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Abstract. Let p ≥ 3 be a prime, S ⊆ F2
p a nonempty set, and w : F2

p → R a
function with suppw = S. Applying an uncertainty inequality due to András B́ıró
and the present author, we show that there are at most 1

2 |S| directions in F2
p such

that for every line l in any of these directions, one has∑
z∈l

w(z) =
1

p

∑
z∈F2

p

w(z),

except if S itself is a line and w is constant on S (in which case all, but one direction
have the property in question). The bound 1

2 |S| is sharp.
As an application, we give a new proof of a result of Rédei-Megyesi about the

number of directions determined by a set in a finite affine plane.

1. Introduction

Let p be an odd rational prime, and let Fp denote the p-element field. A direction

in the affine plane F2
p is a pencil of p parallel lines; thus, there are p + 1 distinct

directions.

Given a function w : F2
p → R (which can be thought of as a weight assignment), we

say that a direction is perfect with respect to w if every line in this direction gets its

exact share of the total mass of w; that is, for every line l in the direction in question,

we have ∑
z∈l

w(z) =
1

p

∑
z∈F2

p

w(z).

Write S := suppw. Choosing a line l ⊂ F2
p uniformly at random and considering

the variance of the random variable
∑

z∈l w(z), it is easy to show that for all p + 1

directions to be perfect it is necessary and sufficient that w be a constant function.

Consequently, if all directions are perfect, then either S = F2
p, or S = ∅. In a similar

way one can show that a necessary and sufficient condition for all, but exactly one

direction to be perfect is that w is constant on any line in the unique “imperfect”

direction; in this case S is a union of parallel lines, and therefore |S| ≥ p.

How many perfect directions can there be given that S is small (but nonempty)?

One easily verifies that if p is sufficiently large, then for |S| = 1 there are no perfect
1
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directions, for |S| = 2 and |S| = 3 there is at most one perfect direction, while for

|S| = 4 there can be two perfect directions. The goal of this note is to show that,

generally, the number of perfect directions does not exceed |S|/2.

Theorem 1. Let p ≥ 3 be a prime. If S ⊆ F2
p is nonempty, then for any function

w : F2
p → R with suppw = S there are at most 1

2
|S| perfect directions, unless S is a

line and w is constant on S (in which case there are p perfect directions).

A set S ⊆ F2
p is said to determine a direction if there is a line in this direction

containing at least two points of S. If |S| = p and w is the indicator function of S,

then any direction not determined by S is perfect. Thus, by Theorem 1, if |S| = p and

S is not a line, then there are at most p−1
2

directions not determined by S. It follows

that any set S ⊆ F2
p of size |S| = p determines at least p+3

2
directions, unless S is a line.

This is a well-known result due to Rédei and Megyesi [R73], with alternative proofs

given by Lovász and Schrijver [LS83], and by Dress, Klin, and Muzichuk [DKM92].

Our Theorem 1 thus supplies yet another proof of this result. In contrast with other

proofs, our argument does not rely on the polynomial method, employing Fourier

analysis instead.

We refer the reader to [G03] for a historical account and summary of related results.

The following examples show that the estimate of Theorem 1 is, in a sense, best

possible.

Example 1. The special orthogonal group SO(2, p) is cyclic of order p−(−1/p), where

(·/p) is the Legendre symbol. Assuming that 2n is an even integer dividing p−(−1/p),

let H ≤ SO(2, p) be the subgroup of order |H| = 2n, and let H0 < H be the subgroup

of H of order |H0| = n. Fix arbitrarily a nonzero point z ∈ F2
p, define S to be the orbit

of z under the action of H, and for x ∈ S let w(x) = 1 if x actually belongs to the

orbit of z under the action of H0, and w(x) = −1 otherwise. We leave it to the reader

to verify that there are n = 1
2
|S| directions determined by the pairs (x, y) ∈ S × S

with w(x) 6= w(y), and that all these directions are perfect.

The next example originates, essentially, from Lovász-Schrijver [LS83].

Example 2. Let S be the graph of the function z 7→ z
p+1
2 ; that is, S = {(z, z p+1

2 ) : z ∈
Fp}. Then S determines p+3

2
directions, and since |S| = p, the p−1

2
= b|S|/2c unde-

termined directions are perfect with respect to the indicator function of S.

Example 3. If l1, l2 ⊂ F2
p are nonparallel lines, and w is the difference of the indicator

functions of these lines, then S = (l1 ∪ l2) \ (l1 ∩ l2), |S| = 2(p − 1), and there are

p− 1 = |S|/2 perfect directions. Similarly, if S is a union of two parallel lines, and w
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is constant and nonzero on each of these lines, then |S| = 2p and there are p = |S|/2
perfect directions.

We prove Theorem 1 in the next section, and discuss related open problems in the

concluding Section 3.

2. The proof of Theorem 1

We begin with setting up the notation and recalling basic facts and properties of

the Fourier transform on finite abelian groups.

For a subfield K of the field C and a finite, nonempty set G, by LK(G) we denote

the space of all functions from G to K with the inner product defined by

〈f, g〉 :=
1

|G|
∑
z∈G

f(z) g(z), f, g ∈ LK(G),

the overline denoting the complex conjugation.

Suppose that G is a finite abelian group. Dual to G is the group of all homomor-

phisms from G to C×. The dual group is denoted Ĝ, its elements are called characters,

the identity element of Ĝ is the principal character. The Fourier transform of a func-

tion f ∈ LK(G) is the function f̂ ∈ LC(Ĝ) defined by

f̂(χ) := 〈f, χ〉, χ ∈ Ĝ.

The function f ∈ LK(G) is constant if and only if its Fourier transform is zero or

supported on the principal character.

For a subgroup H ≤ G, the set of all characters χ ∈ Ĝ containing H in their kernel

is a subgroup of Ĝ, denoted H⊥; thus,

H⊥ = {χ ∈ Ĝ : χ(h) = 1 for any h ∈ H} ≤ Ĝ.

If H ≤ G is nonzero and proper, then so is H⊥ ≤ Ĝ. Writing 1H and 1H⊥ for the

indicator functions of H and H⊥, respectively, we have 1̂H = (|H|/|G|) · 1H⊥ .

For a function g ∈ LK(G) and an element z ∈ G, let gz ∈ LK(G) be defined by

gz(x) := g(z − x), x ∈ G.

The convolution of functions f, g ∈ LK(G) is the function

f ∗ g : z 7→ 〈f, gz〉, z ∈ G.

The Fourier transform of a convolution is the product of Fourier transforms:

f̂ ∗ g = f̂ · ĝ, f, g ∈ LK(G).

Our argument relies on the following uncertainty inequality for the rational-valued

functions on a finite affine plane.



4 VSEVOLOD F. LEV

Theorem 2 ([BL, Theorem 1]). For any prime p ≥ 3 and any function f ∈ LQ(F2
p),

either
1

2
| supp f |+ 1

p− 1
| supp f̂ | ≥ p+ 1,

or there is a direction in F2
p such that f is constant on every line in this direction.

It may be worth commenting that the proof of Theorem 2 is a mixture of Fourier-

analytic and finite-geometry considerations. In particular, it uses the classical esti-

mate for the size of the smallest blocking set in a finite affine plane.

We now turn to the proof of Theorem 1.

If w is a constant function, then S = F2
p and the assertion is immediate; assume

thus that w is not constant. The case p = 3 is easy to verify, and we further assume

that p ≥ 5.

By the Dirichlet simultaneous approximation theorem, there exist arbitrarily large

integers Q, along with the corresponding integer-valued functions wQ on F2
p, such that∥∥∥∥w − wQ

Q

∥∥∥∥
∞
<

1

2pQ
.

As a result, if Q is sufficiently large, then suppwQ = suppw, and for x, y ∈ S we have

w(x) = w(y) if and only if wQ(x) = wQ(y); also, a direction is perfect with respect

to w if and only if it is perfect with respect to wQ. Consequently, passing from w to

wQ, we can ensure that, in addition to being nonconstant, w is also integer-valued.

To every direction in F2
p there corresponds a nonzero, proper subgroup H < F2

p;

specifically, the subgroup represented by the line through the origin in the corre-

sponding direction. As an immediate corollary from the definitions, the direction

corresponding to a subgroup H < F2
p is perfect if and only if the convolution w ∗ 1H

is a constant function; that is, the product ŵ · 1H⊥ vanishes at every nonprinciple

character; in other words, ŵ vanishes on every character from H⊥ with the possible

exception of the principle character.

Denote the number of perfect directions by N , so that the number of imperfect

directions is p + 1 − N . The group F̂2
p
∼= F2

p is a union of its p + 1 nonzero, proper

subgroups, with every nonprincipal character χ ∈ F̂2
p lying in exactly one subgroup,

and the principal character lying in all subgroups. Therefore, since ŵ vanishes on the

subgroups corresponding to the perfect directions, we have

| supp ŵ| ≤ (p− 1)(p+ 1−N) + 1. (1)

On the other hand, applying Theorem 2 to the function w, we conclude that either

1

2
| suppw|+ 1

p− 1
| supp ŵ| ≥ p+ 1, (2)
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or there is a direction ∂ such that w is constant on every line in this direction. In the

former case, combining (2) and (1), and recalling that p ≥ 5, we get

p+ 1 ≤ 1

2
|S|+

(
(p+ 1−N) +

1

p− 1

)
<

1

2
(|S|+ 1) + p+ 1−N,

implying N ≤ 1
2
|S|. In the latter case, denoting by k the number of lines in the

direction ∂ on which w is nonzero, we have |S| = kp, while N = p (all directions

except ∂ are perfect). Consequently, N ≤ 1
2
|S|, unless k = 1, meaning that there is

a line on which w is constant and nonzero, and outside of which w vanishes.

This completes the proof of Theorem 1.

3. Open problems: restricting the weights

Suppose that w ∈ LC(F2
p) is not constant, and let S = suppw. If |S| < p, then in

every direction there is a line disjoint from S; hence, for perfect directions to exist,

the average value of w on F2
p must be zero. This suggests the following problem: how

many perfect directions can there be for a function w with a small support given that

the average of w is nonzero?

As we have just saw, one needs |S| ≥ p in order to have any perfect directions at

all.

If |S| = p, then for any direction determined by S there is a line in this direction

disjoint from S; therefore, none of the directions determined by S is perfect. On the

other hand, if w is constant on S, then any direction not determined by S is perfect.

It follows that the largest possible number of perfect directions is equal to the largest

possible number of undetermined directions, which is p+ 1 less the smallest possible

number of determined directions. Apart from the trivial case where S is a line, the

smallest possible number of determined directions is (p+3)/2 by the of Rédei-Megyesi

result; thus, the largest possible number of perfect directions (for S not being a line,

|S| = p, and the average of w nonzero) is (p+ 1)− 1
2
(p+ 3) = 1

2
(p− 1).

For |S| = p+ 1, one perfect direction is very easy to arrange, and a simple combi-

natorial argument shows that there cannot be two or more perfect directions. Notice

that this contrasts sharply the situation where |S| = p.

For |S| = p + 2 one can have two perfect directions (set w(z) = 1/2 for z ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}, and w(z) = 1 for z = (x, x) with x ∈ [2, p− 1]); however,

it is not clear to us whether there can be three or more perfect directions, nor what

happens for |S| ≥ p+ 3.

Replacing the nonzero average assumption with the stronger assumption that w

attains real nonnegative values seems to result in an equally interesting problem.
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[G03] A. Gács, On a generalization of Rédei’s theorem, Combinatorica 23 (4) (2003), 585–598.
[LS83] L. Lovász and A. Schrijver, Remarks on a theorem of Rédei, Studia Sci. Math. Hungar.
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