SMALL ASYMMETRIC SUMSETS IN ELEMENTARY ABELIAN 2-GROUPS

CHAIM EVEN ZOHAR AND VSEVOLOD F. LEV

Abstract

Let A and B be subsets of an elementary abelian 2-group G, none of which are contained in a coset of a proper subgroup. Extending onto potentially distinct summands a result of Hennecart and Plagne, we show that if $|A+B|<$ $|A|+|B|$, then either $A+B=G$, or the complement of $A+B$ in G is contained in a coset of a subgroup of index at least 8 (whence $|A+B| \geq \frac{7}{8}|G|$). We indicate conditions for the containment to be strict, and establish a refinement in the case where the sizes of A and B differ significantly.

1. Introduction and summary of results

For subsets A and B of an abelian group, we denote by $A+B$ the sumset of A and B :

$$
A+B:=\{a+b: a \in A, b \in B\}
$$

We abbreviate $A+A$ as $2 A$. By $\langle A\rangle$ we denote the affine span of A (which is the smallest coset that contains A).

Pairs of finite subsets A and B of an abelian group with $|A+B|<|A|+|B|$ are classified by the classical results of Kneser and Kemperman [Kne53, Kem60]. Recursive in its nature, this classification is rather complicated in general, but it has been observed that for the special case where the underlying group is an elementary abelian 2-group (that is, a finite abelian group of exponent 2), explicit closed-from results can be obtained. Particularly important in our present context is the following theorem due to Hennecart and Plagne.

Theorem 1 ([HP03, Theorem 1]). Let A be a subset of an elementary abelian 2-group G such that $\langle A\rangle=G$. If $|2 A|<2|A|$, then either $2 A=G$, or the complement of $2 A$ in G is a coset of a subgroup of index at least 8. Consequently, $|2 A| \geq \frac{7}{8}|G|$.

We mention two directions in which Theorem 1 was later developed. First, in connection with Freiman's structure theorem, much attention has been attracted to the function F defined by

$$
F(K):=\sup \{|\langle A\rangle| /|A|:|2 A| \leq K|A|\}, \quad K \geq 1
$$

where A runs over non-empty subsets of elementary abelian 2-groups. It is not difficult to derive from Theorem 1 that

$$
F(K)= \begin{cases}K & \text { if } 1 \leq K<\frac{7}{4} \\ \frac{8}{7} K & \text { if } \frac{7}{4} \leq K<2\end{cases}
$$

this is, essentially, [HP03, Corollary 2]. A result of Ruzsa [Ruz99] shows that $F(K)$ is finite for each $K \geq 1$ and indeed, $F(K) \leq K^{2} 2^{K^{4}}$. Various improvements for $K \geq 2$ were obtained by Deshouillers, Hennecart, and Plagne [DHP04], Sanders [San08], Green and Tao [GT09], and Konyagin [Kon08], and the exact value of $F(K)$ was eventually established in [EZ11].

In another direction, [Lev06, Theorem 5] establishes the precise structure of those subsets A satisfying $|2 A|<2|A|$ - in contrast with Theorem 1 which describes the structure of the sumset $2 A$ only.

The goal of the present paper is to extend Theorem 1 onto addition of two potentially distinct set summands. In this case the assumption $|A+B|<|A|+|B|$ does not guarantee any longer that the complement of $A+B$ is a coset of a subgroup of index at least 8 , as evidenced, for instance, by the following construction: represent the underlying group G as a direct sum $G=H \oplus F$ with $|H|=8$, fix a generating set $\left\{h_{1}, h_{2}, h_{3}\right\} \subset H$ and an arbitrary proper subset $F_{0} \subsetneq F$, and let

$$
\begin{aligned}
& A:=\left(\left\{h_{1}, h_{2}, h_{3}\right\}+F\right) \cup\{0\}, \\
& B:=\left(\left\{h_{1}+h_{2}, h_{2}+h_{3}, h_{3}+h_{1}, h_{1}+h_{2}+h_{3}\right\}+F\right) \cup F_{0} .
\end{aligned}
$$

The complement of $A+B$ in G is easily verified to be the complement of F_{0} in F, which need not be a coset, and

$$
|A+B|=|G|-\left(|F|-\left|F_{0}\right|\right)=|A|+|B|-1 .
$$

It turns out, however, that while the complement of $A+B$ may fail to be a coset of a subgroup of index at least 8 , it is necessarily contained in a such a coset - and indeed, in a coset of a subgroup of larger index if the summands differ significantly in size.

For subsets A and B of an abelian group and a group element g, let $\nu_{A, B}(g)$ denote the number or representations of g in the form $g=a+b$ with $a \in A$ and $b \in B$, and let

$$
\mu_{A, B}:=\min \left\{\nu_{A, B}(g): g \in A+B\right\} .
$$

The following theorem, proved in Section 3, is our main result.

Theorem 2. Let A and B be subsets of an elementary abelian 2-group G such that $\langle A\rangle=\langle B\rangle=G$. If $|A+B|<\min \{|A|+|B|,|G|\}$, then the complement of $A+B$ in G is contained in a coset of a subgroup of index 8. Moreover, if $\mu_{A, B}=1$, then the containment is strict.

We could get a stronger conclusion in the "highly asymmetric" case.
Theorem 2'. Let A and B be subsets of an elementary abelian 2-group G such that $\langle A\rangle=\langle B\rangle=G$. If $|A+B|<\min \{|A|+|B|,|G|\}$ and $|B| \geq\left(1-\frac{k+1}{2^{k}}\right)|G|$ with integer $k \geq 4$, then the complement of $A+B$ in G is contained in a coset of a subgroup of index 2^{k}. Moreover, if $\mu_{A, B}=1$, then the containment is strict.

Notice that in the statements of Theorems 2 and 2^{\prime} we disposed of the case where the sumset $A+B$ is the whole group by assuming from the very beginning that $|A+B|<|G|$.

The bounds on the subgroup index in Theorems 2 and 2^{\prime} are best possible under the stated assumptions. To see this, fix an integer $k \geq 3$ (the case $k=3$ addressing Theorem 2), consider a decomposition $G=H \oplus F$ with $|H|=2^{k}$, choose a generating set $\left\{0, h_{1}, \ldots, h_{k}\right\} \subset H$ and two arbitrary elements $g_{1}, g_{2} \in G$, and let

$$
\begin{aligned}
& A:=g_{1}+\left\{0, h_{1}, \ldots, h_{k}\right\}+F, \\
& B:=g_{2}+\left(H \backslash\left\{0, h_{1}, \ldots, h_{k}\right\}\right)+F .
\end{aligned}
$$

Then $|B|=\left(1-\frac{k+1}{2^{k}}\right)|G|$, the complement of $A+B$ in G is $g_{1}+g_{2}+F$, and

$$
|A+B|=|G|-|F|=|A|+|B|-|F| .
$$

Indeed, analyzing carefully the argument in Section 3, one can see that if B is not of the form just described, then the containment in the conclusion of Theorem 2^{\prime} is strict.
An almost immediate corollary of Theorem 2 is that if A and B are subsets of an elementary abelian 2-group G such that $\langle A\rangle=\langle B\rangle=G$ and $|A+B|<\frac{7}{8}(|A|+|B|)$, then $A+B=G$. In fact, Kneser's theorem [Kne53] yields a stronger result: if $\langle A\rangle=\langle B\rangle=G$ and $|A+B|<|A|+\frac{3}{4}|B|$, then $A+B=G$. Omitting the proof, which is nothing more than a routine application of Kneser's theorem, we confine ourselves to the remark that both assumptions $\langle A\rangle=G$ and $\langle B\rangle=G$ are crucial. This follows by considering the situation where B is an index- 8 subgroup of G, and A is a union of 4 cosets of B (which is not a coset itself), and that where A is an index-4 subgroup, and B is a union of three cosets of A.

We deduce Theorems 2 and 2^{\prime} from [Lev06, Theorem 2], quoted in the next section as Theorem 3. Based on the well-known Kemperman's structure theorem, this result establishes the structure of pairs (A, B) of subsets of an abelian group such that $|A+B|<|A|+|B|$. The deduction of Theorems 2 and 2^{\prime} from Theorem 3 is presented in Section 3.

2. Pairs of SETS WITH A Small SUMSET

The contents of this section originate from [Kem60] and [Lev06]. Our goal here is to introduce [Lev06, Theorem 2], from which Theorems 2 and 2^{\prime} will be derived in the next section.

For a subset A of the abelian group G, the (maximal) period of A will be denoted by $\pi(A)$; recall that this is the subgroup of G defined by

$$
\pi(A):=\{g \in G: A+g=A\}
$$

and that A is called periodic if $\pi(A) \neq\{0\}$ and aperiodic otherwise.
By an arithmetic progression in the abelian group G with difference $d \in G$, we mean a set of the form $\{g+d, g+2 d, \ldots, g+n d\}$, where n is a positive integer.

Essentially following Kemperman's paper [Kem60], we say that the pair (A, B) of finite subsets of the abelian group G is elementary if at least one of the following conditions holds:
(I) $\min \{|A|,|B|\}=1$;
(II) A and B are arithmetic progressions sharing a common difference, the order of which in G is at least $|A|+|B|-1$;
(III) $A=g_{1}+\left(H_{1} \cup\{0\}\right)$ and $B=g_{2}-\left(H_{2} \cup\{0\}\right)$, where $g_{1}, g_{2} \in G$, and where H_{1} and H_{2} are non-empty subsets of a subgroup $H \leq G$ such that $H=$ $H_{1} \cup H_{2} \cup\{0\}$ is a partition of H; moreover, $c:=g_{1}+g_{2}$ is the unique element of $A+B$ with $\nu_{A, B}(c)=1$;
(IV) $A=g_{1}+H_{1}$ and $B=g_{2}-H_{2}$, where $g_{1}, g_{2} \in G$, and where H_{1} and H_{2} are non-empty, aperiodic subsets of a subgroup $H \leq G$ such that $H=H_{1} \cup H_{2}$ is a partition of H; moreover, $\mu_{A, B} \geq 2$.

Notice, that for elementary pairs of type (III) we have $|A|+|B|=|H|+1$, whence $A+B=g_{1}+g_{2}+H$ by the box principle. Also, for type (IV) pairs we have $|A|+|B|=|H|$ and $A+B=g_{1}+g_{2}+(H \backslash\{0\})$; the reader can consider the latter assertion as an exercise or find a proof in [Lev06].

We say that the pair (A, B) of subsets of an abelian group satisfies Kemperman's condition if

$$
\begin{equation*}
\text { either } \pi(A+B)=\{0\} \text {, or } \mu_{A, B}=1 \text {. } \tag{1}
\end{equation*}
$$

Given a subgroup H of the abelian group G, by φ_{H} we denote the canonical homomorphism from G onto the quotient group G / H.

We are at last ready to present our main tool.
Theorem 3 ([Lev06, Theorem 2]). Let A and B be finite, non-empty subsets of the abelian group G. A necessary and sufficient condition for (A, B) to satisfy both

$$
|A+B|<|A|+|B|
$$

and Kemperman's condition (1) is that either (A, B) is an elementary pair, or there exist non-empty subsets $A_{0} \subseteq A$ and $B_{0} \subseteq B$ and a finite, non-zero, proper subgroup $F<G$ such that
(i) each of A_{0} and B_{0} is contained in an F-coset, $\left|A_{0}+B_{0}\right|=\left|A_{0}\right|+\left|B_{0}\right|-1$, and the pair $\left(A_{0}, B_{0}\right)$ satisfies Kemperman's condition;
(ii) each of $A \backslash A_{0}$ and $B \backslash B_{0}$ is a (possibly empty) union of F-cosets;
(iii) the pair $\left(\varphi_{F}(A), \varphi_{F}(B)\right)$ is elementary; moreover, $\varphi_{F}\left(A_{0}\right)+\varphi_{F}\left(B_{0}\right)$ has a unique representation as a sum of an element of $\varphi_{F}(A)$ and an element of $\varphi_{F}(B)$.

3. Proof of Theorems 2 and 2^{\prime}

We give Theorems 2 and 2^{\prime} one common proof.
If $|G| \leq 4$, then the assumption $\langle A\rangle=\langle B\rangle=G$ implies $A+B=G$, and we therefore assume $|G| \geq 8$ and use induction on $|G|$.

If Kemperman's condition (1) fails to hold, then, in particular, $H:=\pi(A+B)$ is a non-zero subgroup. In this case we observe that the assumptions $\langle A\rangle=\langle B\rangle=G$ and $|A+B|<|G|$ imply $\left\langle\varphi_{H}(A)\right\rangle=\left\langle\varphi_{H}(B)\right\rangle=G / H$ and $\left|\varphi_{H}(A)+\varphi_{H}(B)\right|<|G / H|$, respectively, and

$$
\begin{equation*}
|B| \geq\left(1-\frac{k+1}{2^{k}}\right)|G| \tag{2}
\end{equation*}
$$

implies $\left|\varphi_{H}(B)\right| \geq\left(1-\frac{k+1}{2^{k}}\right)|G / H|$. Hence, by the induction hypothesis, the complement of $\varphi_{H}(A)+\varphi_{H}(B)=\varphi_{H}(A+B)$ in G / H is contained in a coset of a subgroup of index 8 and indeed, of index 2^{k} under the assumption (2), and so is the complement of $A+B$ in G.

From now on we assume that Kemperman's condition (1) holds true, and hence Theorem 3 applies.

If (A, B) is an elementary pair in G, then it is of type III or IV, in view of the assumptions $|G| \geq 8$ and $\langle A\rangle=\langle B\rangle=G$. Moreover, by the same reason, the subgroup $H \leq G$ in the definition of elementary pairs is, in fact, the whole group G. We conclude that (A, B) is actually of type IV: for, if it were of type III, we would have $A+B=G$ (see a remark after the definition of elementary pairs). Consequently, $\mu_{A, B} \geq 2$ and the complement of $A+B$ in G is a singleton; that is, a coset of the zero subgroup. To complete the treatment of the present case, we denote by n the rank of G and notice that (2) implies $|A|=|G|-|B| \leq(k+1) 2^{n-k}$, while $\langle A\rangle=G$ gives $|A| \geq n+1$. Hence, $(n+1) / 2^{n} \leq(k+1) / 2^{k}$. As a result, $n \geq k$, and therefore the zero subgroup has index $|G| \geq 2^{k}$.

Finally, consider the situation where (A, B) is not an elementary pair in G, and find then $A_{0} \subseteq A, B_{0} \subseteq B$, and $F<G$ as in the conclusion of Theorem 3. Observe that $\left\langle\varphi_{F}(A)\right\rangle=\left\langle\varphi_{F}(B)\right\rangle=G / F$ yields $\min \left\{\left|\varphi_{F}(A)\right|,\left|\varphi_{F}(B)\right|\right\} \geq 2$, so that $\left(\varphi_{F}(A), \varphi_{F}(B)\right)$ cannot be an elementary pair in G / F of type I or II. Indeed, $\left(\varphi_{F}(A), \varphi_{F}(B)\right)$ cannot be of type IV either, as in this case we would have $\mu_{\varphi_{F}(A), \varphi_{F}(B)} \geq 2$, contrary to Theorem 3 (iii). Thus, $\left(\varphi_{F}(A), \varphi_{F}(B)\right)$ is of type III, and $\left\langle\varphi_{F}(A)\right\rangle=\left\langle\varphi_{F}(B)\right\rangle=G / F$ implies that the subgroup of the quotient group G / F in the definition of elementary pairs is actually the whole group G / F. As a result, we derive from Theorem 3 that the complement of $A+B$ in G is the complement of $A_{0}+B_{0}$ in the appropriate F-coset.

Write $|G / F|=2^{m}$; to complete the proof it remains to show that $m \geq 3$, and if (2) holds then, indeed, $m \geq k$. To this end we notice that $\left\langle\varphi_{F}(A)\right\rangle=\left\langle\varphi_{F}(B)\right\rangle=G / F$ gives $\min \left\{\left|\varphi_{F}(A)\right|,\left|\varphi_{F}(B)\right|\right\} \geq m+1$; compared to $\left|\varphi_{F}(A)\right|+\left|\varphi_{F}(B)\right|=2^{m}+1$, this results in $2 m+2 \leq 2^{m}+1$, whence $m \geq 3$. Finally, $\left|\varphi_{F}(B)\right| \geq\left(1-(k+1) / 2^{k}\right) 2^{m}$ gives $\left|\varphi_{F}(A)\right| \leq(k+1) 2^{m-k}+1$. Combined with $\left|\varphi_{F}(A)\right| \geq m+1$ this leads to $m \leq(k+1) 2^{m-k}$. As the right-hand side is a decreasing function of k, if we had $m<k$, the last inequality would yield $m \leq(m+2) 2^{m-(m+1)}$, which is wrong.

Note that the condition $\mu_{A, B}=1$ can hold only under the last scenario (where (A, B) is not an elementary pair in G). As we have shown, in this case the complement of $A+B$ is strictly contained in an F-coset, and the strict containment assertion follows.

Acknowledgment

The first author would like to thank his thesis advisor, Professor Nati Linial, for a patient and helpful guidance.

References

[DHP04] J.-M. Deshouillers, F. Hennecart, and A. Plagne, On small sumsets in $(\mathbb{Z} / 2 \mathbb{Z})^{n}$, Combinatorica 24 (2004), no. 1, 53-68.
[EZ11] C. Even-Zohar, On sums of generating sets in \mathbb{Z}_{2}^{n}, preprint arXiv:1108.4902v1 (2011).
[GT09] B. Green and T. Tao, Freiman's theorem in finite fields via extremal set theory, Combinatorics, Probability and Computing 18 (2009), no. 3, 335-355.
[HP03] F. Hennecart and A. Plagne, On the subgroup generated by a small doubling binary set, European Journal of Combinatorics 24 (2003), no. 1, 5-14.
[Kem60] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Mathematica 103 (1960), no. 1, 63-88.
[Kne53] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Mathematische Zeitschrift 58 (1953), no. 1, 459-484.
[Kon08] S.V. Konyagin, On the Freiman theorem in finite fields, Mathematical Notes 84 (2008), no. 3-4, 435-438.
[Lev06] V. F. Lev, Critical pairs in abelian groups and Kemperman's structure theorem, Int. J. Number Theory 2 (2006), no. 3, 379-396.
[Ruz99] I. Z. Ruzsa, An analog of Freiman's theorem in groups, Astérisque (1999), 323-326.
[San08] T. Sanders, A note on Freiman's theorem in vector spaces, Combinatorics, Probability and Computing 17 (2008), no. 2, 297-305.

Einstein Institute of Mathematics, The Hebrew University, Jerusalem 91904, IsRAEL

E-mail address: chaim.evenzohar@mail.huji.ac.il
Department of Mathematics, The University of Haifa at Oranim, Tivon 36006, Israel

E-mail address: seva@math.haifa.ac.il

