ωm(|A|/|G|),

where ω2 is the Takagi function, and ωm for m ≥ 3 is an appropriate generalization
thereof. This particular case is of special interest, since for m ∈ {2, 3, 4} it is known
to yield the smallest possible value of ∂S(A), over all sets A ⊆ G of given size. We
give this classical result a new proof, somewhat different from the standard one.

We also give a new, short proof of the Boros–Páles inequality

ω2

(

x+y
2

)

≤ ω2(x)+ω2(y)
2 + 1

2 |y − x|,

establish an extremal characterization of the Takagi function as the (pointwise)
maximal function, satisfying this inequality and the boundary condition max{ω2(0),
ω2(1)} ≤ 0, and obtain similar results for the 3-adic analogue ω3 of the Takagi
function.

1. Introduction: summary of results and background

The three tightly related objects of study in this paper are the edge-isoperimetric
problem on Cayley graphs, a sequence of Takagi-style functions, and classes of func-

tions satisfying a certain kind of convexity condition.

The edge-isoperimetric problem for a graph Γ on the vertex set V is to find, for

every non-negative integer n ≤ |V |, the smallest possible number of edges between
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an n-element set of vertices and its complement in V . This classical problem has re-

ceived much attention in the literature; for the history, results, variations, and related

problems, the reader can refer to the survey of Bezrukov [B96] or the monograph of

Harper [H04].
In the present paper we are concerned with, arguably, the most studied case where

Γ is a Cayley graph. We use the following notation. Given two subsets S,A ⊆ G of

a finite abelian group G, by ΓS(G) we denote the (directed) Cayley graph, induced

by S on G, and we write ∂S(A) for the number of edges in ΓS(G) from an element of

A to an element in its complement G \ A; that is,

∂S(A) := |{(a, s) ∈ A× S : a+ s /∈ A}|.

It is easily seen that if S is symmetric (meaning that S = −S, where −S :=
{−s : s ∈ S}), then ∂S(A) can be equivalently defined as the number of edges of the

corresponding undirected Cayley graph, with one of the incident vertices in A and

another one in G \ A. As a less trivial fact, we have

∂−S(A) = ∂S(G \ A) = ∂S(A);

consequently, if S is antisymmetric (that is, S ∩ (−S) = ∅), then ∂S(A) is half the

number of edges, joining a vertex from A with a vertex from G \A, in the undirected
Cayley graph, induced on G by the set S∪(−S). We omit detailed explanations since

none of these observations are used below.

Up until now, most of the research we are aware of has focused on particular

families of Cayley graphs.1 In contrast, our first principal result addresses the general

situation.

Recall that the exponent of an abelian group is the maximum of the orders of its
elements.

Theorem 1.1. Let m ≥ 2 be an integer, and suppose that G is a finite abelian group

of exponent m. Then for any non-empty subset A ⊆ G and any generating subset

S ⊆ G we have

∂S(A) ≥
e

m
|A| ln

|G|

|A|

(where e = 2.718... is Euler’s number).

The estimate of Theorem 1.1 is sharp in the sense that the coefficient e cannot be

replaced with a larger number.

1Classical results on the isoperimetric constant of a graph, presented, for instance, in the survey
paper [HLW06], provide a noticeable exception. However, they apply to undirected graphs only and,
specified to Cayley graphs, yield weaker bounds than Theorems 1.1 and 1.6 below.
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Example 1.2. For integer r ≥ 1 and m ≥ 2, let G be the homocyclic group of

exponent m and rank r (which is the direct product of r cyclic groups of order m).

Fix arbitrarily a generating subset S = {s1, . . . , sr} ⊆ G and integer k ∈ [1, r] and

t ∈ [1, m− 1], and consider the set

A := {x1s1 + · · ·+ xrsr : 0 ≤ x1, . . . , xk ≤ t− 1, 0 ≤ xk+1, . . . , xr ≤ m− 1}.

Write α := t/m. Then |A| = tkmr−k, ln(|G|/|A|) = k ln(1/α), and

∂S(A) = ktk−1mr−k =
c(α)

m
|A| ln

|G|

|A|
,

where c(α) = 1/α
ln(1/α) can be made arbitrarily close to e by choosing t and m appro-

priately.

The proofs of Theorem 1.1 and most of the other results, presented in the intro-

duction, are postponed to subsequent sections.

Below we use the standard notation Cr
m for the homocyclic group of exponent m

and rank r. In the case where m ∈ {2, 3, 4}, and S ⊆ Cr
m is a generating set of

size |S| = r, the minimum of ∂S(A) over all sets A of prescribed size is known to be

realized when A is the set of the lexicographically smallest group elements; this basic

fact due to Harper [H64] (the case m ∈ {2, 4}) and Lindsey [Li64] (the case m = 3)

follows also from our present results, as explained below. To put things formally, for

a finite, totally ordered set T and a non-negative integer n ≤ |T |, denote by In(T )

the length-n initial segment of T ; that is, the set of the n smallest elements of T .
Consider the group Cr

m along with a fixed generating subset S ⊆ Cr
m of size |S| = r.

We assume that S is totally ordered, inducing a lexicographic order on Cr
m; thus,

In(Cr
m) is the set of the n lexicographically smallest elements of Cr

m. As we have just

mentioned, if m ∈ {2, 3, 4}, then

min{∂S(A) : A ⊆ Cr
m, |A| = n} = ∂S(In(C

r
m)), 0 ≤ n ≤ mr. (1.1)

Surprisingly, to our knowledge, no explicit closed-form expression for the quantity

∂S(In(Cr
m)) has ever been obtained (although in the case m = 2, an asymptotic

formula has been established in [G00]; see the remark following Theorem 1.3). We

give such an expression in terms of the Takagi function for m = 2, and an appropriate

m-adic version thereof for m ≥ 3.

For real x, let ∥x∥ denote the distance from x to the nearest integer. The Takagi
function, first introduced by Teiji Takagi in 1903 as an example of an everywhere

continuous but nowhere differentiable function, is defined by

ω(x) :=
∞
∑

k=0

2−k∥2kx∥.
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Numerous remarkable properties of this function, applications, and relations in var-

ious fields of mathematics can be found in the recent survey papers by Allaart and

Kawamura [AK11] and Lagarias [La12]. For the generalization we need, for real x

and α let ∥x∥α := min{∥x∥,α} (the distance from x to the nearest integer, truncated
at α), and set

ωm(x) :=
∞
∑

k=0

m−k∥mkx∥1/m, m ≥ 2. (1.2)

Thus, ω2 is just the regular Takagi function. Moreover, as Pieter Allaart has kindly

brought to our attention, ω3 coincides with the function −h (for q = 3) from [D75].

Since the series in (1.2) is uniformly convergent, the functions ωm are well-defined

and continuous on the whole real line. Furthermore, they are even functions, periodic

with period 1, vanishing at integers, strictly positive for non-integer values of the

argument, and satisfying

maxωm ≤
∞
∑

k=0

m−(k+1) =
1

m− 1
. (1.3)

The reader is invited to compare our second major result against (1.1).

Theorem 1.3. For integer r ≥ 1 and m ≥ 2, let S be an r-element generating

subset of the homocyclic group Cr
m. Suppose that an ordering of S is fixed, inducing

a lexicographic ordering of Cr
m. Then for any non-negative integer n ≤ mr, the set

In(Cr
m) of the n lexicographically smallest elements of Cr

m satisfies

∂S(In(C
r
m)) = mrωm(n/m

r).

Notice that for m ∈ {2, 3, 4}, Theorem 1.3 together with (1.1) and continuity of
ωm readily shows that for any fixed x ∈ (0, 1), if nr = (1 + o(1))mrx as r → ∞, then

min{∂S(A) : A ⊆ Cr
m, |A| = nr} = (1 + o(1))mrωm(x).

The particular case m = 2 and nr = ⌊2rx⌋ is the main result of [G00].

In the appendix we establish some estimates for the growth rate of the functions
ωm: specifically, we show that

x log2(1/x) ≤ω2(x) ≤ x log2(4/3x), (1.4)

x log3(1/x) ≤ω3(x) ≤ x log3(3/2x), (1.5)

x log4(1/x) ≤ω4(x) ≤ x log4(4/3x), (1.6)

and for m ≥ 5,

x logm(e/mx) ≤ωm(x) ≤ x logm(3/2x) (1.7)

for any x ∈ (0, 1].
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Estimates (1.4)–(1.6) are sharp: the lower bound in (1.4) and (1.6) is attained for

x = 2−k and the upper bound for x = 21−k/3, the lower bound in (1.5) is attained for

x = 3−1−k and the upper bound for x = 3−k/2, for any integer k ≥ 0. In contrast,

estimate (1.7) is not sharp; it is provided, essentially, as a “proof of concept” and
can easily be improved. However, as x → 0, the lower and upper bounds in (1.7)

coincide up to lower-order terms, and it may well be impossible to obtain both sharp

and explicit bounds of this sort for m ≥ 5.

We remark that the lower bound in (1.4) is not original; see, for instance, [Kr07,

Lemma 3.1].

The graphs of the functions ω2,ω3, and ω5, along with the functions representing
the corresponding lower and upper bounds, are shown in Figure 1.
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Figure 1. The graphs of the functions ω2 (Takagi function), ω3, and ω5.

The reason for omitting the graph of ω4 is that this function turns out to be

identical, up to a constant factor, to the Takagi function; namely, we have

ω4 =
1

2
ω2. (1.8)

To prove this somewhat surprising relation, it suffices to show that for any real x and

integer k ≥ 0 we have

2−2k∥22kx∥ + 2−2k−1∥22k+1x∥ = 2 · 4−k∥4kx∥1/4.

Indeed, letting z := 22kx and multiplying by 22k+1, we can rewrite this equality as

2∥z∥+ ∥2z∥ = 4∥z∥1/4,

and this is readily verified by restricting z to the range 0 ≤ z ≤ 1/2 and considering

separately the cases z ≤ 1/4 and z ≥ 1/4.

It was conjectured by Páles [P04] and proved by Boros [B08] that the Takagi

function satisfies

ω2

(

x1 + x2

2

)

≤
ω2(x1) + ω2(x2)

2
+

1

2
(x2 − x1) (1.9)
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for any real x1 ≤ x2. Combining this inequality with a result of Házy and Páles

[HP05, Theorem 4], one immediately derives the following stronger version:

ω2(λx1 + (1− λ)x2) ≤ λω2(x1) + (1− λ)ω2(x2) + ω2(λ)|x2 − x1| (1.10)

for any real x1, x2, and λ ∈ [0, 1]. We give short proofs to (1.9) and (1.10), which seem

to be genuinely different from the original proofs, and establish the 3-adic analogues,

as follows.

Theorem 1.4. We have

ω3

(

x1 + x2 + x3

3

)

≤
ω3(x1) + ω3(x2) + ω3(x3)

3
+

1

3
(x3 − x1)

for any real x1 ≤ x2 ≤ x3.

Theorem 1.5. We have

ω3(λx1 + (1− λ)x2) ≤ λω3(x1) + (1− λ)ω3(x2) + ω3(λ) |x2 − x1|

for any real x1, x2, and λ ∈ [0, 1].

The importance of Boros–Páles inequality (1.9) and Theorem 1.4 for our present
purposes, and the way they are applied in this paper, will be explained shortly.

Inequality (1.10) and Theorem 1.5 are derived as particular cases of a more general

result, presented below (Theorem 1.12).

Back to Theorem 1.1, we actually prove a more versatile and precise result, with

the improvement being particularly significant for small values of m. To state it we

bring into consideration the classes of functions, defined as follows. For integer m ≥ 2,
let Fm consist of all real-valued functions f , defined on the interval [0, 1], satisfying

the boundary condition

max{f(0), f(1)} ≤ 0, (1.11)

and such that for any x1, . . . , xm ∈ [0, 1] with mini xi = x1 and maxi xi = xm, we have

f

(

x1 + · · ·+ xm

m

)

≤
f(x1) + · · ·+ f(xm)

m
+ (xm − x1). (1.12)

Condition (1.12) can be understood as a “relaxed convexity” and in fact, any convex

function satisfying the boundary condition (1.11) is contained in every class Fm.

We notice that if l,m ≥ 2 are integers with l | m, then Fm ⊆ Fl, for, given a

function f ∈ Fm and a system of l numbers in [0, 1], we can “blow up” this system to
get a system of m numbers (where every original number is repeated m/l times) and

then apply (1.12) to this new system to obtain the analogue of (1.12) for the original

l numbers. For l = 2 and m = 4 the inverse inclusion holds, too, so that we have
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F4 = F2; to prove this, fix f ∈ F2 and x1, x2, x3, x4 ∈ [0, 1] with x1 ≤ x2 ≤ x3 ≤ x4,

and observe that then

f

(

x1 + x2 + x3 + x4

4

)

≤
1

2

(

f

(

x1 + x2

2

)

+ f

(

x3 + x4

2

))

+
x3 + x4

2
−

x1 + x2

2

≤
1

4

(

f(x1) + f(x2) + f(x3) + f(x4)
)

+ (x4 − x1),

whence f ∈ F4.

It is not difficult to see, however, that, say, the class F6 is distinct from each

of the classes F2 and F3, and the class F8 is distinct from the class F2. Indeed,

a straightforward numerical verification confirms that the functions F2 ∈ F2 and

F3 ∈ F3, introduced below in this section, satisfy F2 /∈ F6, F3 /∈ F6, and F2 /∈ F8.

We notice that Boros–Páles inequality (1.9) can be interpreted as 2ω2 ∈ F2, and
Theorem 1.4 gives 3ω3 ∈ F3. (In fact, it is the restrictions of the functions 2ω2

and 3ω3 onto the interval [0, 1] that belong to the classes F2 and F3, respectively.

However, this little abuse of notation does not lead to any confusion.)

Theorem 1.6. Let m ≥ 2 be an integer. Suppose that f ∈ Fm, and G is a finite

abelian group, the exponent of which divides m. Then for any subset A ⊆ G and any
generating subset S ⊆ G we have

∂S(A) ≥
1

m
|G| f(|A|/|G|).

Theorem 1.1 is an immediate consequence of Theorem 1.6 and the following propo-

sition.

Proposition 1.7. Let f(x) = ex ln(1/x) for x ∈ (0, 1], and f(0) = 0. Then f ∈ Fm

for any integer m ≥ 2.

To use Theorem 1.6 more efficiently, we must choose the function f in an optimal

way for every particular value of m. Our next result shows that for each m ≥ 2, there

is a “universal” choice which does not depend on the density |A|/|G|.

Theorem 1.8. For any m ≥ 2 there is a (unique) function Fm ∈ Fm such that for

any other function f ∈ Fm and any x ∈ [0, 1] we have Fm(x) ≥ f(x). The function

Fm is continuous on [0, 1], strictly positive on (0, 1), and satisfies Fm(0) = Fm(1) = 0

and Fm(x) = Fm(1− x) for x ∈ [0, 1].

From now on we adopt Fm as a standard notation for the functions of Theorem 1.8.

We were able to find the functions Fm explicitly for m ∈ {2, 3, 4} and estimate

them for m ≥ 5. Determining Fm for m ≥ 5 seems to be a non-trivial and challenging
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problem; we have done some work toward the case m = 5, and the results may appear

elsewhere.

Theorem 1.9. For any m ≥ 2 we have Fm ≤ mωm, with equality if and only if

m ∈ {2, 3, 4}.

The case m ∈ {2, 3, 4} of Theorem 1.9 will be derived from (1.9), Theorem 1.4, and

(1.8).

As remarked above, (1.1) follows from the results of the present paper; indeed, the

reader can now see that it is an immediate corollary of Theorems 1.3, 1.6, and 1.9.

Combining Theorems 1.6 and 1.9 and estimates (1.4)–(1.6) we obtain the following
result.

Corollary 1.10. If G is a finite abelian group of exponent m ∈ {2, 3, 4}, then for

any non-empty subset A ⊆ G and generating subset S ⊆ G we have

∂S(A) ≥ |G|ωm(|A|/|G|) ≥ |A| logm
|G|

|A|
.

We remark that in the case m = 2, the resulting estimate ∂S(A) ≥ |A| log2(|G|/|A|)
is well-known, the first appearance in the literature we are aware of being [CFGS88,

Lemma 4.1].

Theorem 1.9 can be considerably improved for large values of m.

Proposition 1.11. For any integer m ≥ 2 and real x ∈ (0, 1] we have

Fm(x) ≤
m

m− 1
ex ln(e/x).

For the lower bound, we notice that Proposition 1.7 yields

Fm(x) ≥ ex ln(1/x)

for each m ≥ 2 and x ∈ (0, 1].

We deduce Proposition 1.11 from the following result, which, in view of Theo-

rem 1.9, also implies (1.10) and Theorem 1.5, and indeed provides a common gener-
alization to both of them.

Theorem 1.12. Let m ≥ 2 be an integer. Then for any function f ∈ Fm and any

λ, x, y ∈ [0, 1] with x ≤ y we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + (y − x)Fm(λ). (1.13)

Moreover, if f is a function, defined on the whole real line and satisfying (1.12) for

any real x1, . . . , xm with mini xi = x1 and maxi xi = xm, then (1.13) holds for any

real x ≤ y and λ ∈ [0, 1].
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The rest of the paper, devoted to the proof of the results discussed above, is par-

titioned into three sections and an appendix. In Section 2 we study the generalized

Takagi functions, proving Boros–Páles inequality (1.9) and its 3-adic analog, Theo-

rem 1.4, and establishing an important lemma used in both proofs and also in the
proofs of Theorems 1.3 and 1.9. Section 3 deals with the isoperimetric problem: we

prove here Theorems 1.3 and 1.6. In Section 4 we investigate the classes Fm and the

functions Fm, and prove Propositions 1.7 and 1.11 and Theorems 1.8, 1.9, and 1.12.

As remarked above, Theorem 1.1 is an immediate consequence of Theorem 1.6 and

Proposition 1.7, while (1.10) and Theorem 1.5 (in view of Theorem 1.9) are particular

cases of Theorem 1.12; hence no additional proofs are needed. In the appendix we
prove estimates (1.4)–(1.7).

2. The generalized Takagi functions: proofs of

the Boros–Páles inequality and Theorem 1.4

The following lemma, used in the proofs of the Boros–Páles inequality and Theo-

rems 1.3, 1.4, and 1.9, is known in the casem = 2; see [HY83] or [AK11, Theorem 5.1].

Lemma 2.1. Let m ≥ 2 be an integer. Then for any integer r ≥ 1 and n, the latter

of which is not divisible by m, writing n = tm + ρ with integer t and ρ ∈ [1, m− 1],
we have

ωm

( n

mr

)

=
(

1−
ρ

m

)

ωm

(

t

mr−1

)

+
ρ

m
ωm

(

t+ 1

mr−1

)

+
1

mr
.

Proof. We want to prove that
∞
∑

k=0

m−k
(

∥mk−rn∥1/m −
(

1−
ρ

m

)

∥mk+1−rt∥1/m −
ρ

m
∥mk+1−r(t + 1)∥1/m

)

=
1

mr
.

We notice that all the summands in the left-hand side, corresponding to k ≥ r, vanish,

while the summand, corresponding to k = r− 1, contributes m−(r−1)(1/m) = m−r to

the sum. Consequently, to complete the proof it suffices to show that

m∥mk−rn∥1/m = (m− ρ)∥mk+1−rt∥1/m + ρ ∥mk+1−r(t+ 1)∥1/m, k ∈ [0, r − 2].

To this end we prove that the interval (mk+1−rt,mk+1−r(t+1)) (of which mk−rn is an

internal point) does not contain any number of the form N +ε/m with integer N and

ε ∈ {0,±1}, and therefore ∥x∥1/m is a linear function of x on this interval. Indeed, if

we had

mk+1−rt < N + ε/m < mk+1−r(t+ 1),

then, multiplying by mr−k−1, we would get t < Nmr−k−1 + εmr−k−2 < t + 1, which

cannot hold since the midterm is an integer. !
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For the rest of this section, for integer n and m ≥ 2 we let

δm(n) :=

{

0 if m divides n,

1 if m does not divide n.

We record the following immediate corollary of Lemma 2.1.

Corollary 2.2. For any integer r ≥ 1 and n, we have

ω2

( n

2r

)

=
1

2
ω2

(

⌊n/2⌋

2r−1

)

+
1

2
ω2

(

⌈n/2⌉

2r−1

)

+
δ2(n)

2r
,

where ⌊·⌋ and ⌈·⌉ denote the floor and the ceiling functions, respectively.

Proof of Boros–Páles inequality (1.9). Since ω2 is a continuous function, it suffices to

show that

ω2

(

x+ y

2r

)

≤
1

2
ω2

( x

2r−1

)

+
1

2
ω2

( y

2r−1

)

+
1

2r
|y − x|,

for any integer x, y, and r ≥ 1. We use induction on r. The case r = 1 is immediate
since ω2(x) = ω2(y) = 0 and ω2((x+ y)/2) is equal to 0 or 1 depending on whether x

and y are of the same or of distinct parity. Thus, we assume that r ≥ 2. Moreover,

we assume that x is odd; clearly, this does not restrict the generality.

Applying Corollary 2.2 with n = x+ y and using the induction hypothesis, we get

ω2

(

x+ y

2r

)

=
1

2
ω2

(

⌊(x+ y)/2⌋

2r−1

)

+
1

2
ω2

(

⌈(x+ y)/2⌉

2r−1

)

+
1

2r
δ2(x+ y)

=
1

2
ω2

(

(x− 1)/2 + ⌊(y + 1)/2⌋

2r−1

)

+
1

2
ω2

(

(x+ 1)/2 + ⌈(y − 1)/2⌉

2r−1

)

+
1

2r
δ2(x+ y)

≤
1

4

(

ω2

(

x− 1

2r−1

)

+ ω2

(

x+ 1

2r−1

))

+
1

4

(

ω2

(

2 ⌊(y + 1)/2⌋

2r−1

)

+ ω2

(

2 ⌈(y − 1)/2⌉

2r−1

))

+
1

2r

∣

∣

∣

∣

⌊

y + 1

2

⌋

−
x− 1

2

∣

∣

∣

∣

+
1

2r

∣

∣

∣

∣

⌈

y − 1

2

⌉

−
x+ 1

2

∣

∣

∣

∣

+
1

2r
δ2(x+ y).

We now notice that, by Corollary 2.2,

1

2

(

ω2

(

x− 1

2r−1

)

+ ω2

(

x+ 1

2r−1

))

= ω2

( x

2r−1

)

−
1

2r−1

and

1

2

(

ω2

(

2 ⌊(y + 1)/2⌋

2r−1

)

+ ω2

(

2 ⌈(y − 1)/2⌉

2r−1

))

= ω2

( y

2r−1

)

−
δ2(y)

2r−1
,
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as it follows easily by considering separately the cases of even and odd y. Conse-

quently,

ω2

(

x+ y

2r

)

≤
1

2
ω2

( x

2r−1

)

+
1

2
ω2

( y

2r−1

)

+
1

2r
(δ2(x+ y)− δ2(y)− 1)

+
1

2r

∣

∣

∣

∣

⌊

y − x+ 2

2

⌋
∣

∣

∣

∣

+
1

2r

∣

∣

∣

∣

⌈

y − x− 2

2

⌉
∣

∣

∣

∣

.

To complete the proof we observe that δ2(x + y) − δ2(y) − 1 ≤ 0 and that if x ̸= y

(in which case the assertion is trivial), then ⌊(y − x+ 2)/2⌋ and ⌈(y − x− 2)/2⌉ are

of the same sign, whence

| ⌊(y − x+ 2)/2⌋ |+ | ⌈(y − x− 2)/2⌉ | = | ⌊(y − x+ 2)/2⌋+ ⌈(y − x− 2)/2⌉ |

= | ⌊(y − x)/2⌋+ ⌈(y − x)/2⌉ |

= |y − x|.

!

To prove Theorem 1.4 we need yet another corollary of Lemma 2.1.

Corollary 2.3. Let r ≥ 1 and n be integers. If ξn ∈ {−1, 0, 1} and ζn ∈ {−2, 0, 2}

are defined by n ≡ ξn ≡ ζn (mod 3), then

ω3

( n

3r

)

=
2

3
ω3

(

n− ξn
3r

)

+
1

3
ω3

(

n− ζn
3r

)

+
δ3(n)

3r
.

Observe that, with ξn and ζn defined as in Corollary 2.3, we have

2ξn + ζn = 0. (2.1)

Proof of Theorem 1.4. By continuity of ω3, it suffices to show that

ω3

(

x+ y + z

3r

)

≤
1

3
ω3

( x

3r−1

)

+
1

3
ω3

( y

3r−1

)

+
1

3
ω3

( z

3r−1

)

+
1

3r
(z − x)

for any integer r ≥ 1 and x ≤ y ≤ z.

For integer r ≥ 0 and n, let

Tr(n) :=
r

∑

k=1

3k ∥3−kn∥1/3.

Thus, T0(n) = 0, T1(n) = δ3(n), Tr(−n) = Tr(n), and Tr(3n) = 3Tr−1(n); these

simple observations may be used below without special references. Furthermore,

3rω3

( n

3r

)

=
r−1
∑

k=0

3r−k∥3k−rn∥1/3 = Tr(n);

therefore, keeping the notation of Corollary 2.3, we can rewrite its conclusion as

Tr(n) =
2

3
Tr(n− ξn) +

1

3
Tr(n− ζn) + δ3(n), (2.2)
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and the estimate we have to prove as

Tr(x+ y + z) ≤ Tr−1(x) + Tr−1(y) + Tr−1(z) + (z − x). (2.3)

To establish (2.3) we use induction on r. For r = 1 the assertion is easy to verify in

view of T0 = 0 and T1(x + y + z) = δ3(x + y + z), and we assume that r ≥ 2. We
also assume that x is strictly smaller than z, for if x = y = z, then (2.3) is immediate

from Tr(3x) = 3Tr−1(x).

If x, y, and z are all divisible by 3, then the assertion follows easily from the

induction hypothesis. Otherwise, changing (simultaneously) the signs of x, y, and z,

if necessary, we can assume that one of the following holds:

(i) x ≡ y ≡ z ≡ 1(mod 3);

(ii) two of the numbers x, y, and z are congruent to 1 modulo 3, and the third is

divisible by 3;

(iii) the numbers x, y, and z are pairwise incongruent modulo 3;

(iv) two of the numbers x, y, and z are divisible by 3, and the third is congruent
to 1 modulo 3;

(v) two of the numbers x, y, and z are congruent to 1 modulo 3, and the third is

congruent to 2 modulo 3.

We consider these five cases separately.

Case (i): x ≡ y ≡ z ≡ 1(mod 3). In this case, using the induction hypothesis we

get

Tr(x+ y + z) = 3Tr−1

(

x− 1

3
+

y − 1

3
+

z + 2

3

)

≤ 3Tr−2

(

x− 1

3

)

+ 3Tr−2

(

y − 1

3

)

+ 3Tr−2

(

z + 2

3

)

+ (z − x+ 3)

= Tr−1(x− 1) + Tr−1(y − 1) + Tr−1(z + 2) + (z − x+ 3). (2.4)

Similarly,

Tr(x+ y + z) ≤ Tr−1(x− 1) + Tr−1(y + 2) + Tr−1(z − 1) + (z − x) (2.5)

and

Tr(x+ y + z) ≤ Tr−1(x+ 2) + Tr−1(y − 1) + Tr−1(z − 1) + (z − x− 3), (2.6)

except that we must add 3 to the right-hand side of (2.5) if y = z and to the right-hand

side of (2.6) if x = y. Averaging (2.4)–(2.6) and taking into account the observation

just made and the fact that if n ≡ 1 (mod 3), then

2

3
Tr−1(n− 1) +

1

3
Tr−1(n+ 2) = Tr−1(n)− 1
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(as it follows from (2.2)), we get (2.3).

Case (ii): two of x, y, and z are congruent to 1 modulo 3, and the third is

divisible by 3. Denote by w the element of the set {x, y, z} which is divisible by 3,

and let u be the smallest and v the largest of the two other elements. By (2.2), we

have

Tr(x+ y + z) =
2

3
Tr (x+ y + z + 1) +

1

3
Tr (x+ y + z − 2) + 1

= 2Tr−1

(

u+ v + w + 1

3

)

+ Tr−1

(

u+ v + w − 2

3

)

+ 1. (2.7)

By the induction hypothesis,

Tr−1

(

u+ v + w + 1

3

)

= Tr−1

(

u− 1

3
+

v + 2

3
+

w

3

)

≤ Tr−2

(

u− 1

3

)

+ Tr−2

(

v + 2

3

)

+ Tr−2

(w

3

)

+
z − x+ 3

3

=
1

3
Tr−1(u− 1) +

1

3
Tr−1(v + 2) +

1

3
Tr−1(w)

+
z − x+ 3

3
(2.8)

and similarly,

Tr−1

(

u+ v + w + 1

3

)

≤
1

3
Tr−1(u+ 2) +

1

3
Tr−1(v − 1) +

1

3
Tr−1(w)

+
z − x+ 3

3
. (2.9)

Also,

Tr−1

(

u+ v + w − 2

3

)

= Tr−1

(

u− 1

3
+

v − 1

3
+

w

3

)

≤ Tr−2

(

u− 1

3

)

+ Tr−2

(

v − 1

3

)

+ Tr−2

(w

3

)

+
z − x+ 1

3

=
1

3
Tr−1(u− 1) +

1

3
Tr−1(v − 1) +

1

3
Tr−1(w)

+
z − x+ 1

3
. (2.10)

In fact, we need a slight refinement of (2.8)–(2.10) which can be obtained by dis-

tinguishing the subcases where w = x (meaning that it is the smallest of the numbers
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x, y, z that is divisible by 3), w = y (the middle one is divisible by 3), and w = z

(the largest one is divisible by 3). The reader will check easily that in the first case

(w = x), both last summands in the right-hand sides of (2.8) and (2.9) can be re-

placed with (z− x+2)/3, and the last summand in the right-hand side of (2.10) can
be replaced with (z − x− 1)/3. Similarly, in the second case (w = y), we can replace

the last summands in the right-hand sides of both (2.9) and (2.10) with (z−x)/3, and

in the third case (w = z), both last summands in the right-hand sides of (2.8) and

(2.9) can be replaced with (z−x+1)/3. In any case, the sum of the three summands

does not exceed z − x + 1. Taking this into account, adding up (2.8)–(2.10), and

substituting the result into (2.7), we get

Tr(x+ y + z) ≤

(

2

3
Tr−1(u− 1) +

1

3
Tr−1(u+ 2)

)

+

(

2

3
Tr−1(v − 1) +

1

3
Tr−1(v + 2)

)

+ Tr−1(w) + (z − x) + 2.

The result now follows from (2.2).

Case (iii): x, y, and z are pairwise incongruent modulo 3. Using the induction

hypothesis and the fact that ξx + ξy + ξz = ζx + ζy + ζz = 0 we obtain in this case

Tr(x+ y + z) = 3Tr−1

(

x− ξx
3

+
y − ξy

3
+

z − ξz
3

)

≤ 3Tr−2

(

x− ξx
3

)

+ 3Tr−2

(

y − ξy
3

)

+ 3Tr−2

(

z − ξz
3

)

+ (z − x− ξz + ξx)

= Tr−1(x− ξx) + Tr−1(y − ξy) + Tr−1(z − ξz)

+ (z − x− ξz + ξx). (2.11)

Similarly,

Tr(x+ y + z) ≤ Tr−1(x− ζx) + Tr−1(y − ζy) + Tr−1(z − ζz)

+ (z − x− ζz + ζx + 6), (2.12)

for max{x−ζx, y−ζy, z−ζz} ≤ z−ζz+3 and min{x−ζx, y−ζy, z−ζz} ≥ x−ζx−3.

The assertion follows by averaging (2.11) and (2.12) with the weights 2/3 and 1/3,

respectively, using (2.2), and noticing that

− δ3(x)− δ3(y)− δ3(z) +
2

3
(−ξz + ξx) +

1

3
(−ζz + ζx + 6)

=
1

3
(ζx + 2ξx)−

1

3
(ζz + 2ξz) = 0.



EDGE-ISOPERIMETRIC PROBLEM FOR CAYLEY GRAPHS 15

Case (iv): two of x, y, and z are divisible by 3, and the third is congruent

to 1 modulo 3. By (2.2), we have

Tr(x+ y + z) = 2Tr−1

(

x+ y + z − 1

3

)

+ Tr−1

(

x+ y + z + 2

3

)

+ 1. (2.13)

By the induction hypothesis,

Tr−1

(

x+ y + z − 1

3

)

= Tr−1

(

x− ξx
3

+
y − ξy

3
+

z − ξz
3

)

≤ Tr−2

(

x− ξx
3

)

+ Tr−2

(

y − ξy
3

)

+ Tr−2

(

z − ξz
3

)

+
z − x− ξz + ξx

3

=
1

3
Tr−1(x− ξx) +

1

3
Tr−1(y − ξy) +

1

3
Tr−1(z − ξz)

+
z − x− ξz + ξx

3
(2.14)

and

Tr−1

(

x+ y + z + 2

3

)

= Tr−1

(

x− ζx
3

+
y − ζy

3
+

z − ζz
3

)

≤ Tr−2

(

x− ζx
3

)

+ Tr−2

(

y − ζy
3

)

+ Tr−2

(

z − ζz
3

)

+
z − x− ζz + ζx

3

=
1

3
Tr−1(x− ζx) +

1

3
Tr−1(y − ζy) +

1

3
Tr−1(z − ζz)

+
z − x− ζz + ζx

3
. (2.15)

The result follows from (2.13)–(2.15), (2.2), and (2.1).

Case (v): two of x, y, and z are congruent to 1 modulo 3, and the third
is congruent to 2 modulo 3. It is not difficult to verify that this case (2.13) and

(2.14) remain valid, while (2.15) is to be replaced with

Tr−1

(

x+ y + z + 2

3

)

≤
1

3
Tr−1(x− ζx) +

1

3
Tr−1(y − ζy) +

1

3
Tr−1(z − ζz)

+
z − x− ζz + ζx + 6

3
.

The proof can now be completed as in Case (iv). !
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3. The isoperimetric problem: proofs of Theorems 1.3 and 1.6

Proof of Theorem 1.3. We assume that m is fixed and use induction on r, for each r

proving the equality

∂S(In(C
r
m)) = mrωm(n/m

r)

for all n ∈ [0, mr]. The case r = 1 is easy in view of ωm(0) = ωm(1) = 0 and since

ωm(n/m) = 1/m for n = 1, . . . , m− 1; suppose, therefore, that r ≥ 2.

Let s0 be the smallest element of S. Denote by H the subgroup of Cr
m, generated

by the set S0 := S \ {s0}, and for brevity, write A := In(Cr
m). For i = 0, . . . , m− 1,

let Ai := A ∩ (is0 +H) and ni = |Ai|. Notice that if n = tm + ρ with integer t ≥ 0

and ρ ∈ [1, m], then

n0 = · · · = nρ−1 = t+ 1 and nρ = · · · = nm−1 = t. (3.1)

We have

∂S(A) = ∂S0
(A0) + · · ·+ ∂S0

(Am−1) + (n0 − nm−1),

the first m summands counting those pairs (a, s) with a ∈ A and s ∈ S0 such that

a+s /∈ A, and the last summand counting pairs (a, s0) with a ∈ A such that a+s0 /∈ A.

By the induction hypothesis, as applied to the subsets Ai − is0 of the group H with

the generating subset S0, we then have

∂S(A) = mr−1ωm

( n0

mr−1

)

+ · · ·+mr−1ωm

(nm−1

mr−1

)

+ (n0 − nm−1).

Now if m divides n, then n0 = · · · = nm−1 = n/m and the assertion follows imme-

diately. If, on the other hand, m does not divide n, then in view of (3.1) and by

Lemma 2.1, the right-hand side is equal to

mr

(

ρ ωm((t+ 1)/mr−1) + (m− ρ)ωm(t/mr−1)

m
+

1

mr

)

= mrωm(n/m
r),

completing the proof. !

To prove Theorem 1.6 we need the following simple lemma.

Lemma 3.1. For any integer m ≥ 2 and real x1, . . . , xm, we have

|x2 − x1|+ |x3 − x2|+ · · ·+ |xm − xm−1|+ |x1 − xm| ≥ 2
(

max
i

xi −min
i

xi

)

.

Proof. Assume, without loss of generality, that x1 is the smallest of the numbers

x1, . . . , xm, and let j ∈ [1, m] be chosen so that xj is the largest of these numbers.
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Then, by the triangle inequality,

|x2 − x1|+ |x3 − x2|+ · · ·+ |xm − xm−1|+ |x1 − xm|

= |x2 − x1|+ |x3 − x2|+ · · ·+ |xj − xj−1|

+ |xj+1 − xj |+ · · ·+ |xm − xm−1|+ |x1 − xm|

≥ |xj − x1|+ |x1 − xj | = 2(xj − x1).

!

For further references, we record the following observation: if m ≥ 2 and f ∈ Fm,

then, choosing in (1.12) some of the numbers xi equal to 0, and the rest equal to 1,

in view of the boundary condition (1.11) we get

f(n/m) ≤ 1; n = 1, . . . , m− 1. (3.2)

Proof of Theorem 1.6. We fix m and use induction on |G|: assuming that the asser-

tion is true for any abelian group, the order of which is smaller than |G| (and the

exponent of which divides m), we show that it is true for the group G.
Without loss of generality, we assume that S is a minimal (under inclusion) gener-

ating subset of G. Fix an element s0 ∈ S and write S0 := S \ {s0}. If S0 = ∅, then G

is cyclic of exponent |G|, whence |G| divides m and therefore f ∈ F|G|; consequently,

f(|A|/|G|) ≤ 1 by (3.2) and the assertion follows. Assuming now that S0 ̸= ∅, let

H be the subgroup of G, generated by S0; thus, H is proper and non-trivial. Let

l := [G : H ]. Observe that the quotient group G/H is cyclic, generated by s0 + H ;
hence the exponent of G/H is equal to its order l and therefore divides m. For

i = 1, . . . , l set xi := |A ∩ (is0 +H)|/|H|.

Fix i ∈ [1, l]. By the induction hypothesis (as applied to the subset (A− is0) ∩H

of the group H with the generating subset S0), the number of edges of ΓS(G) from

an element of (is0 + H) ∩ A to an element of (is0 + H) \ A is at least 1
m |H|f(xi).

Furthermore, the number of edges from (is0+H)∩A to ((i+1)s0+H) \A is at least

max{|(is0 +H) ∩A|− |((i+ 1)s0 +H) ∩A|, 0}

= |H|max{xi − xi+1, 0} =
1

2
|H|

(

|xi − xi+1|+ xi − xi+1

)

(where xi+1 is to be replaced with x1 for i = l). It follows that

∂S(A) ≥
1

m
|H|

(

f(x1) + · · ·+ f(xl)
)

+
1

2
|H|

(

|x1 − x2|+ · · ·+ |xl−1 − xl|+ |xl − x1|
)

. (3.3)
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Choose i, j ∈ [1, l] so that xi is the smallest and xj is the largest of the numbers

x1, . . . , xl. By Lemma 3.1 and (3.3) we then have

∂S(A) ≥
1

m
|G|

f(x1) + · · ·+ f(xl)

l
+ |H|(xj − xi)

≥
1

m
|G|

(

f(x1) + · · ·+ f(xl)

l
+ (xj − xi)

)

.

Recalling that f ∈ Fm implies f ∈ Fl in view of l | m, we get

∂S(A) ≥
1

m
|G| f

(

x1 + · · ·+ xl

l

)

=
1

m
|G| f(|A|/|G|),

as wanted. !

It may be worth noting that the proof of Theorem 1.6 relies on the normality of

the subgroup H introduced in the course of the proof. For this reason, the proof fails

to go through for non-abelian group; indeed, there are examples showing that one

cannot drop the requirement that G is abelian in the statements of Theorem 1.6 and
Theorem 1.1 depending on it.

4. The classes Fm: proofs of Propositions 1.7 and 1.11

and Theorems 1.8, 1.9, and 1.12

Our proof of Proposition 1.7 is based on the following lemma (which we recommend

the reader to compare with Theorem 1.12).

Lemma 4.1. Suppose that f is a real-valued function, defined and concave on the

interval [0, 1] and satisfying the boundary condition (1.11). If the estimate

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) + (x2 − x1) (4.1)

holds for all λ, x1, x2 ∈ [0, 1] with x1 ≤ x2, then for any integer m ≥ 2 we have

f ∈ Fm.

Proof. We fix integer m ≥ 2 and real x1, . . . , xm ∈ [0, 1] with mini xi = x1 and

maxi xi = xm, and, assuming (4.1), show that (1.12) holds true. For i = 1, . . . , m

define λi ∈ [0, 1] by xi = λix1 + (1− λi)xm and let λ := (λ1 + · · ·+ λm)/m, so that

f(xi) ≥ λif(x1) + (1− λi)f(xm)

by concavity and, consequently,

f(x1) + · · ·+ f(xm)

m
≥ λf(x1) + (1− λ)f(xm). (4.2)
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On the other hand, we have

f

(

x1 + · · ·+ xm

m

)

= f(λx1 + (1− λ)xm)

≤ λf(x1) + (1− λ)f(xm) + (xm − x1) (4.3)

by (4.1), and the result follows by comparing (4.2) and (4.3). !

Proof of Proposition 1.7. Since f is concave on [0, 1], by Lemma 4.1 it suffices to

prove (4.1) assuming 0 ≤ x1 ≤ x2 ≤ 1 and λ ∈ [0, 1]. The case λ ∈ {0, 1} is trivial,

and we assume below that 0 < λ < 1. Denote by ∆λ(x1, x2) the difference of the
left-hand side and the right-hand side of (4.1). Since the second partial derivative of

∆λ(x1, x2) with respect to x2 is

λ(1− λ)ex1

(λx1 + (1− λ)x2)x2
≥ 0, x2 ∈ (0, 1),

the largest value of ∆λ(x1, x2) for any fixed λ and x1 is attained either for x2 = x1 or

for x2 = 1; consequently, we can confine to these two cases. Indeed, (4.1) holds true

in a trivial way for x2 = x1, and we therefore assume that x2 = 1; thus, it remains to

prove that

∆λ(x1, 1) = f(λx1 + 1− λ)− λf(x1)− 1 + x1 ≤ 0, x1 ∈ [0, 1].

To this end we just observe that the second derivative of ∆λ(x1, 1) with respect to x1

is
λ(1− λ)e

(λx1 + 1− λ)x1
> 0, x1 ∈ (0, 1),

and that ∆λ(0, 1) = f(1− λ)− 1 ≤ 0 and ∆λ(1, 1) = 0. !

We now turn to the proof of Theorem 1.8.

Lemma 4.2. For every integer m ≥ 2, all functions from the class Fm are continuous

on (0, 1).

Proof. We fix an integer m ≥ 2, a function f ∈ Fm, and a number x0 ∈ (0, 1),

and we show that f is continuous at x0. Let l := min{lim infx→x0
f(x), f(x0)} and

L := max{lim supx→x0
f(x), f(x0)}. It suffices to prove that l ≥ L. For this, choose

two sequences {ξk}∞k=1 and {ζk}∞k=1 with all terms in (0, 1), converging to x0, and

satisfying f(ξk) → l and f(ζk) → L. In addition, we request mζk − (m− 1)ξk ∈ (0, 1)
to hold for any integer k ≥ 1; in view of mζk − (m− 1)ξk → x0, this can be arranged

simply by dropping a finite number of terms from each sequence. By (1.12) we then

have

f(ζk) ≤
(m− 1)f(ξk) + f(mζk − (m− 1)ξk)

m
+ o(1)
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as k → ∞, and it remains to observe that the left-hand side is L + o(1), while the

right-hand side is at most ((m− 1)l + L)/m+ o(1). !

We remark that the functions from the classes Fm are not necessarily continuous

at the endpoints of the interval [0, 1]. Indeed, for any f ∈ Fm and a > 0, letting

fa(x) =

{

f(x) if x ∈ {0, 1},

f(x)− a if x ∈ (0, 1),

we have fa ∈ Fm, and either f or fa is discontinuous at 0 and 1. However, a

slight modification of the proof of Lemma 4.2 shows that the potential discontinuities
of a function f ∈ Fm at the endpoints of [0, 1] are removable; that is, the limits

limx→0+ f(x) and limx→1− f(x) exist and are finite.

The following corollary follows readily from Theorem 1.9 and the estimate (1.3).

However, since we have not proved Theorem 1.9 yet, we use here an independent

argument.

Corollary 4.3. For any integer m ≥ 2 and any function f ∈ Fm, we have sup f ≤

m/(m− 1).

Proof. By Lemma 4.2, it suffices to show that f(n/mr) ≤ m/(m − 1) holds for all

integer r ≥ 0 and n ∈ [0, mr]. Indeed, using induction on r, we prove the slightly

stronger estimate

f(n/mr) ≤ 1 + 1/m+ · · ·+ 1/mr−1.

For r = 0 this reduces to the boundary condition (1.11). Assuming that r ≥ 1 and n

is not divisible by m, write n = tm+ ρ with integer t and ρ ∈ [1, m− 1]. Then

n

mr
=

(m− ρ)(t/mr−1) + ρ ((t+ 1)/mr−1)

m
so that by (1.12) and the induction hypothesis,

f
( n

mr

)

≤
(

1−
ρ

m

)

f

(

t

mr−1

)

+
ρ

m
f

(

t+ 1

mr−1

)

+
1

mr−1

≤
(

1−
ρ

m

)

(

1 +
1

m
+ · · ·+

1

mr−2

)

+
ρ

m

(

1 +
1

m
+ · · ·+

1

mr−2

)

+
1

mr−1

= 1 +
1

m
+ · · ·+

1

mr−1
.

!

Proof of Theorem 1.8. With Corollary 4.3 in mind, we set

Fm(x) := sup{f(x) : f ∈ Fm}, x ∈ [0, 1].
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In view of Proposition 1.7, we have Fm(0) ≥ 0, Fm(1) ≥ 0, and Fm(x) > 0 for

x ∈ (0, 1); indeed, Fm(0) = Fm(1) = 0 by (1.11). We now show that

Fm ∈ Fm; (4.4)

this will immediately imply continuity of Fm on (0, 1) (by Lemma 4.2) and show that

Fm(x) = Fm(1−x) (since if f belongs to Fm, then so does the function x 2→ f(1−x)).

To prove (4.4) we notice that, given ε > 0 and x1, . . . , xm ∈ [0, 1] with mini xi = x1

and maxi xi = xm, we can find f ∈ Fm such that

Fm

(

x1 + · · ·+ xm

m

)

≤ f

(

x1 + · · ·+ xm

m

)

+ ε,

and then, by (1.12),

Fm

(

x1 + · · ·+ xm

m

)

≤
f(x1) + · · ·+ f(xm)

m
+ (xm − x1) + ε

≤
Fm(x1) + · · ·+ Fm(xm)

m
+ (xm − x1) + ε.

Taking the limits as ε → 0 gives

Fm

(

x1 + · · ·+ xm

m

)

≤
Fm(x1) + · · ·+ Fm(xm)

m
+ (xm − x1),

whence Fm ∈ Fm.

To complete the proof it remains to show that Fm is continuous at the endpoints of
the interval [0, 1]. As remarked above, a slight modification of the proof of Lemma 4.2

shows, in view of (4.4), that the limits limx→0+ Fm(x) and limx→1− Fm(x) exist and

are finite. Moreover, from Fm(x) = Fm(1−x) it follows that these limits are equal to

the same number L, and we want to show that L = 0. Since Fm is positive on (0, 1),

we have L ≥ 0. To show, on the other hand, that L ≤ 0, we observe that if {ξk}∞k=1

is a sequence satisfying ξk → 0 and ξk ∈ (0, 1/m] for any k ≥ 1, then, by (4.4) and
(1.12),

L+ o(1) = Fm(ξk) ≤
(m− 1)Fm(0) + Fm(mξk)

m
+ o(1) =

1

m
L+ o(1)

as k → ∞. !

Proof of Theorem 1.12. Considering x < y fixed, let

fx,y(λ) :=
1

y − x

(

f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y)
)

.

Fix arbitrarily λ1, . . . ,λm ∈ [0, 1] with mini λi = λ1 and maxi λi = λm, and write

xi := λix + (1 − λi)y; i ∈ [1, m]. Notice that mini xi = xm and maxi xi = x1, and if
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x, y ∈ [0, 1], then also x1, . . . , xm ∈ [0, 1]. Hence, by (1.12),

(y − x)fx,y

(

λ1 + · · ·+ λm

m

)

= f

(

x1 + · · ·+ xm

m

)

−
1

m

m
∑

i=1

(λif(x) + (1− λi)f(y))

≤
1

m

m
∑

i=1

(

f(xi)− λif(x)− (1− λi)f(y)
)

+ (x1 − xm)

=
y − x

m

m
∑

i=1

fx,y(λi) + (y − x)(λm − λ1).

This shows that fx,y ∈ Fm. Consequently, fx,y(λ) ≤ Fm(λ) by the extremal property
of the function Fm (cf. Theorem 1.8) and the assertion follows. !

Proof of Theorem 1.9. By continuity of the functions ωm and Fm (see Theorem 1.8),

to show that Fm ≤ mωm it suffices to prove that for any integer r ≥ 0 and n ∈ [0, mr],

we have Fm(n/mr) ≤ mωm(n/mr). We use induction on r, and for each r we prove

the assertion for all n ∈ [0, mr].

The case r = 0 is immediate from Fm(0) = 0 = mωm(0) and Fm(1) = 0 = mωm(1).
For r ≥ 1 we assume, without loss of generality, that n is not divisible by m, and we

write n = mt + ρ with integer t and ρ ∈ [1, m − 1]. From Fm ∈ Fm, the induction

hypothesis, and Lemma 2.1 we then have

Fm(n/m
r) ≤

(m− ρ)Fm(t/mr−1) + ρFm((t + 1)/mr−1)

m
+

1

mr−1

≤ (m− ρ)ωm

(

t

mr−1

)

+ ρ ωm

(

t+ 1

mr−1

)

+
1

mr−1

= mωm

( n

mr

)

,

as wanted.
Next, we prove that Fm = mωm for m ∈ {2, 3, 4}. The case m = 2 follows from

the estimate F2 ≤ 2ω2 which we have just obtained and Boros–Páles inequality (1.9),

showing that 2ω2 ∈ F2 and, therefore, F2 ≥ 2ω2. Similarly, the case m = 3 follows

from F3 ≤ 3ω3 and Theorem 1.4 showing that 3ω3 ∈ F . For the case m = 4 we notice

that, in view of F4 = F2 and (1.8),

F4 = F2 = 2ω2 = 4ω4.

It remains to show that Fm ̸= mωm for m ≥ 5. To this end we observe that in this

case 4/m2 ≤ 1/m ≤ 4/m ≤ 1− 1/m, whence

mωm(4/m
2) = m∥4/m2∥1/m + ∥4/m∥1/m = 5/m,
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whereas, by (3.2), (1.12), and Fm(0) = 0,

Fm

(

4

m2

)

≤
(m− 2)Fm(0) + 2Fm(2/m)

m
+

2

m
≤

4

m
.

!

In connection with Theorem 1.9 we remark that the estimate Fm ≤ mωm and the

inequality Fm ̸= mωm for m ≥ 5 also follow from Theorems 1.3 and 1.6, the latter

of them applied with f = Fm, and the well-known and easy-to-verify fact that the

sets A = In(Cr
m) do not minimize the quantity ∂S(A) for m ≥ 5. This is yet another

indication of the intrinsic relation between the discrete isoperimetric problem and the
functions ωm and Fm.

Finally, we prove Proposition 1.11.

Proof of Proposition 1.11. Suppose that f is a real-valued function, defined on the

interval [0, 1] and satisfying the boundary condition (1.11) and the inequality (4.1)

for all λ, x1, x2 ∈ [0, 1] with x1 ≤ x2. For real ξ ∈ [0, 1] and integer k ≥ 1, applying
(4.1) with x1 = 0, x2 = ξk−1, and λ = 1− ξ, we obtain

f(ξk) = f(λx1 + (1− λ)x2) ≤ (1− λ)f(x2) + x2 = ξk−1 + ξf(ξk−1);

iterating,

f(ξk) ≤ 2ξk−1 + ξ2f(ξk−2) ≤ · · · ≤ kξk−1. (4.5)

For x ∈ (0, 1), we use the resulting estimate with k := ⌈ln(1/x)⌉ and ξ := x1/k to get

f(x) < (1 + ln(1/x)) x · x−1/k ≤ ex ln(e/x).

To complete the proof it remains to observe that, by Corollary 4.3, we have Fm ≤

m/(m − 1), and therefore Theorem 1.12 shows that the function f = (1 −m−1)Fm

satisfies (4.1). !

Appendix: proof of inequalities (1.4)–(1.7).

We prove here inequalities (1.4), (1.5), and (1.7); inequality (1.6) is immediate from
(1.4) and (1.8). The proofs use the identities

ωm(x) = ∥x∥1/m +
1

m
∥mx∥1/m + · · ·+

1

mk
∥mkx∥1/m +

1

mk+1
ωm(m

k+1x) (4.6)

and

ωm(n± x) = ωm(x), (4.7)

valid for any integer m ≥ 2, k ≥ 0, and n, and any choice of the sign.
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Proof of the inequality (1.4). As an immediate corollary of (4.6), for each x ∈ [0, 1/2]

we have ω2(x) = x + 1
2 ω2(2x). On the other hand, for any fixed C > 0, the

function fC(x) := x log2(C/x) satisfies the very same functional equation: fC(x) =

x+ 1
2 fC(2x). Hence,

fC(x)− ω2(x) =
1

2

(

fC(2x)− ω2(2x)
)

, x ∈ (0, 1/2], (4.8)

showing that it suffices to prove the estimates in question in the range x ∈ [1/2, 1].

To establish the lower bound we now observe that

ω2(x) ≥ ∥x∥+
1

2
∥2x∥ =

{

1/2 if 1/2 ≤ x ≤ 3/4,

2− 2x if 3/4 ≤ x ≤ 1,

and using some basic calculus, one verifies easily that the function in the right-hand

side is at least as large as x log2(1/x) for all x ∈ [1/2, 1].

Turning to the upper bound, we notice that the function f4/3 is concave and sat-

isfies f4/3(1/3) = f4/3(2/3) = 2/3, and that the largest value attained by the Takagi

function is known to be maxω2 = 2/3 (see [AK11] or [La12]). As a result,

ω2(x) ≤ 2/3 ≤ f4/3(x), x ∈ [1/3, 2/3].

In view of the functional equation (4.8), the resulting estimate ω2(x) ≤ f4/3(x) extends

onto the intervals [2/3, 1] and [1/6, 1/3], and then consequently onto the intervals

[1/12, 1/6], [1/24, 1/12], etc. To complete the proof we just notice that the union

of all these intervals (including the original interval [1/3, 2/3]) is the whole interval
(0, 1]. !

Proof of the inequality (1.5). Similarly to the proof of (1.4), writing fC(x) := x log3(C/x),

for every x ∈ (0, 1/3] we have ω3(x) = x + 1
3 ω3(3x) and also fC(x) = x + 1

3 fC(3x).

Hence,

fC(x)− ω3(x) =
1

3

(

fC(3x)− ω3(3x)
)

, x ∈ (0, 1/3],

showing that we can assume x ∈ [1/3, 1].

Observing that if x ∈ [1/3, 4/9], then

ω3(x) ≥ ∥x∥1/3 +
1

3
∥3x∥1/3 =

1

3
+

1

3
(3x− 1) = x ≥ x log3(1/x),

and if x ∈ [4/9, 1], then

ω3(x) ≥ ∥x∥1/3 ≥ x log3(1/x)

(straightforward verification is left to the reader), we get the lower bound.

For the upper bound, we can further restrict the range to consider from [1/3, 1]

to [1/3, 1/2], for once the estimate is established in this narrower range, it readily
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extends onto the interval [1/2, 2/3] in view of

ω3(x) = ω3(1− x), f3/2(x) ≤ f3/2(1− x), 0 < x ≤ 1/2,

and onto the interval [2/3, 1] since for any x in this interval, by (4.6) and (4.7) we

have

ω3

(

2− x

3

)

=
1

3
+

1

3
ω3(x),

whence (assuming the upper bound is proved in [1/3, 1/2])

ω3(x) = 3ω3

(

2− x

3

)

− 1 ≤ (2 − x) log3
9

2(2− x)
− 1 ≤ x log3

3

2x
, x ∈ [2/3, 1].

(For the last inequality observe that both sides are equal for x = 1, and compare the

derivatives.)

Thus, it remains to prove the upper bound for x ∈ [1/3, 1/2]. To this end, for

integer r ≥ 1 we let

br :=
1

3
+ · · ·+

1

3r

and use induction on r to show that ω3(x) ≤ f3/2(x) for all x ∈ [br, br+1]. If r = 1,

then x ∈ [1/3, 4/9]; in view of (1.3), in this range we have

ω3(x) = ∥x∥1/3 +
1

3
∥3x∥1/3 +

1

9
∥9x∥1/3 +

1

27
ω3(27x)

≤
1

3
+

1

3
(3x− 1) +

1

9
min

{

1

3
, 4− 9x

}

+
1

54

= min

{

x+
1

18
,
25

54

}

,

and a simple verification confirms that the expression in the right-hand side is smaller

than f3/2(x) for x ∈ [1/3, 4/9]. Assuming now that r ≥ 2, we observe that x ∈
[br, br+1] implies 3x − 1 ∈ [br−1, br]; hence, by the induction hypothesis, for all x in

this range we have

ω3(x) = ∥x∥1/3 +
1

3
ω3(3x− 1)

≤
1

3
+

1

3
(3x− 1) log3

3

2(3x− 1)

≤ x log3
3

2x
.

(For the last inequality compare the values of both sides at 1/2 and their derivatives

for 1/3 < x < 1/2.) This completes the proof. !
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Proof of the inequality (1.7). As in the proofs of (1.4) and (1.5), we can confine to

the range x ∈ [1/m, 1] where the upper bound readily follows from (1.3):

ωm(x) ≤
1

m− 1
≤ x logm(3/2x), x ∈ [1/m, 1].

(Notice that the right-hand side is a concave function and hence attains its minimum
at an endpoint.) For the lower bound we observe that the function x logm(e/mx) is

decreasing for x ≥ 1/m, whence

ωm(x) ≥
1

m
≥ x logm(e/mx), x ∈ [1/m, 1− 1/m]

and

ωm(x) ≥ 0 > x logm(e/mx), x ∈ [1− 1/m, 1].

!
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