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Abstract. We establish a finite analogue of the Erdős-Fuchs theorem, showing
that the representation function of a non-trivial subset of a finite abelian group
cannot be nearly constant. Our results are, essentially, best possible.

1. Introduction.

For finite subsets A and B of an (additively written) abelian group G let

rA,B(g) :=
∣∣{(a, b) ∈ A× B : g = a+ b, a ∈ A, b ∈ B}

∣∣.
If B = A, we abbreviate this as rA and call the representation function of the set A.

In 1956 Erdős and Fuchs [EF56] proved two remarkable theorems on the represen-

tation functions of infinite sets of non-negative integers.

Theorem A. If A is an infinite set of non-negative integers, then
n∑
k=1

rA(k) = cn+ o
(
n1/4 log−1/2 n

)
with a positive constant c cannot hold.

Theorem B. Let A = {a1, a2, . . . } be a set of non-negative integers written in in-

creasing order, and let c ≥ 0. If either c > 0, or c = 0 and ak < Ck2 for a constant

C, then

lim sup
n→∞

1

n

n∑
k=1

(
rA(k)− c

)2
> 0.

Theorem A is often called the Erdős–Fuchs theorem. Erdős and Fuchs wrote in

[EF56]:
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If ak = k2 the estimation of r(n) is the classical problem about lattice

points in a circle. Here it follows from the results of Hardy and Landau

that r(n) 6= cn + dn1/2 + o
(
n1/4 log1/4 n

)
. It is rather surprising that

our result for a general ak is almost as good while its proof is much

simpler.

In a survey paper [E96] written just before his death, Erdős refers to these results as

follows:

I should not forget our result with W. Fuchs which certainly will survive

the authors by centuries.

Theorems A and B have been extended in various directions and sharpened by

Montgomery and Vaughan in [MV90] but, to our knowledge, all extensions address

infinite sets of integers. In this paper we establish a finite analogue of Theorem B

showing that the representation function of a subset of a finite abelian group cannot

be nearly constant, unless the subset contains too few or too many elements. Our

main result is

Theorem 1. If A is a subset of a finite non-trivial abelian group G of density α :=

|A|/|G|, then for any real number c we have∑
g∈G

(
rA(g)− c

)2 ≥ (1− 1/|G|)−1 α2(1− α)2|G|2.

Corollary 1. Under the assumptions of Theorem 1, for any real number c we have

max
g∈G
|rA(g)− c| ≥ (1− 1/|G|)−1/2 α(1− α)|G|1/2.

Thus,

max
g∈G

rA(g)−min
g∈G

rA(g) ≥ 2(1− 1/|G|)−1/2 α(1− α)|G|1/2.

Theorem 1 is proved in Section 2. As the proof readily shows, for the optimal

choice of c, equality is attained in the estimate of the theorem if and only if A is

a difference set in G; that is, every non-zero element of G has the same number of

representations as a difference of two elements from A. Unfortunately, there do not

seem to exist many groups possessing difference sets and, with just one exception,

all known difference sets have density very close to 1/2 (see [DJ96] for a survey).

Besides, difference sets do not provide any evidence on whether Corollary 1 is sharp,

too. For this reason we give in Section 3 several examples showing that Theorem 1

and Corollary 1 are nearly best possible: specifically,
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(i) if G is the additive group of a finite field of odd characteristic and A ⊆ G is

the set of all non-zero squares of the field, then for the optimal choice of c the

estimate of Theorem 1 is tight up to a lower-order term;

(ii) if G is a finite abelian group of odd order, and A is a random subset of

G to which every group element is chosen to belong with probability α, in-

dependently of other elements, then the estimate of Corollary 1 is off by a

logarithmic factor.

Furthermore, one cannot, in general, replace in Theorem 1 and Corollary 1 the rep-

resentation function rA by rA,B with two distinct sets A and B: say, if A is a union

of cosets of a subgroup, and B is a union of several pairwise disjoint sets of coset

representatives of this subgroup, then rA,B is constant. One can expect, nevertheless,

that there can be non-trivial estimates for the “skew representation function” ruA,vA,

where u and v are integers and where, for integer w, we write

wA = {wa : a ∈ A}.

Indeed, in Section 2 we prove

Theorem 2. If A is a non-trivial subset of a finite abelian group, and u and v are

integers co-prime with the order of the group, then ruA,vA is not constant.

Theorem 2 appears to be manifestly weaker than Corollary 1, but in fact the

former is, essentially, best possible: in Section 3 we provide examples showing that co-

primality assumption cannot be dropped, and the conclusion cannot be strengthened

in the sense that with u, v, and A as in the theorem, one can have

max ruA,vA −min ruA,vA = 1.

2. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let S :=
∑

g∈G
(
rA(g)− c

)2
. Since∑

g∈G

rA(g) =
∑
g∈G

∑
a1,a2∈A
a1+a2=g

1 =
∑

a1,a2∈A

1 = |A|2,

we have

S =
∑
g∈G

r2
A(g)− 2c|A|2 + c2|G|,

and minimization over c shows that

S ≥
∑
g∈G

r2
A(g)− |A|4/|G|.
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The sum in the right-hand side counts the number of solutions of the equation

a1 + a2 = a3 + a4

in the variables a1, a2, a3, a4 ∈ A. Rearranging the terms, one can rewrite this equa-

tion as a1 − a3 = a4 − a2, showing that the sum under consideration can also be

written as
∑

g∈G r
2
A,−A(g). Hence, taking into account that rA,−A(0) = |A| and using

the Cauchy-Schwarz inequality, we get

S ≥
∑

g∈G\{0}

r2
A,−A(g) + |A|2 − |A|

4

|G|

≥ 1

|G| − 1

( ∑
g∈G\{0}

rA,−A(g)

)2

+ |A|2 − |A|
4

|G|

=
1

|G| − 1

(
|A|2 − |A|

)2
+ |A|2 − |A|

4

|G|

=
1

|G| − 1

(
|A|4

|G|
− 2|A|3 + |A|2|G|

)
.

Recalling that |A| = α|G|, we rewrite the right-hand side as

|G|3

|G| − 1

(
α4 − 2α3 + α2

)
= (1− 1/|G|)−1 α2(1− α)2|G|2,

and the assertion follows. �

Proof of Theorem 2. Let G be a finite abelian group, A ⊆ G, and suppose that u and

v are integers with gcd(uv, |G|) = 1. For a set B ⊆ G and a character χ of G set

SB(χ) :=
∑
b∈B

χ(b).

The key observation is that for any character χ we have

SuA(χ)SvA(χ) =
∑
g∈G

ruA,vA(g)χ(g)

(which, of course, is due to the fact that the Fourier transform of a convolution is the

product of Fourier transforms); hence, if ruA,vA is constant, then

SuA(χ)SvA(χ) = 0 (1)

for any non-trivial character χ.

Write ω := exp(2πi/|G|). Denote by Q the field of rational numbers, and for

integer z, co-prime with |G|, let ϕz be the automorphism of the field Q(ω) over Q,

defined by ϕz(ω) = ωz. We have then ϕu(SA(χ)) = SuA(χ) and ϕv(SA(χ)) = SvA(χ).
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Consequently, (1) shows that SA(χ) = 0 for each non-trivial character χ; as a result,

we have either A = ∅, or A = G. �

3. Examples.

Example 1. Suppose that q is a power of an odd prime and let Fq denote the finite

field of order q. Furthermore, let A be the set of all non-zero squares in Fq; thus, the

density of A is (q−1)/(2q). The representation function of A can be easily expressed

in terms of the quadratic character χ of the field Fq: namely,

rA(0) = |A ∩ (−A)| = 1

4
(1 + χ(−1))(q − 1),

and if g ∈ F×q , then

rA(g) =
1

4

∑
z∈Fq\{0,g}

(1 + χ(z))(1 + χ(g − z))

=
1

4

∑
z∈Fq

χ(z(g − z))− 1

2
χ(g) +

1

4
(q − 2)

=
1

4
(q − 2)− 1

4
χ(−1)− 1

2
χ(g).

(We omit computing the sum of the values of χ on a quadratic polynomial, which is a

well-known and easy exercise; see, for instance, [V54, Chapter 5].) Therefore, letting

c :=
1

4
(q − 2)− 1

4
χ(−1),

we get

rA(g)− c =

{
1
4

(1 + χ(−1)q), g = 0,

−1
2
χ(g), g 6= 0.

Thus, ∑
g∈Fq

(
rA(g)− c

)2
=

1

16
(q2 + 2qχ(−1) + 1) +

1

4
(q − 1) =

1

16
q2 +O(q),

which is just by O(q) off from the estimate of Theorem 1.

An interesting feature of Example 1 is that the representation function rA consid-

ered there is nearly constant on the underlying group, with the exception of just one

group element. Reversible difference sets provide yet another example of this sort, but

we are not going to elaborate here on it, nor on the possibility to extend Example 1

by considering higher-degree residues (which readily leads to the involved subject of

cyclotomic numbers).
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Our next example shows that for a random subset of an abelian group of odd order,

the representation function does not deviate much from its expected value. We need

a result which follows, for instance, by combining Theorems A.1.11 and A.1.13 from

[AS08].

Proposition 1. Suppose that m ≥ 1 is an integer and p ∈ (0, 1) a real number, and

let X be a random variable distributed binomially with the parameters n and p. Then

for every 0 ≤ a ≤ 1
2
np we have

P
(
|X − pn| ≥ a

)
< 2e−a

2/(4pn).

For a subset A of a finite abelian group G we write

r′A(g) :=
∣∣{(a′, a′′) ∈ A×A : a′ + a′′ = g, a′ 6= a′′}

∣∣; g ∈ G.

Thus, for instance, if G is of odd order, then for every group element g we have either

r′A(g) = rA(g), or r′A(g) = rA(g)− 1.

Example 2. Let G be a finite abelian group of odd order m := |G|, and suppose that

8
√

ln(4m)/m ≤ α < 1. Consider the random subset A ⊆ G to which every element

of G is chosen to belong with probability α, independently from other elements of G.

We claim that with probability at least 1/2 we have∣∣r′A(g)− α2(m− 1)
∣∣ < 2

√
2m ln(4m) α

for every g ∈ G. To see this we let a :=
√

2m ln(4m) α and observe that for each

g ∈ G, the quantity 1
2
r′A(g) is distributed binomially with the parameters (m− 1)/2

and α2, so that in view of Proposition 1,

P
(∣∣1

2
r′A(g)− 1

2
α2(m− 1)

∣∣ ≥ a
)
< 2e−a

2/(2α2(m−1)) < 2e− ln(4m) = 1
2m
.

Now the claim follows immediately.

With slightly more work we can also show that there is a constant C such that for

any finite non-trivial abelian group G and integer 0 ≤ k ≤ |G|, letting m := |G| and

α := k/m, for a randomly chosen k-element subset A ⊆ G, with probability greater

than 1/2 the inequality

|rA(g)− α2m| < C max
{

1, α(1− α)
√
m logm

}
holds for all g ∈ G.

Next, we present two examples showing that the assumption gcd(uv, |G|) = 1 of

Theorem 2 cannot be omitted.
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Example 3. Suppose that G is the group of residues modulo a positive integer m ≡ 4

(mod 8), and let

A := {1, 2, 5, 6, 9, 10, . . . ,m− 3,m− 2} ⊆ G.

Then 2A = {0, 2, 4, . . . ,m − 2} and it is easy to check that every element of G has

exactly m/2 representations as a sum of an element from A and an element from 2A;

that is, rA,2A = m/2.

Example 4. Suppose that n, t ≥ 1 are integers, denote by G the group of residues

modulo m := n2t, and consider the set A := [0, nt) ⊆ G. Then every element of G is

easily seen to have exactly t representations as a sum of an element from A and an

element from nA = {0, n, 2n, . . . ,m− n}; that is, rA,nA = t.

Example 4 can be slightly modified to show that the conclusion of Theorem 2

cannot be substantially strengthened.

Example 5. For n, t ≥ 1 integers, denote by G the group of residues modulo

m := n2t + 1, and let A := [0, nt) ⊆ G. Then every element of G has either

t or t + 1 representations as a sum of an element from A and an element from

nA = {0, n, 2n, . . . ,m− 1− n}; thus, rA,nA is nearly constant in this case.

We notice that in the last example we have gcd(n, |G|) = 1, and that the density

of A is 1/n, which can range from 0 to 1.
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