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Abstract. We show that if A and B are finite sets of real numbers, then the number
of triples (a, b, c) ∈ A×B× (A∪B) with a+ b = 2c is at most (0.15 + o(1))(|A|+ |B|)2
as |A|+ |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (−A) = ∅), then
there are at most (0.3 + o(1))|A|2 triples (a, b, c) with a, b, c ∈ A and a − b = 2c. In
the general case where A is not necessarily antisymmetric, we show that the number
of triples (a, b, c) with a, b, c ∈ A and a − b = 2c is at most (0.5 + o(1))|A|2. These
estimates are sharp.

1. Introduction and summary of results

For a finite real set A of given size, the number of three-term arithmetic progressions

in A is maximized when A itself is an arithmetic progression. This follows by observing

that for any integer 1 ≤ k ≤ |A|, the number of three-term progressions in A with the

middle term at the kth largest element of A is at most min{k − 1, |A| − k}. A simple

computation leads to the conclusion that the number of triples (a, b, c) ∈ A×A×A with

a+ b = 2c is at most 0.5|A|2 + 0.5.

Suppose now that only those progressions with the least element below, and the great-

est element above the median of A, are counted; what is the largest possible number of

such “scattered” progressions? This problem was raised in [NPPZ] in connection with a

combinatorial geometry question by Erdős. Below we give it a complete solution; indeed,

we solve a more general problem, replacing the sets of all elements below / above the

median with arbitrary finite sets.

Theorem 1. If A and B are finite sets of real numbers, then the number of triples (a, b, c)

with a ∈ A, b ∈ B, c ∈ A∪B, and a+b = 2c, is at most 0.15(|A|+ |B|)2 +0.5(|A|+ |B|).

For a subset A of an abelian group, write −A := {−a : a ∈ A}. We say that A is

antisymmetric if A ∩ (−A) = ∅. Thus, for instance, any set of positive real numbers is

antisymmetric.

For an antisymmetric set A, the number of triples (a, b, c) with a ∈ A, b ∈ −A, c ∈
A ∪ (−A), and a + b = 2c, is twice the number of triples (a, b, c) with a, b, c ∈ A and

a− b = 2c. Hence, Theorem 1 yields
1
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Corollary 1. If A is a finite antisymmetric set of real numbers, then the number of

triples (a, b, c) with a, b, c ∈ A and a− b = 2c is at most 0.3|A|2 + 0.5|A|.

The following example shows that the coefficient 0.3 of Corollary 1, and therefore also

the coefficient 0.15 of Theorem 1, is best possible.

Example. Fix an integer m ≥ 1, and let A consist of all positive integers up to m, and

all even integers between m and 4m (taking all odd integers will do as well). Assuming

for definiteness that m is even, we thus can write

A = [1,m] ∪ {m+ 2,m+ 4, . . . , 4m}.

Notice, that A contains m/2 odd elements and 2m even elements, of which exactly m

are divisible by 4; in particular, |A| = 5m/2. For every triple (a, b, c) ∈ A× A× A with

a − b = 2c, we have a ≡ b (mod 2) and a > b. There are
(
m/2
2

)
such triples with a

and b both odd, and 2
(
m
2

)
triples with a and b both even and satisfying a ≡ b (mod 4).

Furthermore, it is not difficult to see that there are 3
4
m2 triples with a and b both even

and satisfying a 6≡ b (mod 4). Thus, the total number of triples under consideration is(
m/2

2

)
+ 2

(
m

2

)
+

3

4
m2 =

15

8
m2 − 5

4
m =

3

10
|A|2 − 1

2
|A|,

the first summand matching the main term of Corollary 1.

Our second principal result addresses the same equation as Corollary 1, but in the

general situation where the antisymmetry assumption got dropped.

Theorem 2. If A is a finite set of real numbers, then the number of triples (a, b, c) with

a, b, c ∈ A and a− b = 2c is at most 0.5|A|2 + 0.5|A|.

The main term of Theorem 2 is best possible as it is easily seen by considering the set

A = [−m,m], where m ≥ 1 is an integer. For this set, the number of triples (a, b, c) ∈
A × A × A with a − b = 2c is equal to the number of pairs (a, b) ∈ A × A with a and b

of the same parity, which is (m+ 1)2 +m2 = 0.5|A|2 + 0.5.

It is a challenging problem to generalize our results and investigate the equations

a ± b = λc, for a fixed real parameter λ > 0. As it follows from [L98, Theorem 1],

the number of solutions of this equation in the elements of a finite set of given size is

maximized when λ = 1, and the set is an arithmetic progression, centered around 0. It

would be interesting to determine the largest possible number of solutions for every fixed

value of λ 6= 1, or at least to estimate the maximum over all positive λ 6= 1.

We remark that using a standard technique, our results extend readily onto finite

subsets of torsion-free abelian groups. In contrast, extending Theorems 1 and 2 onto

groups with a non-zero torsion subgroup, and in particular onto cyclic groups, seems
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to be a highly non-trivial problem requiring an approach completely different from that

used in the present paper.

In the next section we prepare the ground for the proofs of Theorems 1 and 2. The

theorems are then proved in Sections 3 and 4, respectively.

2. The proofs: preparations

For finite sets A,B, and C of real numbers, let

T (A,B,C) :=
∣∣{(a, b, c) ∈ A×B × C : a+ b = 2c}

∣∣.
We start with a simple lemma allowing us to confine to the integer case.

Lemma 1. For any finite sets A and B of real numbers, there exist finite sets A′ and B′ of

integer numbers with |A′| = |A|, |B′| = |B| such that T (A′, B′, A′∪B′) = T (A,B,A∪B)

and T (A′,−A′, A′) = T (A,−A,A).

Proof. By the (weak version of the) standard simultaneous approximation theorem, there

exist arbitrary large integer q ≥ 1, along with an integer-valued function ϕq acting on

the union A ∪ (−A) ∪B, such that∣∣∣c− ϕq(c)

q

∣∣∣ < 1

4q
, c ∈ A ∪ (−A) ∪B.

Let A′ := ϕq(A) and B′ := ϕq(B). It is readily verified that if q is large enough, then

|A′| = |A| and |B′| = |B| and, moreover, an equality of the form a ± b = 2c with

a, b, c ∈ A ∪ (−A) ∪ B holds true if and only if ϕq(a) ± ϕq(b) = 2ϕq(c). The assertion

follows. �

Clearly, for finite sets of integers A,B, and C with |C| ≥ |A|+|B|, the number of triples

(a, b, c) ∈ A×B×C satisfying a+b = c can be as large as |A||B|. Our argument relies on

the following lemma which improves this trivial bound in the case where |C| < |A|+ |B|.

Lemma 2. If A,B and C are finite sets of real numbers with max{|A|, |B|} ≤ |C| ≤
|A| + |B|, then the number of triples (a, b, c) ∈ A× B × C satisfying a + b = c does not

exceed

|A||B| − 1

4
(|A|+ |B| − |C|)2 +

1

4
.

Proof. We use induction on |A| + |B| − |C|. The case where |A| + |B| − |C| ≤ 1 is

immediate, and we thus assume that |A|+ |B| − |C| ≥ 2. If either A or B is empty, then

the assertion is readily verified. Otherwise, we let amin := minA and bmax := maxB, and

observe that every c ∈ C has at most one representation as c = amin + b with b ∈ B, and

at most one representation as c = a+ bmax with a ∈ A. Indeed, the same element c ∈ C
cannot have representations of both kinds simultaneously, unless they are identical: for,
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amin + b = a + bmax with a ∈ A, b ∈ B yields b − a = bmax − amin, whence a = amin

and b = bmax. This shows that removing amin form A, and simultaneously bmax from

B, we loose at most |C| triples (a, b, c) ∈ A × B × C with a + b = c. Using now the

induction hypothesis to estimate the number of such triples with a 6= amin and b 6= bmax,

we conclude that the total number of triples under consideration is at most

|C|+ (|A| − 1)(|B| − 1)− 1

4
(|A|+ |B| − 2− |C|)2 +

1

4

= |A||B| − 1

4
(|A|+ |B| − |C|)2 +

1

4
.

�

We note that Lemma 2 can also be deduced from the following proposition, which is a

particular case of [L98, Theorem 1]; see [G32, HL28, HLP88] for earlier, slightly weaker

versions.

For a finite set A of real numbers, write mid(A) := 1
2

(
min(A) + max(A)

)
.

Proposition 1. Let A,B, and C be finite sets of integers. If A′, B′, and C ′ are blocks

of consecutive integers such that mid(C ′) is at most 0.5 off from mid(A′) + mid(B′), and

|A′| = |A|, |B′| = |B|, |C ′| = |C|, then the number of triples (a, b, c) ∈ A× B × C with

a+ b = c does not exceed the number of triples (a′, b′, c′) ∈ A′ ×B′ ×C ′ with a′ + b′ = c′.

Loosely speaking, Proposition 1 says that the number of solutions of a + b = c in

the variables a ∈ A, b ∈ B, and c ∈ C is maximized when A,B, and C are blocks of

consecutive integers, located so that C captures the integers with the largest number of

representations as a sum of an elements from A and an element from B. We leave it to

the reader to see how Lemma 2 can be derived from Proposition 1.

We use Lemma 2 to estimate the quantity T (A,B,C), which is the number of solutions

of a+ b = c′ with a ∈ A, b ∈ B, and c′ ∈ {2c : c ∈ C}. It is also convenient to recast the

estimate of the lemma in terms of the function G which we define as follows: if (ξ, η, ζ)

is a non-decreasing rearrangement of the triple (x, y, z) of real numbers, then we let

G(x, y, z) :=

{
ξη if ζ ≥ ξ + η,

ξη − 1
4

(ξ + η − ζ)2 if ζ ≤ ξ + η.

Thus, for instance, we have G(9, 6, 7) = 38, whereas G(7, 14, 6) = 42.

Corollary 2. If A,B and C are finite sets of integers, then

T (A,B,C) ≤ G(|A|, |B|, |C|) +
1

4
.

We close this section with two lemmas used in the proofs of Theorems 1 and 2, respec-

tively.
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For real x, we let x+ := max{x, 0} and use x2+ as an abbreviation for (x+)2.

Lemma 3. For any real x, y, and z, we have

G
(x+ y

2
,
x+ y

2
, z
)

= G(x, y, z) +
1

4
(x− y)2 − 1

4

(
|x− y| − z

)2
+
.

Corollary 3. For any real x, y, and z, we have

G
(x+ y

2
,
x+ y

2
, z
)
≥ G(x, y, z).

Lemma 4. If x and z are real numbers with z ≤ 2x, then G(x, x, z) ≤ xz − 1
4
z2.

To prove Lemma 3 one can assume x ≤ y (which does not restrict the generality) and

verify the assertion in the four possible cases z ≤ x, x ≤ z ≤ (x+y)/2, (x+y)/2 ≤ z ≤ y,

and z ≥ y. The proof of Lemma 4 goes by straightforward investigation of the two cases

x ≤ z and x ≥ z. We omit the details.

3. Proof of Theorem 1

We use induction on |A|+ |B|.
By Lemma 1, we can assume that A and B are sets of integers. For i, j ∈ {0, 1} let

Ai := {a ∈ A : a ≡ i (mod 2)} and Aij := {a ∈ A : a ≡ i + 2j (mod 4)}, and define Bi

and Bij in a similar way. Also, write m := |A|, mi := |Ai|, mij := |Aij|, n := |B|, ni :=

|Bi|, and nij := |Bij|. Applying a suitable affine transformation to A and B, we can

assume without loss of generality that A ∪B contains both even and odd elements, and

the total number of even elements in A and B is at least as large as the total number of

odd elements:

0 < m1 + n1 ≤ m0 + n0 < m+ n. (1)

Keeping the notation introduced at the beginning of Section 2, we want to estimate

the quantity T (A,B,A ∪ B). Observing that a + b = 2c implies that a and b are of the

same parity, we write

T (A,B,A ∪B) = T (A0, B0, A0 ∪B0) + T (A0, B0, A1 ∪B1) + T (A1, B1, A ∪B) (2)

and estimate separately each of the three summands in the right-hand side.

For the first summand, we notice that a0 + b0 = 2c0 with a0 ∈ A0, b0 ∈ B0, and

c0 ∈ A0 ∪ B0, implies that a0/2 and b0/2 are of the same parity. Hence, either a0 ∈ A00

and b0 ∈ B00, or a0 ∈ A01 and b0 ∈ B01, leading to the upper bound m00n00 + m01n01.

On the other hand, we can use induction (cf. (1)) to estimate the first summand by

0.15(m0 + n0)
2 + 0.5(m0 + n0). As a result,

T (A0, B0, A0 ∪B0) ≤ min{0.15(m0 + n0)
2,m00n00 +m01n01}+ 0.5(m0 + n0). (3)
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Similar parity considerations show that if a0 + b0 = 2c1 with a0 ∈ A0, b0 ∈ B0, and

c1 ∈ A1 ∪ B1, then either a0 ∈ A00 and b0 ∈ B01, or a0 ∈ A01 and b0 ∈ B00. Therefore,

using Corollary 2, we get

T (A0, B0, A1 ∪B1) = T (A00, B01, A1 ∪B1) + T (A01, B00, A1 ∪B1)

≤ G(m00, n01,m1 + n1) +G(m01, n00,m1 + n1) + 0.5. (4)

For the last summand in (2) we use the trivial estimate

T (A1, B1, A ∪B) ≤ m1n1 ≤ 0.25(m1 + n1)
2. (5)

Substituting (3)– (5) into (2), we get

T (A,B,A ∪B) ≤ min{0.15(m0 + n0)
2,m00n00 +m01n01}

+G(m00, n01,m1 + n1) +G(m01, n00,m1 + n1)

+
1

4
(m1 + n1)

2 + 0.5(m0 + n0) + 0.5. (6)

Recalling (1), we estimate the remainder terms as

0.5(m0 + n0) + 0.5 ≤ 0.5(m+ n).

To estimate the main term, for real x0, x1, y0, y1 we write

s := x0 + x1 + y0 + y1 (7)

and let

f(x0, x1, y0, y1) := min{0.15s2, x0y0 + x1y1}
+G(x0, y1, 1− s) +G(x1, y0, 1− s)
+ 0.25(1− s)2. (8)

Remainder terms dropped, the right-hand side of (6) can then be written as (m +

n)2f(ξ0, ξ1, η0, η1), where

ξ0 :=
m00

m+ n
, ξ1 :=

m01

m+ n
, η0 :=

n00

m+ n
, and η1 :=

n01

m+ n
.

With (1) in mind, we see that to complete the argument it suffices to prove the following

lemma.

Lemma 5. For the function f defined by (7)– (8), we have

max{f(x0, x1, y0, y1) : x0, x1, y0, y1 ≥ 0, 1/2 ≤ s ≤ 1} ≤ 0.15.

The inequality of Lemma 5 is surprisingly delicate, and the proof presented in the re-

maining part of this section is rather tedious. The reader trusting us about the proof may

wish to skip on to Section 4, where the proof of Theorem 2 (independent of Theorem 1)

is given.
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Proof of Lemma 5. Since f(x0, x1, y0, y1) = f(y0, y1, x0, x1), switching, if necessary, x0
with y0, and x1 with y1, we can assume that

x0 + x1 ≥ y0 + y1. (9)

Similarly, f(x0, x1, y0, y1) = f(x1, x0, y1, y0) shows that x0 can be switched with x1, and

y0 with y1 to ensure that

x0 + y0 ≥ x1 + y1. (10)

(Observe, that switching x0 with x1 and y0 with y1 does not affect (9).) Thus, from now

on we assume that (9) and (10) hold true.

Our big plan is to investigate the effect made on f by replacing the variables x0 and

y1 with their average (x0 + y1)/2, and, simultaneously, replacing the variables x1 and y0
with their average (x1 + y0)/2. We show that either

f
(x0 + y1

2
,
x1 + y0

2
,
x1 + y0

2
,
x0 + y1

2

)
≥ f(x0, x1, y0, y1) (11)

(meaning that f is non-decreasing under such “balancing”), or

x0 ≥ y1 + (1− s), (12)

y0 ≥ x1 + (1− s), (13)

and

3(x0 + y0) + (x1 + y1) ≥ 2. (14)

In both cases, the problem reduces to maximizing a function in just two variables.

We thus assume that (11) fails, aiming to prove that (12)– (14) hold true. Along

with (8) and Corollary 3, our assumption implies

1

2
(x0 + y1)(x1 + y0) < x0y0 + x1y1,

simplifying to

(x0 − y1)(x1 − y0) < 0.

Writing (10) as x0 − y1 ≥ x1 − y0, we conclude that

x0 > y1 and y0 > x1 (15)

(which the reader may wish to compare with (12) and (13)).

Let

O := x0y0 + x1y1 +G(x0, y1, 1− s) +G(x1, y0, 1− s)
and

N :=
1

2
(x0 + y1)(x1 + y0) +G

(x0 + y1
2

,
x0 + y1

2
, 1− s

)
+G

(x1 + y0
2

,
x1 + y0

2
, 1− s

)
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(the script letters standing for “old” and “new”); thus, N < O by the assumption

that (11) fails, (8), and Corollary 3. From Lemma 3 and (15) we get

N −O =
1

2
(x0 − y1)(x1 − y0) +

1

4
(x0 − y1)2 −

1

4
(|x0 − y1| − (1− s))2+

+
1

4
(x1 − y0)2 −

1

4
(|x1 − y0| − (1− s))2+

=
1

4
(x0 + x1 − y0 − y1)2 −

1

4
(x0 − y1 − (1− s))2+

− 1

4
(y0 − x1 − (1− s))2+.

Analyzing the expression in the right-hand side we see that if (13) were false, thenN < O
along with (9) would give

x0 + x1 − y0 − y1 < x0 − y1 − (1− s),

which is (13) in disguise. This contradiction shows that (13) is true. We now readily

get (12) as a consequence of (13) and (9), and (14) is just a sum of (13) and (12).

To summarize, there are two major cases to consider: that where (11) holds true, and

that where (12)– (14) hold true. Since in the second case we have G(x0, y1, 1 − s) =

y1(1 − s) and G(x1, y0, 1 − s) = x1(1 − s), the proof of Lemma 5 will be complete once

we establish the following claims.

Claim 1. We have f(x0, x1, x1, x0) ≤ 0.15 for any x0, x1 ≥ 0 with s := 2(x0 + x1) ∈
[1/2, 1].

Claim 2. For real x0, x1, y0, and y1, write s := x0 + x1 + y0 + y1 and let

g(x0, x1, y0, y1) = min{0.15s2, x0y0 + x1y1}+ (x1 + y1)(1− s) + 0.25(1− s)2.

Then g(x0, x1, y0, y1) ≤ 0.15 whenever x0, x1, y0, y1 ≥ 0 satisfy (14), and s ≤ 1.

Proof of Claim 1. As

f(x0, x1, x1, x0) = min{0.15s2, 2x0x1}
+G(x0, x0, 1− s) +G(x1, x1, 1− s) + 0.25(1− s)2,

and since x0 + x1 = 1
2
s implies 2x0x1 ≤ 1

8
s2 < 0.15s2, we have to show that

2x0x1 +G(x0, x0, 1− s) +G(x1, x1, 1− s) + 0.25(1− s)2 ≤ 0.15. (16)

We distinguish three cases.
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Case I: max{x0, x1} ≤ 1
2

(1 − s). In this case, from the definition of the function G, we

have G(x0, x0, 1− s) = x20 and G(x1, x1, 1− s) = x21. Therefore, (16) reduces to

2x0x1 + x20 + x21 + 0.25(1− s)2 ≤ 0.15

or, equivalently,

0.25s2 + 0.25(1− s)2 ≤ 0.15. (17)

To show this we notice that our present assumption max{x0, x1} ≤ 1
2

(1 − s) yields

s = 2(x0 + x1) ≤ 2 − 2s, implying s ≤ 2
3
. However, the largest value attained by the

left-hand side of (17) in the range 1
2
≤ s ≤ 2

3
is easily seen to be 5/36 < 0.15.

Case II: min{x0, x1} ≥ 1
2

(1 − s). In this case, by Lemma 4, we have G(x0, x0, 1 − s) ≤
x0(1 − s) − 0.25(1 − s)2 and G(x1, x1, 1 − s) ≤ x1(1 − s) − 0.25(1 − s)2. Consequently,

the left-hand side of (16) is at most

2x0x1 + x0(1− s) + x1(1− s)− 0.25(1− s)2

≤ 1

2
(x0 + x1)

2 + (x0 + x1)(1− s)− 0.25(1− s)2

=
1

8
s2 +

1

2
s(1− s)− 0.25(1− s)2

= −5

8

(
s− 4

5

)2

+ 0.15

≤ 0.15.

Case III: x0 ≤ 1
2

(1 − s) ≤ x1 (the case x1 ≤ 1−s
2
≤ x0 being symmetric). In this case

G(x0, x0, 1−s) = x20, while from Lemma 4 we haveG(x1, x1, 1−s) ≤ x1(1−s)−0.25(1−s)2;
thus, (16) reduces to

2x0x1 + x20 + x1(1− s) ≤ 0.15

and, substituting x0 = 1
2
s− x1 and re-arranging the terms, to

1

4
(2s2 − 2s+ 1)−

(
x1 −

1

2
(1− s)

)2

≤ 0.15. (18)

Observing that 2s2 − 2s+ 1 is increasing for s ≥ 1/2 (and recalling that s ≥ 1
2

by the

assumptions of the claim), we conclude that if s ≤ 2
3
, then the left-hand side or (18) does

not exceed
1

4

(
2 · 4

9
− 2 · 2

3
+ 1

)
=

5

36
< 0.15.

If, on the other hand, s ≥ 2
3
, then we have

x1 =
1

2
s− x0 ≥

1

2
s− 1

2
(1− s) = s− 1

2
≥ 1

2
(1− s),
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whence the left-hand side of (18) does not exceed

1

4
(2s2 − 2s+ 1)−

((
s− 1

2

)
− 1

2
(1− s)

)2

= −7

4

(
s− 5

7

)2

+
1

7
< 0.15.

�

Proof of Claim 2. Since replacing x0 and y0 with their average (x0 + y0)/2 and, simulta-

neously, x1 and y1 with their average (x1 + y1)/2, can only increase the value of g, and

does not affect the validity of (14), we can assume that y0 = x0 and y1 = x1. Thus, we

want to show that in the region defined by

x0, x1 ≥ 0, x0 + x1 ≤ 1/2, and 3x0 + x1 ≥ 1, (19)

we have

g(x0, x1, x0, x1) ≤ 0.15.

Observing that

g(x0, x1, x0, x1) = min{0.6(x0 + x1)
2, x20 + x21}+ 0.25(1− 2x0 − 2x1)(1− 2x0 + 6x1)

= min{0.6(x0 + x1)
2, x20 + x21}+ x20 − 2x0x1 − 3x21 − x0 + x1 + 0.25,

the estimate to prove can be re-written as

min{u(x0, x1), v(x0, x1)} ≤ −0.1,

where

u(x0, x1) = 2x20 − 2x0x1 − 2x21 − x0 + x1

and

v(x0, x1) = 1.6x20 − 0.8x0x1 − 2.4x21 − x0 + x1.

Conditions (19) determine on the coordinate plane (x0, x1) a triangle with the vertices

at (1/3, 0), (1/2, 0), and (1/4, 1/4). If ϕ := (3 −
√

5)/2, then the line x1 = ϕx0 splits

this triangle into two parts: a smaller triangle T which inherits the vertex (1/4, 1/4) of

the original triangle, and a rectangle R inheriting the vertices (1/3, 0) and (1/2, 0) of the

original triangle. (We consider both T and R as closed regions, so that they intersect by

a segment.) The reason to partition the large rectangle as indicated is that

min{u(x0, x1), v(x0, x1)} =

{
u(x0, x1) if (x0, x1) ∈ T,

v(x0, x1) if (x0, x1) ∈ R,

as one can easily verify; we therefore have to prove that u(x0, x1) ≤ −0.1 for all (x0, x1) ∈
T, and v(x0, x1) ≤ −0.1 for all (x0, x1) ∈ R.

To this end we observe that, as a simple computation shows, the only critical point of

u is (0.3, 0.1), and the only critical point of v is (0.35, 0.15). Since the former point lies
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on the line 3x0 + x1 = 1, and the latter on the line x0 + x1 = 1/2, these points do not

belong to the interiors of T and R. Hence, the maxima of u on T, and of v on R, are

attained on the boundary of these regions. To complete the proof we now observe that

I. if 1/3 ≤ x0 ≤ 1/2 and x1 = 0, then

v(x0, x1) = 1.6x20 − x0 ≤ 1.6 · 1

4
− 1

2
= −0.1

(as 1.6x20 − x0 is an increasing function of x0 on the interval [1/3, 1/2]);

II. if x0 + x1 = 1/2, then

u(x0, x1) = x20 + x21 − 0.25 ≥ 0,

and

v(x0, x1) = 0.6(x0 + x1)
2 − 0.25 = −0.1.

III. if 3x0 + x1 = 1, then

u(x0, x1) = −10x20 + 6x0 − 1 = −10(x0 − 0.3)2 − 0.1 ≤ −0.1;

if, in addition, (x0, x1) ∈ R, then

1 = 3x0 + x1 ≤ (3 + ϕ)x0,

whence x0 ≥ 1/(3 + ϕ) = (9 +
√

5)/38 and therefore

v(x0, x1) = −17.6x20 + 9.6x0 − 1.4

≤ −17.6 ·

(
9 +
√

5

38

)2

+ 9.6 · 9 +
√

5

38
− 1.4

= −0.1001 . . .

(as (9 +
√

5)/38 > 3/11, and −17.6x20 + 9.6x0 − 1.4 is a decreasing function of x0 for

x0 ≥ 3/11);

IV. if x1 = ϕx0 and (x0, x1) ∈ T ∩R, then

u(x0, x1) = v(x0, x1) = (2− 2ϕ− 2ϕ2)x20 + (ϕ− 1)x0

= 4(
√

5− 2)x20 −
√

5− 1

2
x0,

being a convex function of x0, attains its maximum for a value of x0 which is on the

boundary of the triangle T ∪ R. However, we have already seen that u and v do not

exceed the value of −0.1 on the part of the boundary they are responsible for. �

This finally completes the proof of Lemma 5, and thus the whole proof of Theorem 1.

�
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4. Proof of Theorem 2

As in the proof of Theorem 1, we use induction on |A| and, with Lemma 1 in mind,

assume that A is a set of integers. Again, for i, j ∈ {0, 1} we let Ai := {a ∈ A : a ≡ i

(mod 2)} and Aij := {a ∈ A : a ≡ i+ 2j (mod 4)}, and write m := |A|, mi := |Ai|, and

mij := |Aij|. Dividing through all elements of A by their greatest common divisor and

replacing A with −A, if necessary, we can assume that

0 ≤ m0 < m and m00 ≤ m01. (20)

We want to show that T (A,−A,A) ≤ 0.5m2 + 0.5m.

We distinguish two major cases, depending on which of m0 and m1 is larger.

Case I: m0 ≥ m1. Since a− b = 2c implies that a and b are of the same parity, we have

the decomposition

T (A,−A,A) = T (A1,−A1, A) + T (A0,−A0, A1) + T (A0,−A0, A0)

= T (A1,−A1, A) + T (A00,−A01, A1) + T (A01,−A00, A1)

+ T (A0,−A0, A0)

(for the second equality notice that a0 − b0 = 2c1 with a0, b0 ∈ A0 and c1 ∈ A1 implies

that either a0 ∈ A00, b0 ∈ A01, or a0 ∈ A01, b0 ∈ A00). We estimate the first summand

in the right-hand side trivially, and use the induction hypothesis (cf. (20)) for the last

summand, and Corollary 2 for the remaining two summands; this gives

T (A,−A,A) ≤ m2
1 + 2G(m00,m01,m1) +

1

2
+

1

2
m2

0 +
1

2
m0. (21)

Keeping in mind (20), we now consider three further subcases.

Subcase I.a: max{m00,m01,m1} = m1. Using (21) and recalling that, by the assumption

of Case I, we have m1 ≤ m0 = m00 +m01, we get

T (A,−A,A) ≤ m2
1 + 2m00m01 −

1

2
(m00 +m01 −m1)

2 +
1

2
+

1

2
m2

0 +
1

2
m0

=
1

2
m2

1 + 2m00m01 +m0m1 +
1

2
m0 +

1

2

≤ 1

2
m2

1 +
1

2
m2

00 +
1

2
m2

01 +m00m01 +m0m1 +
1

2
m

=
1

2
m2 +

1

2
m.
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Subcase I.b: max{m00,m01,m1} = m01 ≤ m00 +m1. By (21), using the estimate 1
2
m2

0 ≤
m2

00 +m2
01, we obtain

T (A,−A,A) ≤ m2
1 + 2m00m1 −

1

2
(m00 +m1 −m01)

2 +
1

2
+

1

2
m2

0 +
1

2
m0

≤ 1

2
m2

1 +m00m1 +
1

2
m2

00 +
1

2
m2

01 +m00m01 +m1m01 +
1

2
+

1

2
m0

≤ 1

2
m2 +

1

2
+

1

2
m0

≤ 1

2
m2 +

1

2
m.

Subcase I.c: max{m00,m01,m1} = m01 ≥ m00+m1. In this case we haveG(m00,m01,m1) ≤
m00m1, and (21) along with 1

2
m1 < m1 ≤ m01 −m00 give

T (A,−A,A) ≤ m2
1 + 2m00m1 +

1

2
+

1

2
m2

0 +
1

2
m0

=
1

2
(m1 +m0)

2 +
1

2
m2

1 −m0m1 + 2m00m1 +
1

2
+

1

2
m0

=
1

2
m2 +m1

(
1

2
m1 +m00 −m01

)
+

1

2
+

1

2
m0

<
1

2
m2 +

1

2
m.

Case II: m1 ≥ m0. In this case we use the decomposition

T (A,−A,A) = T (A0,−A0, A) + T (A1,−A1, A0) + T (A1,−A1, A1)

= T (A0,−A0, A) + T (A10,−A10, A0) + T (A11,−A11, A0)

+ T (A1,−A1, A1).

Using the trivial bound m2
0 for the first summand, applying Corollary 2 to estimate

the second and third summands, and observing that a1−b1 = 2c1 (a1, b1, c1 ∈ A1) implies

that exactly one of a1 and a2 is in A10 and another is in A11, we get

T (A,−A,A) ≤ m2
0 +G(m10,m10,m0) +G(m11,m11,m0) +

1

2
+ 2m10m11. (22)

Since the right-hand side is symmetric in m10 and m11, without loss of generality we

assume that m10 ≤ m11. Consequently, by the assumption of Case II, we have m0 ≤
m1 ≤ 2m11, and to complete the proof we consider two subcases, according to whether

the stronger estimate m0 ≤ 2m10 holds.
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Subcase II.a: m0 ≤ 2m10. In this case, by (22) and Lemma 4, and in view of 2m10m11 ≤
1
2
(m10 +m11)

2 = 1
2
m2

1, we have

T (A,−A,A) ≤ m2
0 +

(
m10m0 −

1

4
m2

0

)
+

(
m11m0 −

1

4
m2

0

)
+

1

2
+

1

2
m2

1

=
1

2
m2

0 +m0m1 +
1

2
m2

1 +
1

2

=
1

2
m2 +

1

2
.

Subcase II.b: 2m10 ≤ m0 ≤ 2m11. Acting as in the previous subcase, but using the trivial

estimate for the second summand in (22), we get

T (A,−A,A) ≤ m2
0 +m2

10 +

(
m11m0 −

1

4
m2

0

)
+

1

2
+ 2m10m11

≤ 3

4
m2

0 +m2
10 +m11m0 +

3

2
m10m11 +

1

4
m2

10 +
1

4
m2

11 +
1

2

=
1

2
(m0 +m10 +m11)

2 − 1

4
(m01 +m11 −m0)(m0 +m11 − 3m10) +

1

2

≤ 1

2
m2 +

1

2
,

the last inequality following from m01 +m11 −m0 ≥ 0 and m0 +m11 − 3m10 ≥ 0, by the

present subcase assumptions.

This completes the proof of Theorem 2.
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