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Abstract. We determine the structure of a finite subset A of an abelian group given
that |2A| < 3(1 − ε)|A|, ε > 0; namely, we show that A is contained either in a one-
dimensional coset progression of size comparable with |A|, or in a union of fewer than
ε−1 cosets of a finite subgroup.

The bounds 3(1− ε)|A| and ε−1 are best possible in the sense that none of them can
be relaxed without tightening another one, and the estimate obtained for the size of the
coset progression containing A is sharp.

In the case where the underlying group is infinite cyclic, our result reduces to the well-
known Freiman’s (3n− 3)-theorem; the former thus can be considered as an extension
of the latter onto arbitrary abelian groups, provided that there is “not too much torsion
involved”.

1. Introduction and summary of results

For subsets A and B of an additively written abelian group, by A + B we denote the

set of all group elements representable as a + b with a ∈ A and b ∈ B. We abbreviate

A + A as 2A and define the doubling coefficient of a finite, nonempty set A to be the

quotient |2A|/|A|.
It is a basic, well-known fact that if A is a finite set of integers, then |2A| ≥ 2|A| − 1;

more generally, if A and B are finite nonempty subsets of a torsion-free abelian group,

then |A+B| ≥ |A|+ |B| − 1. An extension of this fact onto general abelian groups with

torsion is a deep result due to Kneser (see Section 3).

In another direction, Freiman [F62] has established the structure of integer sets A

satisfying |2A| ≤ 3|A| − 3; that is, roughly speaking, sets with the doubling coefficient

smaller than 3. This result, commonly referred to as Freiman’s (3n− 3)-theorem, along

with its generalizations onto distinct set summands, can be found in any standard additive

combinatorics monograph; see, for instance, [G13, Theorem 7.1], [N96, Theorem 1.13],

or [TV06, Theorem 5.11].

It is a difficult open problem to combine the results of Kneser and Freiman establishing

the structure of sets with the doubling coefficient less than 3 in abelian groups with

torsion. This paper is intended as a step towards the solution of this problem.

Our main result shows that a small-doubling set is either contained in the union of

a small number of cosets of a finite subgroup, or otherwise is densely contained in a

one-dimensional coset progression.
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Theorem 1. Let A be a finite subset of an abelian group G such that A cannot be

covered with fewer than n cosets of a finite subgroup of G, for some real n > 0. If |2A| <
3
(
1− 1

n

)
|A|, then there exist an arithmetic progression P ⊆ G of size |P | ≥ 3 and a finite

subgroup K ≤ G such that |P +K| = |P ||K|, A ⊆ P +K, and (|P |− 1)|K| ≤ |2A|− |A|.

Remark 1. The equality |P+K| = |P ||K| in the statements of Theorem 1 and Theorem 2

below is an easy corollary of the other assertions: if it fails, then there are two elements of

P that fall into the same K-coset; hence, P +K is a coset of a finite subgroup; therefore

n ≤ 1, which is inconsistent with the assumption |2A| < 3(1− 1/n)|A|. For this reason,

we can simply ignore the equality in question in the proofs of these theorems.

Remark 2. Letting τ = |2A|/|A|, the conclusion (|P |−1)|K| ≤ |2A|−|A| can be rewritten

as |P +K| ≤ (τ − 1)|A|+ |K|; the meaning of this estimate is that A is dense in P +K.

We derive Theorem 1 from the following, essentially equivalent, result.

Theorem 2. Suppose that an abelian group G has the direct sum decomposition G =

Z⊕H with H < G finite. Let A ⊆ G be a finite set, and let n be number of elements of

the image of A under the projection G → Z along H. If |2A| < 3
(
1− 1

n

)
|A|, then there

exist an arithmetic progression P ⊆ G and a subgroup K ≤ H such that |P+K| = |P ||K|,
A ⊆ P + K, and (|P | − 1)|K| ≤ |2A| − |A|. Moreover, letting τ := |2A|/|A|, we have

3 ≤ |P | ≤ (τ − 1)n+ 1.

The equality G = Z⊕H means that G is the direct sum of its infinite cyclic subgroup

and the subgroup H. To simplify the notation, we identify the former with the group of

integers.

The following example shows that Theorems 1 and 2 are sharp in the sense that the

assumption |2A| < 3(1 − 1
n
)|A| cannot be relaxed, and the conclusion (|P | − 1)|K| ≤

|2A| − |A| cannot be strengthened.

Example 1. Let P := [0, l] and A :=
(
[0, n−2]∪{l}

)
+K, where l and n are integers with

l ≥ n− 1 ≥ 2, and K ≤ H; thus, |A| = n|K|. If l > 2n− 3, then |2A| = (3n− 3)|K| =
3
(
1 − n−1

)
|A|, while A fails to have the structure described in Theorems 1 and 2 as

|2A| − |A| = (2n− 3)|K| < (|P | − 1)|K|. Thus, to conclude that a set A ⊆ Z⊕H with

|2A| < 3(1− ε)|A| is densely contained in a coset progression, one needs to assume that

A cannot be covered with fewer than ε−1 cosets of a finite subgroup (or make some other

assumptions).

On the other hand, if l ≤ 2n − 3, then |2A| = (l + n)|K|; therefore, |2A| − |A| =

(|P | − 1)|K|, showing that the corresponding estimates of Theorems 1 and 2 are best

possible.

Remark 3. The inequality |P | ≥ 3 of Theorem 2 follows in fact automatically from the

other assertions of the theorem. Specifically, one cannot have |P | = 1 because this would
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lead to n = 1, and consequently to |2A| < 0. One cannot have |P | = 2 either because

this would result in n = 2 and |2A| < 3
2
|A|. The latter, in its turn, is known to imply

(see, for instance, Lemma 1 below) that A is contained in a coset of a finite subgroup

of G; hence, in an H-coset. This, however, contradicts the equality n = 2. The same

applies to Theorem 1.

Similarly, the upper-bound estimate |P | ≤ (τ − 1)n+ 1 in Theorem 2 follows from

(τ − 1)|A| = |2A| − |A| ≥ (|P | − 1)|K| ≥ (|P | − 1)
|A|
n
,

and we thus can safely forget this estimate for the rest of the paper.

Remark 4. In the particular case where H is trivial, and A is a subset of the infinite cyclic

group, Theorem 2 is equivalent to the (3n−3)-theorem, see [F62] or [N96, Theorem 1.13].

Theorem 2 thus can be considered as an extension of the (3n−3)-theorem onto the groups

with torsion.

Remark 5. As a corollary of Theorem 2, for any finite set A ⊆ Z⊕H, denoting by n the

size of the projection of A onto Z along H, we have |2A| ≥ (2 − 1
n
)|A|. This follows by

observing that, assuming the opposite,(
1− 1

n

)
|A| > |2A| − |A| ≥ (|P | − 1)|K| ≥ (n− 1)|K| ≥

(
1− 1

n

)
|A|.

We remark that, while the resulting estimate |2A| ≥ (2 − 1
n
)|A| may not be completely

trivial, it is not particularly deep either, and can be proved independently of Theorem 2,

with a simple combinatorial reasoning in the spirit of the proof of Lemma 6 in Section 4.

It might be possible to use our method to treat sumsets of the form A+B with A 6= B,

and in particular to prove analogues of Theorems 1 and 2 for the difference sets A− A.

We will not pursue this direction further in the present paper.

Theorem 2 can be compared against the following result of Balasubramanian and

Pandey, which is an elaboration on an earlier result of Deshouillers and Freiman [DF86,

Theorem 2].

Theorem 3 (Balasubramanian-Pandey [BP18, Theorem 5]). Let d ≥ 2 be an integer

and suppose that A ⊆ Z ⊕ (Z/dZ) is a finite set with |2A| < 2.5|A|. For z ∈ Z, let

Az := A ∩ (z + Z/dZ), and let B := {z ∈ Z : Az 6= ∅}. If |B| ≥ 6 and gcd(B − B) = 1,

then there exists a subgroup K ≤ Z/dZ and elements x, y ∈ Z/dZ such that, letting

l := maxB −minB, we have

i) A ⊆ {(b, bx+ y) : b ∈ B}+K;

ii) there exists b ∈ B with |Ab| ≥ 2
3
|K|;

iii) l|K| ≤ |2A| − |A|.
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Balasubramanian and Pandey also include the estimate l < 3
2
|B| into the statement,

but in fact this estimate follows easily from i) and iii):

l|K| < 2.5|A| − |A| = 3

2
|A| ≤ 3

2
|B||K|.

In the same vein, i) and iii) imply an estimate which is only slightly weaker than ii):

namely, by iii) we have l|K| ≤ (τ−1)|A|; therefore, by averaging, there exists an element

b ∈ B with

|Ab| ≥
|A|
|B|
≥ (τ − 1)|A|

(τ − 1)(l + 1)
≥ l

l + 1

|K|
τ − 1

>
2

3

(
1− 1

l + 1

)
|K|,

where τ = |2A|/|A|. To match the Balasubramanian-Pandey estimate maxb∈B |Ab| ≥
2
3
|K|, we prove in Section 2 the following theorem showing (subject to Theorem 2) that

if n is sufficiently large, then there exists a K-coset containing at least |K|
τ−1

elements of

A.

Theorem 4. Suppose that G, H, A, n, P , and K are as in Theorem 2, and let τ :=

|2A|/|A|. If n ≥ 4τ−6
(τ−2)(3−τ)

, then there exists a K-coset containing at least |K|
τ−1

elements

of A.

Compared to Theorem 3, our Theorem 2 allows the doubling coefficient to be as large

as 3− o(1) (instead of 2.5), which is best possible, as shown above. Besides, Theorem 2

applies to the groups Z ⊕ H with H not necessarily cyclic, and makes no assumptions

about the projection of A onto the torsion-free component.

The layout of the remaining part of the paper is as follows. In Section 2 we deduce

Theorems 1 and 4 from Theorem 2, allowing us to concentrate on the proof of the latter

theorem for the rest of the paper. In Section 3 we collect some general results needed for

the proof. In Section 4 we prove some basic estimates related to the particular settings of

Theorem 2 (in contrast with Section 3 where the results are of general nature). Section 5

contains two lemmas which, essentially, establishe the special cases of Theorem 2 where

the set A can be partitioned into two or three “additively independent” subsets. Finally,

we prove Theorem 2 in Section 6.

2. Deduction of Theorems 1 and 4 from Theorem 2

Proof of Theorem 1. Let A be a finite subset of an abelian group G such that A cannot

be covered with fewer than n cosets of a finite subgroup of G, while

|2A| < 3
(

1− 1

n

)
|A|, (1)

with a real n > 0. We want to prove, assuming Theorem 2, that there exist an arithmetic

progression P ⊆ G and a finite subgroup K ≤ G such that A ⊆ P+K and (|P |−1)|K| ≤
|2A| − |A|. As explained in Section 1 (Remarks 1 and 3), the progression will satisfy

|P | ≥ 3 and |P +K| = |P ||K|.
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Without loss of generality, we assume that G is generated by A. By the fundamental

theorem of finitely generated abelian groups, there is then an integer r ≥ 0 and a finite

subgroup H ≤ G such that G ∼= Zr ⊕ H. Indeed, we have r ≥ 1 as otherwise G would

be finite; hence, A would be contained in just one single finite coset (the group G itself),

forcing n ≤ 1 and thus contradicting the small-doubling assumption (1).

Let G′ := Z⊕H. To avoid confusion, throughout the proof we use the direct product

notation for the elements of the groups G and G′.

Fix an integer M > 0 divisible by all positive integers up to |2A|, and consider the

mapping ψ : G→ G′ defined by

ψ(x1, . . . , xr, h) := (x1 +Mx2 + · · ·+M r−1xr, h); x1, . . . , xr ∈ Z, h ∈ H.

If M is large enough (as we assume below), then distinct elements of A have distinct

images under ψ, and similarly for 2A; consequently, writing A′ := ψ(A), we have |A′| =
|A| and |2A′| = |2A|, whence

|2A′| < 3
(

1− 1

n

)
|A′|

(we implicitly use here the equality 2ψ(A) = ψ(2A)).

Denote by m the number of elements of the projection of A onto the first (torsion-free)

component of G. If M is sufficiently large, then m is also the number of elements of the

projection of A′ onto the first component of G′. Since A is not contained in a union of

fewer than n cosets, we have m ≥ n, resulting in

|2A′| < 3
(

1− 1

m

)
|A′|.

Applying Theorem 2, we conclude that there exist a finite arithmetic progression P ′ ⊆ G′

and a subgroup K ≤ H such that A′ ⊆ P ′ +K and

(|P ′| − 1)|K| ≤ |2A′| − |A′| = |2A| − |A|. (2)

We assume that P ′ is the shortest progression possible with A′ ⊆ P ′ +K.

Write N := |P ′| − 1, and let c ∈ G′ and (d, h) ∈ G′ denote the initial term and the

difference of the progression P ′, respectively; thus,

P ′ = c+ {j(d, h) : j ∈ [0, N ]}; d ∈ Z, h ∈ H.

Notice that d 6= 0, as otherwise we would have A′ ⊆ P ′+K ⊆ c+H, as a result of which

A′, and therefore also A, would be contained in a single H-coset.

Since P ′ is the shortest possible progression with A′ ⊆ P ′ + K, there are elements

(a1, . . . , ar, f), (b1, . . . , br, g) ∈ A such that ψ(a1, . . . , ar, f) = c and ψ(b1, . . . , br, g) =

c+N(d, h); consequently,

(b1 − a1) +M(b2 − a2) + · · ·+M r−1(br − ar) = Nd.

Since N = |P ′| − 1 ≤ |2A| − |A| < |2A|, and recalling that M was chosen to be divisible

by all poitive integers up to |2A|, we have N | M , and therefore b1 − a1 is a multiple of
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N . Thus

d = (b1 − a1)N−1 +MN−1(b2 − a2) + · · ·+M r−1N−1(br − ar), (3)

where all summands in the right-hand side are integers.

We know that for any element (α1, . . . , αr, η) ∈ A, there exist j ∈ [0, N ] and k ∈ K
such that

(α1 + · · ·+M r−1αr, η) = c+ j(d, h) + (0, k)

= (a1 + · · ·+M r−1ar, f) + j(d, h) + (0, k).

Recalling (3), we obtain

(α1 − a1) + · · ·+M r−1(αr − ar) = jd = j(b1 − a1)N−1 + · · ·+ jM r−1(br − ar)N−1;

that is,

(α1 − a1)N + · · ·+M r−1(αr − ar)N = j(b1 − a1) + · · ·+ jM r−1(br − ar) (4)

with j ∈ [0, N ] depending on the element (α1, . . . , αr, η) ∈ A. (Notice that N depends

on M , but is bounded: N ≤ N |K| ≤ |2A| − |A| by (2).) Choosing M sufficiently large,

from (4) we get

(αi − ai)N = j (bi − ai), 1 ≤ i ≤ r, (5)

showing that (bi − ai)j is divisible by N . Using again the fact that P ′ is the shortest

possible progression with A′ ⊆ P ′+K, we conclude that the possible values of j that can

emerge from different elements (α1, . . . , αr, η) ∈ A are coprime. Hence, there is a linear

combination of these values, with integer coefficients, which is equal to 1. Consequently,

from (5), all numbers (bi − ai)N−1, 1 ≤ i ≤ r, are integers, and then, by (5) again,

(α1, . . . , αr, η) = (a1, . . . , ar, f) + j((b1 − a1)N−1, . . . , (br − ar)N−1, h) + (0, . . . , 0, k).

This shows that A ⊆ P + K, where P ⊆ G is the (N + 1)-term arithmetic progression

with the initial term (a1, . . . , ar, f) and the difference ((b1−a1)N−1, . . . , (br−ar)N−1, h).

Finally, by (2),

|2A| − |A| = |2A′| − |A′| ≥ (|P ′| − 1)|K| = (|P | − 1)|K|.

�

Proof of Theorem 4. Let B denote the projection of A onto Z along H; thus, |P | ≥ |B| =
n, with equality if and only if B is an arithmetic progression. If B is not an arithmetic

progression then, indeed, |P | ≥ n+ 1 and, by averaging, there is a K-coset containing at

least
|A|
n
≥ |A|
|P | − 1

≥ |K|
τ − 1
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elements of A (the last inequality following from the estimate |2A| − |A| ≥ (|P | − 1)|K|
of Theorem 2). Suppose thus that B is a progression and, consequently, |P | = n and

|2A| − |A| ≥ (n− 1)|K|, whence

|A| ≥ n− 1

τ − 1
|K|.

Let

M := max{|A ∩ (g +K)| : g ∈ P}, µ := |M |/|K|,

P0 :=
{
g ∈ P : |A ∩ (g +K)| ≤ 1

2
|K|
}
, P1 := P \ P0, and m := |P0|.

Notice that M > 1
2
|K| as otherwise we would have

1

2
|K| ≥M ≥ |A|

n
≥
(

1− 1

n

) |K|
τ − 1

,

which is easily seen to contradict τ < 3(1− 1
n
). Therefore P1 is nonempty, and m < n.

We want to show that µ ≥ 1
τ−1

. Suppose for a contradiction that this is wrong. Since

P + K is a union of n pairwise disjoint K-cosets, of which m contain at most 1
2
|K|

elements of A, and the remaining n−m contain at most M elements each, we have

n− 1

τ − 1
|K| ≤ |A| ≤ m · 1

2
|K|+ (n−m) ·M, (6)

leading to
n− 1

τ − 1
≤ 1

2
m+ (n−m)µ <

1

2
m+

n−m
τ − 1

,

where the last inequality follows from the assumption µ < 1/(τ − 1). This simplifies to

the estimate

m <
2

3− τ
(7)

which we will need shortly.

The set 2P1 + K is a union of |2P1| ≥ 2|P1| − 1 = 2(n − m) − 1 distinct K-cosets

contained in 2A by the pigeonhole principle. The set P +P1 +K is a union of |P +P1| ≥
|P | + |P1| − 1 = 2n − m − 1 distinct K-cosets, each of them containing at least 1

2
|K|

elements of 2A. We thus can find 2n − 2m − 1 cosets represented by the elements of

2P1, and then m more cosets represented by the elements of P + P1. Altogether, we get

2n−m− 1 cosets containing at least

(2n− 2m− 1)|K|+ 1

2
|K|m =

(
2n− 3

2
m− 1

)
|K|

elements of 2A. It follows that

2n− 3

2
m− 1 ≤ |2A|

|K|
= τ
|A|
|K|
≤
(1

2
m+ (n−m)µ

)
τ <

(1

2
m+

n−m
τ − 1

)
τ,

cf. (6). Rearranging the terms gives(
1− 1

τ − 1

)
n <

(3

2
+
τ

2
− τ

τ − 1

)
m+ 1;
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that is, using (7),

τ − 2

τ − 1
n <

τ 2 − 3

2(τ − 1)
m+ 1 <

τ 2 − 3

(τ − 1)(3− τ)
+ 1

leading to

n <
τ 2 − 3

(τ − 2)(3− τ)
+
τ − 1

τ − 2
=

4τ − 6

(τ − 2)(3− τ)
,

and the assertion follows. �

The rest of the paper is devoted to the proof of Theorem 2.

3. General results

In this section we collect some general results valid in any abelian group, regardless of

the particular settings of Theorem 2.

For a subset S of an abelian group, let π(S) denote the period (stabilizer) of S; that is,

π(S) is the subgroup consisting of all those group elements g with S + g = S. The set S

is called aperiodic or periodic according to whether π(S) is or is not the zero subgroup.

We start with a basic theorem due to Kneser which is heavily used in our argument;

see, for instance, [G13, Theorem 6.1], [N96, Theorem 4.1], or [TV06, Theorem 5.5].

Theorem 5 (Kneser, [Kn53, Kn55]). If B and C are finite, non-empty subsets of an

abelian group with

|B + C| ≤ |B|+ |C| − 1,

then letting L := π(B + C) we have

|B + C| = |B + L|+ |C + L| − |L|.

Theorem 5 will be referred to as Kneser’s theorem.

Since, in the notation of Kneser’s theorem, we have |B + L| ≥ |B| and |C + L| ≥ |C|,
the theorem shows that |B + C| ≥ |B|+ |C| − |L|, leading to

Corollary 1. If B and C are finite, non-empty subsets of an abelian group, such that

|B + C| < |B|+ |C| − 1, then B + C is periodic.

The following lemma is well known, but tracing back its origin is hardly possible.

(The subtler noncommutative version of the lemma, to our knowledge, has first appeared

in [F73], and then in [O75].)

Lemma 1. Let B be a finite subset of an abelian group. If |2B| < 3
2
|B|, then there is

a subgroup L such that B − B = L, and 2B is an L-coset (as a result of which B is

contained in a unique L-coset).

We give a somewhat nonstandard, self-contained proof of the lemma.
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Proof of Lemma 1. For a group element g, denote by r(g) the number of representations

of g as a difference of two elements of B. If g ∈ B−B, then choosing arbitrarily b, c ∈ B
with g = b− c we get

r(g) = |(b+B) ∩ (c+B)| ≥ 2|B| − |2B| > 1

2
|B|.

By the pigeonhole principle, for any g1, g2 ∈ B − B there are representations g1 =

b1 − c1, g2 = b2 − c2 with c1 = c2; consequently, g1 − g2 = b1 − b2 ∈ B −B, showing that

L := B −B is a subgroup. Clearly, B is contained in a unique L-coset.

As we have shown, for every element g ∈ L = B−B we have r(g) > 1
2
|B|. As a result,

|B|(|B| − 1) =
∑

g∈L\{0}

r(g) >
1

2
|B| · (|L| − 1),

implying |B| > 1
2
|L|. Recalling that B is contained in a unique L-coset, and using the

pigeonhole principle again, we conclude that 2B is an L-coset. �

Lemma 2. Suppose that B is a subset of an abelian group with 0 ∈ B. If N ≥ 2 is an

integer such that |B| = N + 1 and |2B| = 2N + 1 (thus |2B \ B| = N), then one of the

following holds:

i) there exist b1, . . . , cN ∈ B such that 2B \ B = {b1 + c1, . . . , bN + cN}, and every

element of B appears among b1, . . . , cN not more than N times;

ii) there is a subgroup L with |L| = N and a group element g with 2g /∈ L such

that B = L ∪ {g}. (In this case there exist b1, . . . , cN ∈ B such that 2B \ B =

{b1 + c1, . . . , bN + cN}, and every element of B appears among b1, . . . , cN exactly

once, except that 0 does not appear at all, and g appears N + 1 times.)

iii) N = 2 and there is a subgroup L with |L| = 2 and a group element g with 2g /∈ L
such that B = (g + L) ∪ {0}.

iv) N = 2 and B = {0, g, 2g} where g is a group element of order at least 5.

Proof. Leaving the case N = 2 to the reader (hint: write B = {0, b, g} and consider two

cases: b+ g = 0 and b+ g 6= 0), we confine ourselves to the general case where N ≥ 3.

To begin with, we choose b1, . . . , cN ∈ B arbitrarily to have 2B \B = {b1 +c1, . . . , bN +

cN}. Since all sums bi+ci are distinct, for any g ∈ B there is at most one index i ∈ [1, N ]

with bi = ci = g. Consequently, if there is an element g ∈ B which appears at least N+1

times among b1, . . . , cN (as we now assume), then in fact it appears N + 1 times exactly:

namely, bi = ci = g for some i ∈ [1, N ] and, besides, for each j 6= i, exactly one of bj and

cj is equal to g. Redenoting, we assume that b1 = c1 = · · · = cN = g.

Notice that 2g = b1+c1 ∈ 2B\B along with 0 ∈ B show that g 6= 0. Write B0 := B\{0}
and Bg := B\{g}. Since the sums bi+ci = bi+g are pairwise distinct, so are the elements

b1, . . . , bN ∈ B. Moreover, b1, . . . , bN are nonzero in view of bi+g = bi+ci /∈ B and g ∈ B,

and since |B0| = N , it follows that {b1, . . . , bN} = B0; consequently, 2B \B = g +B0.
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If there exist some b, c ∈ Bg with b+ c /∈ B, then choosing i ∈ [1, N ] with bi+g = b+ c

and replacing bi with b and ci with c in the 2N -tuple (b1, . . . , cN), we get another 2N -

tuple (b′1, . . . , c
′
N) such that the sums b′i + c′i list all elements of 2B \B. If i ∈ [2, N ], then

g appears exactly N times among b′1, . . . , c
′
N , so that no other element of B can appear

N + 1 or more times. Similarly, if i = 1, then in view of c′2 = · · · = c′N = g, and since

all sums b′2 + c′2, . . . , b
′
N + c′N are pairwise distinct, every element b ∈ Bg appears at most

3 < N + 1 times among b′1, . . . , c
′
N . Thus, the assertion holds true in this case.

Suppose therefore that b, c ∈ Bg with b + c /∈ B do not exist; that is, 2Bg ⊆ B. This

gives |2Bg| ≤ |Bg|+ 1; hence, by Lemma 1 and in view of 0 ∈ Bg, the set L := Bg−Bg =

2Bg is a subgroup. Furthermore, since Bg ⊆ 2Bg = L and |Bg| ≥ |2Bg| − 1 = |L| − 1, we

have either Bg = L, or Bg = L\{l} with some l ∈ L, l 6= 0. In the former case B = L∪{g}
and 2B = L∪ (g+L)∪{2g}, with 2g /∈ L in view of |2B| = 2N+1 = 2|B|−1 = 2|L|+1.

The latter case where Bg = L \ {l} is in fact impossible as in this case we would have

l 6= g (otherwise B = L and then |2B| = |B|) and consequently l ∈ 2Bg \B, contradicting

the present assumption 2Bg ⊆ B. �

Lemma 3. Suppose that ∆ is a subgroup, and that B and C are subsets of an abelian

group. Let ϕ∆ denote the canonical homomorphism onto the quotient group. If C + ∆ =

C, then ϕ∆(B ∩ C) = ϕ∆(B) ∩ ϕ∆(C); consequently, ϕ∆(B ∩ C) = ϕ∆(C) is equivalent

to ϕ∆(C) ⊆ ϕ∆(B).

We omit the proof which is an easy exercise in basic algebra.

Lemma 4. If G is an abelian group with the direct sum decomposition G = Z⊕H, then

every subgroup F < G is of the form F = 〈g〉+K, where K = F ∩H and g ∈ G.

Proof. The assertion is immediate if F ≤ H; assume therefore that F 6≤ H. In this case

the projection of F onto Z along H is a non-zero subgroup of Z; let d be its generator.

For k ∈ Z, the “slice” F (k) := F ∩(k+H) is non-empty if and only if d | k. Furthermore,

for any k1, k2 divisible by d, and any fixed d ∈ F (k2 − k1), we have F (k1) + d ⊆ F (k2).

This shows that all slices F (k) with k divisible by d are actually translates of each other;

hence, each of them is a coset of the subgroup F (0) = K.

Fix arbitrarily g ∈ F (d). For any integer k divisible by d, we have (k/d)g ∈ F ∩ (k +

H) = F (k). It follows that F (k) = (k/d)g +K for any integer k with d | k. As a result,

F = 〈g〉+K. �

We need the following lemma in the spirit of [BP18]. The idea behind the lemma can

in fact be traced back to [L98], at least in the case where |B| = |C|.

Lemma 5. Suppose that B and C are finite, nonempty integer sets, and write m := |B|
and B = {b1, . . . , bm}, where the elements of B are numbered in an arbitrary order. Then

there exist c2, . . . , cm ∈ C such that the sums b2 + c2, . . . , bm + cm are distinct from each

other and from the elements of the set b1 + C.
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Proof. The proof follows the line of reasoning of [BP18].

Let n := |C| and consider the family of m+ n− 1 sets

b1 + C, . . . , b1 + C (n sets)

b2 + C, . . . , bm + C (m− 1 sets).

We use the Hall marriage theorem to show that this set family has a system of distinct

representatives; clearly, this will imply the result.

Suppose thus that for some 1 ≤ k ≤ m + n − 1 we are given a subsystem S of k sets

from among those listed above, and show, to verify the hypothesis of Hall’s theorem, that

| ∪S∈S S| ≥ k. Let B′ ⊆ B consist of all those elements b ∈ B such that at least one of

the sets in S has the form b+C. Then ∪S∈SS = B′ +C and we thus want to show that

|B′ + C| ≥ k. Since |B′ + C| ≥ |B′| + |C| − 1, it suffices to show that |B′| + n− 1 ≥ k.

Indeed, this inequality is trivial for k ≤ n, while for k ≥ n it becomes evident upon

writing k = n+ r (r ≥ 0) and observing any n+ r sets under consideration determine at

least r + 1 = k − n+ 1 elements bi. �

Corollary 2. Suppose that the abelian group G has the direct sum decomposition G =

Z⊕H with H < G finite. Let B,C be finite, nonempty subsets of G. If m and n denote

the sizes of the images of B and C, respectively, under the projection G → Z along H,

then

|B + C| ≥
(

1 +
n− 1

m

)
|B|.

Proof. Denote by ψ the projection in question, and write ψ(B) := {b1, . . . , bm}, where b1

is chosen so that |ψ−1(b1) ∩ B| ≥ |B|/m; otherwise, the elements of ψ(B) are numbered

arbitrarily. Let Bi := ψ−1(bi) ∩ B (1 ≤ i ≤ m). By Lemma 5 applied to the sets ψ(B)

and ψ(C), there are (not necessarily distinct) elements c2, . . . , cm ∈ ψ(C) such that all

sums b2 + c2, . . . , bm + cm are distinct from each other and from the elements of the set

b1 + ψ(C). Consequently, the sumsets B2 + (ψ−1(c2) ∩ C), . . . , Bm + (ψ−1(cm) ∩ C) are

disjoint from each other and from each of the n sumsets B1 + (ψ−1(c) ∩ C), c ∈ ψ(C).

As a result,

|B + C| ≥
m∑
i=2

|Bi + (ψ−1(ci) ∩ C)|+
∑
c∈ψ(C)

|B1 + (ψ−1(c) ∩ C)|

≥ |B2|+ · · ·+ |Bm|+ n|B1| = |B|+ (n− 1)|B1| ≥ |B|+
n− 1

m
|B|.

�

4. Basic Estimates

We collect in this section some basic estimates used in the proof of Theorem 2.

Suppose that A is a finite subset of the group G = Z⊕H, where H < G is finite abelian.

For each z ∈ Z, let Az := A ∩ (z + H), and write B := {z ∈ Z : Az 6= ∅}; that is, B is
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the image of A under the projection of G onto Z along H. Suppose, furthermore, that

minB = 0, maxB = l > 0, 0 ∈ A0, and δ ∈ Al. Finally, write n := |B|, σ := |A0|+ |Al|,
and A∗ := A0 ∩ (Al − δ); thus, for instance,

σ ≥ 2|A∗|. (8)

Lemma 6. We have |2A|+ |A∗| ≥ σn.

Proof. Considering the projections of the “slices” Az onto Z, we get

|2A| ≥
∑
z∈B
z<l

|A0 + Az|+ |A0 + Al|+
∑
z∈B
z>0

|Az + Al|

≥ (n− 1)|A0|+ |A0 + Al|+ (n− 1)|Al|.

To estimate the sum A0 + Al we notice that both A0 + δ and Al are subsets of A0 + Al,

whence

|A0 + Al| ≥ |(A0 + δ) ∪ Al| = (|A0|+ |Al|)− |A∗|.

Combining these estimates yields the sought inequality. �

Corollary 3. Let τ := |2A|/|A|. If τ < 3(1− 1
n
), then

(3− τ)(τ |A|+ |A∗|) > 3σ, (9)

3|A| − |2A| > σ, (10)

and

|2A| < 3|A| − 2|A∗|. (11)

Proof. To prove (9), we multiply the inequality of the lemma by the inequality 3− τ > 3
n

following from τ < 3(1− 1
n
), and then substitute |2A| = τ |A|.

For (10), we use (9) and (8) to get

3|A| − |2A| = (3− τ)|A| > 1

τ
(3σ − (3− τ)|A∗|) =

3

τ
σ −

(
3

τ
− 1

)
|A∗|

≥ 3

τ
σ −

(
3

τ
− 1

)
· σ

2
=

1

2

(
3

τ
+ 1

)
σ > σ.

Finally, (11) follows from (10) and (8):

|2A| < 3|A| − σ ≤ 3|A| − 2|A∗|.

�
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5. Two special cases

In this section we prove two lemmas which, essentially, establish the special cases of

Theorem 2 where the set A splits into two or three “additively independent” parts.

Lemma 7. Suppose that the abelian group G has the direct sum decomposition G = Z⊕H
with H < G finite. Let A1, A2 ⊂ G be finite, nonempty subsets of G, and for i ∈ {1, 2}
let ni := |ψ(Ai)|, where ψ : G→ Z is the projection along H. Then

|2A1|+ |A1 + A2|+ |2A2| ≥ 3
(

1− 1

n1 + n2

)
(|A1|+ |A2|).

Example 2. If, for i ∈ {1, 2}, we let Ai = Pi + K, where Pi are arithmetic progressions

with the same difference not contained in H, and where K ≤ H, then ni = |Pi| and

|2A1|+ |A1 + A2|+ |2A2| = 3(|P1|+ |P2| − 1)|K| = 3
(

1− 1

n1 + n2

)
(|A1|+ |A2|).

This shows that the estimate of the lemma is best possible.

Proof of Lemma 7. Recall that for a subset S of an abelian group, by π(S) we denote

the period of S; see Section 3.

For i ∈ {1, 2}, we have π(2Ai) ≤ H (as 2Ai are finite), and |ψ(2Ai)| ≥ 2ni− 1, whence

|2Ai| ≥ (2ni − 1) |π(2Ai)|.

On the other hand, by Kneser’s theorem,

|2Ai| ≥ 2|Ai| − |π(2Ai)|.

Multiplying the latter inequality by 2ni−1 and adding the former to the result (to cancel

out the term |π(2Ai)|) we get

|2Ai| ≥
(

2− 1

ni

)
|Ai|, i ∈ {1, 2}. (12)

Similarly, letting n := n1 + n2 and observing that

|ψ(A1 + A2)| = |ψ(A1) + ψ(A2)| ≥ n1 + n2 − 1 = n− 1,

we get |A1 + A2| ≥ (n − 1)|π(A1 + A2)| and |A1 + A2| ≥ |A1| + |A2| − |π(A1 + A2)|,
implying

|A1 + A2| ≥
(

1− 1

n

)
(|A1|+ |A2|). (13)

On the other hand, by Corollary 2

|A1 + A2| ≥
n− 1

n1

|A1| (14)

and

|A1 + A2| ≥
n− 1

n2

|A2|. (15)
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Taking the sum of (13), (14), and (15) with the weights n−3
n−1

, 1
n−1

, and 1
n−1

, respectively,

we get

|A1 + A2| ≥
(

1− 3

n

)
(|A1|+ |A2|) +

|A1|
n1

+
|A2|
n2

,

and taking the sum of this resulting inequality with the inequalities (12) yields the desired

estimate. �

Lemma 8. Suppose that the abelian group G has the direct sum decomposition G =

Z⊕H with H < G finite. Let A1, A2, A3 ⊂ G be finite, nonempty subsets of G, and for

i ∈ {1, 2, 3} let ni := |ψ(Ai)|, where ψ : G→ Z is the projection along H. If n2 ≥ 2, then

|2A1|+ |2A2|+ |2A3|+ |A1 + A2|+ |A2 + A3|

≥ 3
(

1− 1

n1 + n2 + n3

)
(|A1|+ |A2|+ |A3|).

The obvious modification of Example 2 shows that, in the absence of additional infor-

mation, the estimate of the lemma is best possible.

Proof of Lemma 8. We argue in terms of the quantities ci := |Ai|/ni, i ∈ {1, 2, 3}.
Reusing (14) and (15), and writing n := n1 + n2 + n3, it suffices to prove that

(2n1 − 1)c1 + (2n2 − 1)c2 + (2n3 − 1)c3

+ (n1 + n2 − 1) max{c1, c2}+ (n2 + n3 − 1) max{c2, c3}

≥ 3
(

1− 1

n

)
(n1c1 + n2c2 + n3c3);

equivalently,

(n1 + n2 − 1) max{c1, c2}+ (n2 + n3 − 1) max{c2, c3}

≥ c1 + c2 + c3 +
(

1− 3

n

)
(n1c1 + n2c2 + n3c3). (16)

Let

λi :=
n+ (n− 3)ni
(ni + n2 − 1)n

, i ∈ {1, 3}.

It is easily verified that λi ∈ [0, 1], whence max{ci, c2} ≥ λici + (1− λi)c2. Therefore,

(n1 + n2 − 1) max{c1, c2}+ (n2 + n3 − 1) max{c2, c3}

≥ 1

n
(n+ (n− 3)n1)c1 +

1

n
(n+ (n− 3)n3)c3 + tc2

= (c1 + c3) +
(

1− 3

n

)
(n1c1 + n3c3) + tc2, (17)
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where

t = (n1 + n2 − 1) + (n2 + n3 − 1)− 1

n

(
(n+ (n− 3)n1) + (n+ (n− 3)n3)

)
= (n+ n2 − 2)− 1

n
(n2 − n− (n− 3)n2))

= n2 − 1 +
(

1− 3

n

)
n2

≥ 1 +
(

1− 3

n

)
n2.

Along with (17), this readily gives (16).

�

6. Proof of Theorem 2

We recall that A is a finite subset of the abelian group G = Z ⊕ H, where H ≤ G

is finite. Assuming that |2A| < 3(1 − 1
n
)|A|, where n is the number of elements in the

image of A under the projection G → Z along H, we want to show that there exist

an arithmetic progression P ⊆ G and a subgroup K ≤ H such that A ⊆ P + K and

(|P |−1)|K| ≤ |2A|−|A|. As shown in Section 1, the estimates 3 ≤ |P | ≤ (τ−1)n+1 and

the equality |P + K| = |P ||K| follow automatically and we disregard them for the rest

of the proof. Here and throughout the proof, τ is the doubling coefficient of A defined

by |2A| = τ |A|, so that τ < 3(1− 1
n
).

Let ψ : G → Z be the projection mentioned in the previous paragraph. Without loss

of generality we assume that 0 ∈ A and minψ(A) = 0, and we let l := maxψ(A);

thus, A ∩ (z + H) = ∅ for z < 0 and also for z > l, while the sets A0 := A ∩ H and

Al := A ∩ (l +H) are nonempty.

Fix arbitrarily an element δ ∈ Al, and let A∗ := A0 ∩ (Al − δ) and σ := |A0| + |Al|.
Notice that 0 ∈ A∗, σ ≥ 2|A∗|, and |A0 ∪ (Al − δ)| = σ − |A∗|.

For a subgroup L ≤ G, by ϕL we denote the canonical homomorphism of G onto

the quotient group G/L. Let ∆ := 〈δ〉 ≤ G. We adopt a special notation for the

homomorphism ϕ∆, which plays a particularly important role in our argument: whenever

g denotes an element of G, by g we denote the image of g under ϕ∆, and similarly for

sets: S = ϕ∆(S), S ⊆ G. Thus, for instance, A = ϕ∆(A) and 2A = ϕ∆(2A) = 2A.

To make the proof easier to follow, we split it into several parts.

6.1. Deficiency and the induction framework. We use induction on |H|, the base

case |H| = 1 being Freiman’s (3n− 3)-theorem (see Section 1). Suppose that |H| ≥ 2.

Given a subset S ⊆ G and a subgroup L ≤ G, both finite, we define the deficiency of

S on a coset g + L ⊆ G by

d(S, g + L) :=

{
|(g + L) \ S| if S ∩ (g + L) 6= ∅,
0 if S ∩ (g + L) = ∅;
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notice that in the first case we can also write d(S, g+L) = |L| − |(g+L)∩ S|. The total

deficiency of S with respect to L is

D(S, L) := |(S + L) \ S|;

equivalently,

D(S, L) =
∑
g+L

d(S, g + L),

where the sum extends over all L-cosets having a nonempty intersection with S.

Suppose that L ≤ H is a nonzero subgroup with

D(2A,L) ≤ D(A,L). (18)

Then

|2(A+ L)| = |2A|+ D(2A,L) ≤ |2A|+ D(A,L)

= |A+ L|+ |2A| − |A| = |A+ L|+ (τ − 1)|A| ≤ τ |A+ L|;

that is, writing G̃ := G/L ∼= (H/L) ⊕ Z, Ã := ϕL(A), and 2̃A := ϕL(2A), we have

|2Ã| ≤ τ |Ã|. Applying the induction hypothesis to the subset Ã ⊆ G̃, we conclude that

there are an arithmetic progression P̃ ⊆ G̃ and a subgroup K̃ ≤ H̃ := H/L such that

Ã ⊆ P̃ + K̃ and (|P̃ | − 1)|K̃| ≤ |2Ã| − |Ã|. Let K := ϕ−1
L (K̃); thus, L ≤ K ≤ H and

|K| = |L||K̃|. Also, it is easily seen that ϕ−1
L (P̃ ) = P + L where P ⊆ G is an arithmetic

progression with |P | = |P̃ |. From Ã ⊆ P̃ + K̃ we derive then that A ⊆ P +K, and from

(|P̃ | − 1)|K̃| ≤ |2Ã| − |Ã| we get

(|P | − 1)|K| ≤ (|P̃ | − 1)|K̃||L| ≤ (|2Ã| − |Ã|)|L|
= |2A+ L| − |A+ L| = |2A|+ D(2A,L)− |A| − D(A,L) ≤ |2A| − |A|,

completing the induction step.

Consider the situation where L ≤ H is a nonzero subgroup satisfying

D(A,L) ≤ |L| − 1. (19)

Let m be the number of L-cosets on which A has positive deficiency, and fix a1, . . . , am ∈
A such that a1 +L, . . . , am +L list all these cosets. It follows easily from (19) that there

is at most one pair of indices 1 ≤ i ≤ j ≤ m such that d(A, ai + L) + d(A, aj + L) ≥ |L|,
and if such a pair exists, then in fact i = j. By the pigeonhole principle, we have then

d(2A, g + L) = 0 for every coset g + L, with the possible exception of one single L-coset

which, if exists, is of the form 2a+ L, with some a ∈ A. This yields

D(2A,L) = d(2A, 2a+ L) ≤ d(A, a+ L) ≤ D(A,L).

Clearly, the resulting estimate

D(2A,L) ≤ D(A,L)

remains valid also if there are no exceptional L-cosets.
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Thus, once we are able to find a nonzero subgroup L ≤ H satisfying either (18) or (19),

we can complete the proof applying the induction hypothesis.

As a result, we can assume that for any nonempty subsets A′, A′′ ⊆ A with A = A′∪A′′,

|A′ + A′′| ≥ |A′|+ |A′′| − 1;

for if this fails to hold, then letting L := π(A′+A′′), by Kneser’s theorem we have |L| ≥ 2

and |A′ + L|+ |A′′ + L| − |L| = |A′ + A′′| ≤ |A′|+ |A′′| − 2, whence

D(A,L) ≤ D(A′, L) + D(A′′, L) ≤ |L| − 2

(for the first inequality, notice that d(A, g+L) ≤ d(A′, g+L)+d(A′′, g+L) for any coset

g + L, which follows from the assumption A′, A′′ ⊆ A = A′ ∪ A′′).
In particular, we assume that |A+S| ≥ |A|+ |S| − 1 for any nonempty subset S ⊆ A.

As an important special case,

|A+ A∗| ≥ |A|+ |A∗| − 1. (20)

6.2. The set A has small doubling. For a set S ⊆ G and an element g ∈ G, denote

by rS(g) the number of representations of g as a difference of two elements of S; thus,

for instance, |A∗| = rA(δ). Clearly, every ∆-coset intersects A by at most two elements,

and if the intersection contains exactly two elements, then the two elements differ by δ.

It follows that

|A| = |A|+ rA(δ) = |A|+ |A∗|. (21)

Similarly, since s1 = s2 for any s1, s2 ∈ 2A with s2−s1 = δ, we have |2A| ≥ |2A|+r2A(δ).

Furthermore, r2A(δ) ≥ |A + A∗| as to any a ∈ A and a∗ ∈ A∗ there corresponds the

representation δ = ((a∗ + δ) + a)− (a∗ + a), and the sum a+ a∗ is uniquely determined

by this representation. Therefore,

|2A| ≥ |2A|+ |A+ A∗|. (22)

We now claim that

|2A| < 2|A| − 1. (23)

In view of |2A| ≤ |2A| − |A+A∗| ≤ τ |A| − |A| − |A∗|+ 1 and |A| = |A| − |A∗| (following

from (20)–(22)), to prove the claim it suffices to show that

τ |A| − |A| − |A∗|+ 1 < 2|A| − 2|A∗| − 1;

that is,

(3− τ)|A| > |A∗|+ 2. (24)

To this end we notice that, by (9) and in view of |A∗| ≤ min{|A0|, |Al|},

(3− τ)(τ |A|+ |A∗|) > 3(|A0|+ |Al|) ≥ 6|A∗|.

Consequently,

(3− τ)|A| >
(

3

τ
+ 1

)
|A∗| > 2|A∗|,
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which proves (24) in the case where |A∗| ≥ 2. In the remaining case |A∗| = 1, we

obtain (24) as an immediate corollary of |A| ≥ n and τ < 3
(
1− 1

n

)
.

Thus, (23) is established, and from Kneser’s theorem it follows that the period F :=

π(2A) is a nonzero subgroup of the quotient group G/∆, and also, in view of 2|A+F | −
|F | = |2A| ≤ 2|A| − 2, that

D(A,F ) ≤ 1

2
|F | − 1. (25)

We let F := ϕ−1
∆ (F ), so that F = ϕ∆(F ) and ∆ ≤ F ≤ G.

Observing that 0 ∈ A implies A + F ⊆ 2A + F = 2A, we denote by N the number of

F -cosets contained in 2A, but not in A+ F ; that is,

N = (|2A| − |A+ F |)/|F |.

Combining |2A| − |A+ F | = N |F | and |2A| = 2|A+ F | − |F |, we get

|A+ F | = (N + 1)|F | and |2A| = (2N + 1)|F |. (26)

6.3. The intersection subgroup. Let K := F ∩H. By Lemma 4, there is an element

f0 ∈ F such that F = 〈f0〉+K. Notice that f0 /∈ H, as a result of δ ∈ F \H; it follows

that, in fact, F = 〈f0〉 ⊕ K. This shows that all the elements of F sharing the same

projection onto the torsion-free component of G reside in the same K-coset.

Since δ ∈ F , there exist a nonzero integer m and an element z ∈ K such that δ =

mf0 + z, and then l = ψ(δ) = mψ(f0). Switching from f0 to −f0, if needed, we can

assume that m and ψ(f0) are both positive.

From K = F ∩ H and ∆ ≤ F , in view of Lemma 3, we get K = F ∩ H, and by the

isomorphism theorems

F/K = F/(F ∩H) ∼= (F +H)/H ∼= (F +H)/(H + ∆) = (〈f0〉+H)/(H + ∆).

It follows that |F |/|K| is the order of f0 in the quotient group G/(H + ∆); that is, the

smallest integer t > 0 with tf0 ∈ H + ∆. Clearly, we have t ≤ m. On the other hand, if

tf0 ∈ H + ∆, then tψ(f0) is divisible by ψ(δ) = l; therefore t is divisible by l/ψ(f0) = m.

Hence, |F |/|K| = m, implying F = 〈f 0〉 ⊕K.

6.4. The case where N = 0. If N = 0, then A + F = 2A. Adding A to both sides we

get 2A = 2A + A, showing that A ⊆ π(2A) = F . Combining this with A + F = 2A, we

conclude that 2A = F . Thus, 2A+ ∆ = F and therefore

A ⊆ 2A+ ∆ = F = 〈f0〉+K. (27)
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Let P := 〈f0〉 ∩ ψ−1
(
[0, l]

)
, so that A ⊆ P +K. Since ψ−1

(
[0, l − 1]

)
contains exactly

one representative out of every ∆-coset, we have

|2A| = |ϕ∆(2A)|
= |ϕ∆(2A+ ∆)|
=
∣∣(2A+ ∆) ∩ ψ−1

(
[0, l − 1]

)∣∣
=
∣∣(〈f0〉+K

)
∩ ψ−1

(
[0, l − 1]

)∣∣
=
∣∣〈f0〉 ∩ ψ−1

(
[0, l − 1]

)∣∣|K|
=
∣∣〈f0〉 ∩ ψ−1

(
[0, l]

)∣∣|K| − ∣∣〈f0〉 ∩ ψ−1({l})||K|
= (|P | − 1)|K|,

the middle equality following from (27), and the last equality from

∅ 6= A ∩ ψ−1({l}) ⊆ (〈f0〉+K) ∩ ψ−1({l}) = (〈f0〉 ∩ ψ−1({l})) +K

and the resulting 〈f0〉∩ψ−1({l}) 6= ∅. Consequently, (22) yields (|P |−1)|K| ≤ |2A|−|A|,
completing the proof in the case where N = 0.

We thus assume for the remaining part of the argument that N > 0; that is

A+ F ( 2A.

Therefore, 2A is not a subgroup (if it were, we would have F = π(2A) = 2A implying

A+ F ⊇ 2A).

6.5. The case where N = 1. If N = 1, then A + F is a union of exactly two F -

cosets, and 2A is a union of exactly three F -cosets. Since 0 ∈ A, we derive that A =

A1 ∪ (g + A2), where A1, A2 ⊆ F are nonempty, and where g ∈ G satisfies 2g /∈ F , as a

result of 2A being a union of three F -cosets. Write ni := |ψ−1(Ai)|, i ∈ {1, 2}, so that

n := |ψ−1(A)| ≤ n1 + n2. By Lemma 7, we have then

|2A| = |2A1|+ |A1 + A2|+ |2A2|

≥ 3
(

1− 1

n1 + n2

)
(|A1|+ |A2|)

≥ 3
(

1− 1

n

)
|A|,

a contradiction.

Let H := ϕ∆(H) and K := ϕ∆(K). We split the remaining case N ≥ 2 into two

further subcases: that where K is a proper subgroup of F (which, by Lemma 3 applied

with B = H and C = F , is equivalent to F 6≤ H and thus to F 6≤ H + ∆), and that

where K = F (equivalently, F ≤ H, F ≤ H + ∆, or F = K ⊕∆).
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6.6. The case where N ≥ 2 and K � F . We show that in this case

|2A \ A| ≥ 2|A|; (28)

in view of (21) and (11), this will give

|2A| − |A| ≥ 2|A| = 2|A| − 2|A∗| > 2|A| − (3− τ)|A| = (τ − 1)|A|,

a contradiction.

To prove (28), we partition the elements s ∈ 2A \ A into two groups, according to

whether s := ϕ∆(s) does or does not belong to A+ F .

For the first group we have the estimate

|{s ∈ 2A \ A : s ∈ A+ F}| ≥ |A+ F |; (29)

for, A+F ⊆ 2A shows that for every element s ∈ A+F , the set {s ∈ 2A : ϕ∆(s) = s} is

nonempty, and the (unique) element of this set with the largest value of ψ(s) does not lie

in A as s ∈ A implies s+ δ ∈ 2A, because of δ ∈ A. (This argument shows that, indeed,

for any subset S ⊆ 2A there are at least |S| elements s ∈ 2A \ A such that s ∈ S.)

Addressing the second group, we show that

T := |{s ∈ 2A \ A : s /∈ A+ F}| ≥ 2|A| − |A+ F |;

along with (29) this will prove (28), leading to a contradiction. (Notice that the trivial

estimate would be T ≥ |2A| − |A+F |, in view of the parenthetical remark at the end of

the previous paragraph.)

The set (2A) \ (A + F ) is a union of F -cosets and, recalling (26), we find elements

a1, . . . , aN , b1, . . . , bN ∈ A such that the cosets are ai + bi + F , i ∈ [1, N ].

Let

Ai := A ∩ (ai + F ) and Bi := A ∩ (bi + F ), i ∈ [1, N ].

By Lemma 3 we have Ai = A ∩ (ai + F ) and Bi = A ∩ (bi + F ), and it follows that

|Ai| ≥ |Ai| = |F | − d(A, ai + F ), i ∈ [1, N ] (30)

and, similarly,

|Bi| ≥ |Bi| = |F | − d(A, bi + F ), i ∈ [1, N ]. (31)

Since ϕ∆(Ai + Bi) = Ai + Bi ⊆ ai + bi + F ⊆ (2A) \ (A+ F ) by the choice of ai and bi,

we have

T =
N∑
i=1

|{s ∈ 2A \ A : s ∈ ai + bi + F}| ≥
N∑
i=1

|Ai +Bi|. (32)

By Lemma 2 applied to the subset Ã := (A+F )/F of the quotient group G/F , we can

assume that each F -coset from A+ F appears among the 2N cosets a1 + F , . . . , bN + F

at most N times, save for the following possible exceptions:

i) there is a subgroup L̃ ≤ G/F and an element c̃ ∈ G/F with 2c̃ /∈ L̃ such that

either Ã = L̃ ∪ {c̃}, or Ã = (c̃+ L̃) ∪ {0};
ii) N = 2 and Ã = {0, g̃, 2g̃} where g̃ ∈ G/F has order at least 5.
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In the first exceptional case, A meets exactly two cosets of the subgroup L = ϕ−1
F (L̃),

while 2A meets exactly three cosets of this subgroup. As a result, we can apply Lemma 7,

exactly as in the case N = 1 considered above, to get a contradiction. In the second

exceptional case there exists an element g ∈ G such that A + F = {0, g, 2g} + F and

2A = {0, g, 2g, 3g, 4g} + F , where g = ϕ∆(g) and the five F -cosets contained in 2A are

pairwise distinct. Letting Ci := A ∩ (ig + F ), i ∈ {0, 1, 2}, we have

2A ⊇ (2C0) ∪ (C0 + C1) ∪ (2C1) ∪ (C1 + C2) ∪ (2C2),

where the union is disjoint. The set C2 := ϕ∆(C2) hits at least two H-cosets: otherwise

C2 would be contained in a coset of the subgroup H ∩F = K � F leading to D(A,F ) ≥
|F | − |C2| ≥ |F | − |K| ≥ 1

2
|F |, in a contradiction with (25). Therefore C2 hits at least

two H-cosets, and applying Lemma 8 we get an immediate contradiction.

We now address the “regular” situation where each F -coset from A+F appears among

a1 + F , . . . , bN + F not more than N times.

Since Ai + Bi is contained in an F -coset, we have π(Ai + Bi) ≤ F , and since Ai + Bi

is finite, π(Ai + Bi) ≤ H; as a result, π(Ai + Bi) ≤ F ∩H = K. Consequently, by (32),

Kneser’s theorem, (30), and (31),

T ≥ 2N |F | −
N∑
i=1

(d(A, ai + F ) + d(A, bi + F ))− |K|N.

Recalling that each F -coset from A+F appears at most N times among a1+F , . . . , bN+

F , we get

T ≥ 2N |F | −ND(A,F )− |K|N ≥
(

3

2
|F | − D(A,F )

)
N

(as K � F yields |K| = |K| ≤ 1
2
|F |). Therefore, by (25), (26), and the definition of the

total deficiency,

T ≥ (N + 1)|F | − 2D(A,F ) + (N − 2)

(
1

2
|F | − D(A,F )

)
≥ (N + 1)|F | − 2D(A,F )

= 2|A| − |A+ F |.

As shown at the beginning of this section, this leads to a contradiction.

6.7. The case where N ≥ 2 and K = F . As shown above, in this case F ≤ H,

F ≤ H + ∆, and F = K ⊕∆; notice that this implies |F | = |K| = |K|.

Claim 1. We have A0 ⊆ K and Al ⊆ δ + K; that is, each of the sets A0 and Al is

contained in a single K-coset.
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Proof. From (22), Kneser’s theorem, (20), and (21), we have

|2A| ≥ (2|A+ F | − |F |) + (|A|+ |A∗| − 1)

≥ 2|A| − |F |+ |A|+ |A∗| − 1 = 3|A| − |A∗| − |F | − 1.

Combining this estimate with (10), we get

σ ≤ |A∗|+ |F |. (33)

On the other hand,

|H ∩ (A+ ∆)| ≥ |ϕ∆(H ∩ (A+ ∆))| = |ϕ∆(H) ∩ ϕ∆(A+ ∆)| = |H ∩ A|

by Lemma 3. Observing that the left-hand side is

|(H ∩ A) ∪ (H ∩ (A− δ))| = |A0 ∪ (Al − δ)| = σ − |A∗|,

and using (33), we obtain

|H ∩ A| ≤ σ − |A∗| ≤ |F |. (34)

Assuming now for a contradiction that, say, A0 intersects nontrivially more than one

K-coset, fix a1, a2 ∈ A0 with a1 − a2 /∈ K; hence, comparing the projections onto the

torsion-free component, with a1−a2 /∈ K+∆. Since a1, a2 ∈ H are then distinct modulo

K = F , in view of (25), the assumption F ≤ H, and (34), we get

1

2
|F | > D(A,F )

≥ d(A, a1 + F ) + d(A, a2 + F )

= 2|F | − (|(a1 + F ) ∩ A|+ |(a2 + F ) ∩ A|)
≥ 2|F | − |(H + F ) ∩ A|
= 2|F | − |H ∩ A|
≥ |F |,

the contradiction sought. �

Let A◦ := A \ (A0 ∪ Al) be the “middle part” of A.

Claim 2. We have 2A◦ +K = 2A◦. Moreover, if |A0| ≥ |Al|, then A◦ +K ⊆ 2A, and if

|Al| ≥ |A0|, then A◦ + δ +K ⊆ 2A.

Proof. To prove the first assertion, we fix a1, a2 ∈ A◦ and show that a1 + a2 +K ⊆ 2A◦.

For i ∈ {1, 2}, let Ai := (ai + F ) ∩ A; notice that Ai ⊆ ai + F = ai + K + ∆ whence,

indeed, Ai ⊆ ai+K. Write S := A1 +A2 ⊆ a1 +a2 +K so that S = A1 +A2 = a1 +a2 +F

in view of (25). As a result, |S| ≥ |S| = |a1 + a2 + F | = |F | = |K| = |K|, leading to

S = a1 + a2 +K; thus, a1 + a2 +K = A1 + A2 ⊆ 2A◦.

Addressing the second assertion, we fix a◦ ∈ A◦ and show that then either a◦+K ⊆ 2A,

or a◦ + δ +K ⊆ 2A, according to the relation between |A0| and |Al|. Write B0 := A∩ F
and B◦ := A∩ (a◦ + F ); equivalently, B0 = A0 ∪Al by Claim 1, and B◦ = A∩ (a◦ +K).
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Letting S := B0 +B◦, in view of B0 ⊆ F and B◦ ⊆ a◦+F we have then S ⊆ 2A∩(a◦+F )

and S = B0 +B
◦
. Furthermore, from

d(A,F ) = |F | − |A ∩ F | = |F | − |B0|

and

d(A, a◦ + F ) = |F | − |A ∩ (a◦ + F )| = |F | − |B◦|

recalling (25) we get

|B0|+ |B
◦| = 2|F | − (d(A,F ) + d(A, a◦ + F )) ≥ 2|F | − D(A,F ) >

3

2
|F |.

From B0 = A0 ∪ Al we now derive

|A0|+ |Al|+ |B◦| ≥ |B0|+ |B◦| ≥ |B0|+ |B
◦| > 3

2
|F |.

Also, we have

|B◦| ≥ |B◦| = |A ∩ (a◦ + F )| = |F | − d(A, a◦ + F ) ≥ |F | − D(A,F ) >
1

2
|F |.

Therefore,

max{|A0|, |Al|}+ |B◦| ≥ 1

2
(|A0|+ |Al|+ |B◦|) +

1

2
|B◦| > 3

4
|F |+ 1

4
|F | = |F | = |K|.

Since B◦ ⊆ a◦+K, A0 ⊆ K, and Al ⊆ δ+K, from the pigeonhole principle we conclude

that if |A0| > |Al|, then A0 +B◦ = a◦+K, while if |Al| ≥ |A0|, then Al+B
◦ = a◦+δ+K.

The assertion follows in view of A0 +B◦ ⊆ 2A and Al +B◦ ⊆ 2A. �

We can, eventually, complete the proof. Assuming |A0| ≤ |Al| for definiteness, by

Claim 2 we have 2A◦ + K ⊆ 2A and also A◦ + Al + K = A◦ + δ + K ⊆ 2A; that is,

the set 2A has zero deficiency on all K-cosets with the possible exception of the cosets

contained in A0 + A + K; that is, cosets of the form a + K with a ∈ A. On the other

hand, in view of

A ∩ (a+K) + A0 ⊆ 2A ∩ (a+K)

and |2A ∩ (a+K)| ≥ |A ∩ (a+K)| resulting from it, we have

d(2A, a+K) ≤ d(A, a+K).

Taking the sum over the elements a ∈ A representing the K-cosets contained in A + K

we get

D(A,K) =
∑
a

d(A, a+K) ≥
∑
a

d(2A, a+K) = D(2A,K).

As noticed in Section 6.1, this completes the proof by appealing to the induction hypoth-

esis.
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