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Abstract Consider the projections of a finite set A ⊂ R
n onto the coordinate hyper-

planes; how small can the sum of the sizes of these projections be, given the size of
A? In a different form, this problem has been studied earlier in the context of edge-
isoperimetric inequalities on graphs, and it can be derived from the known results that
there is a linear order on the set of n-tuples with non-negative integer coordinates, such
that the sum in question is minimised for the initial segments with respect to this order.
We present a new, self-contained and constructive proof, enabling us to obtain a sta-
bility result and establish algebraic properties of the smallest possible projection sum.
We also solve the problem of minimising the sum of the sizes of the one-dimensional
projections.
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1 Preliminaries

Given an integer n ≥ 1, for each i ∈ [1, n] denote by πi the orthogonal projection
of the vector space R

n onto the coordinate hyperplane {(x1, . . . , xn) ∈ R
n : xi = 0}.
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For a finite set A ⊂ R
n , as a simple consequence of the Loomis–Whitney inequality

(see, for instance, [2,3,5]), we have

n∏

i=1

|πi (A)| ≥ |A|n−1;

combining this estimate with the arithmetic mean-geometric mean inequality yields

n∑

i=1

|πi (A)| ≥ n |A|1−1/n . (1)

The Loomis–Whitney inequality is known to be sharp, turning into an exact equality
when the set under consideration is an axis-aligned rectangular parallelepiped (and,
in the convex set settings, only in this case, as it follows from the argument of [5]).
In contrast, the estimate (1) is not sharp; say, it shows that for a three-dimensional,
five-point set, the sum of the projection sizes is at least as large as 3 · 52/3 ≈ 8.77,
while it is not difficult to see that, in fact, this sum cannot be smaller than 10. This leads
naturally to the following question: exactly how small can the sum in the left-hand
side of (1) be for a finite set A ⊂ R

n of given size? Loosely speaking, we want to
know how much the points of an n-dimensional set of given size can hide behind each
other.

The answer to a tightly related question is due to Bollobás and Leader [1, Thm. 15],
where it was cast as the edge-isoperimetric problem for the n-dimensional grid graph;
see also Harper [4, Thm. 7.1] and historical comments [4, p. 142], as well as the
references contained therein. Our goal here is to give a direct, independent, and self-
contained solution of a discrete-geometric flavour, avoiding references to graph theory
and making the underlying rearrangement procedure maximally algorithmic. This
enables us to prove a stability result showing that, in certain cases, the set with the
smallest sum of the projection sizes is, essentially, unique. Furthermore, we establish
some algebraic properties of the smallest possible value of this sum as a function of
the size of the set being projected. Finally, in Appendix we discuss and solve a similar
problem for the one-dimensional projections.

2 Summary of Results

If |A| = Kn with an integer K ≥ 1, then (1) implies

n∑

i=1

|πi (A)| ≥ nKn−1,

which is attained for the discrete n-dimensional cube A = [0, K − 1]n . The situation
where |A| is not a perfect nth power is much subtler and requires some preparation to
discuss.
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Denote by N0 the set of all non-negative integers. We define the cube order on
N
n
0 inductively, saying that x = (x1, . . . , xn) precedes y = (y1, . . . , yn), and writing

x � y, if one of the following holds:

(i) The largest coordinate of x is smaller than that of y;
(ii) the largest coordinates of x and y are equal to the same common value, say μ,

and the largest index i ∈ [1, n] with xi = μ is smaller than the largest index
i ∈ [1, n] with yi = μ;

(iii) the largest coordinates of x and y are equal to the same common value μ, the
largest index i ∈ [1, n] with xi = μ is equal to the largest index i ∈ [1, n] with
yi = μ, and for this index i we have πi (x) � πi (y) in the cube order on N

n−1
0 .

More formally, x precedes y if either there exists l0 ∈ N0 and j ∈ [1, n] such
that {i ∈ [1, n] : xi = l} = {i ∈ [1, n] : yi = l} for each l > l0, and also {i ∈
[ j + 1, n] : xi = l0} = {i ∈ [ j + 1, n] : yi = l0}, while x j < y j = l0.

For integer m ≥ 0, by In(m) we denote the length-m initial segment of N
n
0 with

respect to the cube order; thus, for instance, In(0) = ∅, I1(m) = [0,m − 1],

I2(10) = {
(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1), (0, 2), (1, 2), (2, 2), (3, 0)

}
,

and

I3(20) = {
(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1),

(1, 1, 1), (2, 0, 0), (2, 1, 0), (2, 0, 1), (2, 1, 1), (0, 2, 0), (1, 2, 0),

(0, 2, 1), (1, 2, 1), (2, 2, 0), (2, 2, 1), (0, 0, 2), (1, 0, 2)
}
.

Informally, initial segments fill in N
n
0 cube-wise: once the cube [0, K − 1]n has been

completed, for some integer K ≥ 1, the n faces

0 ≤ x1, . . . , xi ≤ K , xi+1 = K , 0 ≤ xi+2, . . . , xn ≤ K − 1, i ∈ [0, n − 1],

are filled in one by one to get a covering of the next cube [0, K ]n , etc.
Speaking about initial segments we will always mean finite initial segments of N

n
0

with respect to the cube order, with the value of n determined by the context.We notice
that the cube order is identical to the order introduced in [1, Sect. 3], and similar to the
order introduced in [4, Sect. 7.1.1] (the latter order is defined on the whole grid Z

n).
We say that the initial segment I1 is shorter than the initial segment I2 if |I1| < |I2|;
equivalently, if I1 ⊂ I2. If m = (K + 1)i K n−i with some i ∈ [0, n − 1], then

In(m) = {
(x1, . . . , xn) ∈ N

n
0 : 0 ≤ x1, . . . , xi ≤ K , 0 ≤ xi+1, . . . , xn ≤ K − 1

}

(2)

is an axis-aligned rectangular parallelepiped; in this case we say that the segment
In(m) is closed (the intuition behind this term will be clear from the next section).
The edges of a closed initial segment are its orthogonal projections onto the coordinate
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axes; thus, for instance, the two-element initial segment has one edge of size 2, all
other edges being of size 1.

In general, for any integer m ≥ 1 there are uniquely defined integers K ≥ 1 and
i ∈ [0, n − 1] such that

Kn ≤ m < (K + 1)n (3)

and, indeed,

(K + 1)i K n−i ≤ m < (K + 1)i+1Kn−i−1; (4)

writing then

m = (K + 1)i K n−i + R, 0 ≤ R < (K + 1)i K n−1−i , (5)

the initial segment In(m) is the disjoint union of the closed In((K +1)i K n−i ), which
is the parallelepiped in the right-hand side of (2), and a translate of the (n − 1)-
dimensional initial segment In−1(R), contained in the hyperplane xi+1 = K .

We can now state our first principal result.

Theorem 2.1 For every integer n ≥ 1 and every finite set A ⊂ R
n, letting m := |A|,

we have

n∑

i=1

|πi (A)| ≥
n∑

i=1

|πi (In(m))|. (6)

In Sect. 5 we prove Theorem 2.1 in the particular case where A ⊂ N
n
0; the general

case then follows readily by observing that if A ⊆ Sn with a finite set S ⊆ R, then for
any injective mapping ϕ : S → N0, writing B := ϕ⊗n(A) ⊂ N

n
0 we have |B| = |A|

and |πi (A)| = |πi (B)| for each i ∈ [1, n]. Indeed, this observation shows that the
estimate of Theorem 2.1 remains valid when A ⊆ Sn with a set S of any nature, not
necessarily contained in the set of real numbers (although in this case the projections
πi must be redefined appropriately).

We denote the left-hand side of (6) by σn(A) and, with some abuse of notation,
its right-hand side by σn(m); that is, σn(A) is the sum of the sizes of the projections
of the finite set A ⊂ R

n onto the coordinate hyperplanes, and σn(m) is this sum in
the special case where the set in question is the length-m initial segment. Thus, for
instance,

σn(0) = 0, σ1(m) = 1 if m > 0, (7)

and, as one can easily verify,

σ2(m) =
{
2K + 1 if K 2 < m ≤ K (K + 1),

2K + 2 if K (K + 1) < m ≤ (K + 1)2
(8)
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for any integer K ≥ 0. Also, it follows from the explanation above that for K , i , and
R defined by (3)–(5), we have

σn(m) = σn((K + 1)i K n−i ) + σn−1(R)

= (nK + n − i)(K + 1)i−1Kn−i−1 + σn−1(R); (9)

along with (7), this relation gives a recursive, completely algebraic definition of the
quantities σn(m).

Addressing the corresponding stability problem, we say that a finite set A ⊂ R
n is a

minimiser if its projection sum σn(A) is smallest possible among all sets in R
n of size

|A|. Thus, Theorem 2.1 says that every initial segment ofN
n
0 is aminimiser, but it is not

true in general that any minimiser is an initial segment, or even is “similar” to an initial
segment in some reasonable sense (see Sect. 6 for a rigorous definition of similarity).
Say, for integer K ≥ C ≥ 1, the set A := [0, K − C] × [0, K + C] ⊂ N

2
0 is not an

initial segment, while |A| = (K +1)2 −C2 and therefore σ2(A) = 2K +2 = σ2(|A|)
(cf. (8)), showing in view of Theorem 2.1 that A is a minimiser. In Sect. 6 we prove,
however, that every closed initial segment is (up to similarity) a unique minimiser.

Theorem 2.2 Suppose that n ≥ 1 is an integer. If m = (K + 1)i K n−i with integers
K ≥ 1 and i ∈ [0, n− 1], then every minimiser in R

n of size m is a Cartesian product
of i real sets of size K + 1, and n − i real sets of size K .

The following lemma, proved in Sect. 4, is an important ingredient of the proof of
Theorem 2.1.

Lemma 2.3 Let n ≥ 1 be an integer.

(i) Suppose that I1, I2, J1, J2 ⊂ N
n
0 are initial segments such that |I1| + |I2| =

|J1| + |J2|, |J1| ≤ |I1| ≤ |I2| ≤ |J2|, and J2 is closed. Then

σn(J1) + σn(J2) ≤ σn(I1) + σn(I2).

(ii) If I, I1, I2 ⊂ N
n
0 are non-empty initial segments such that |I | = |I1|+ |I2|, then

σn(I ) < σn(I1) + σn(I2).

(iii) If n ≥ 2 and In−1 ⊂ N
n−1
0 , In ⊂ N

n
0 are non-empty initial segments such that

|In−1| = |In|, then

σn(In) > σn−1(In−1).

An “algebraic restatement” of Lemma 2.3 may be of interest.

Lemma 2.3′ Let n ≥ 1 be an integer.

(i) Suppose that l1 ≤ m1 ≤ m2 ≤ l2 are non-negative integers such that m1+m2 =
l1 + l2. If In(l2) is closed, then

σn(l1) + σn(l2) ≤ σn(m1) + σn(m2).
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(ii) If m1,m2 ≥ 1 are integers, then

σn(m1 + m2) < σn(m1) + σn(m2).

(iii) If n ≥ 2 and m ≥ 1 is an integer, then

σn(m) > σn−1(m).

We remark that subadditivity established by Lemmas 2.3 (ii) and 2.3′ (ii) can be
viewed as a combinatorial analogue of the well-known physical fact that merging two
spherical droplets into one reduces the total surface area.

Our last result establishes yet another interesting algebraic property of the func-
tions σn .

Theorem 2.4 For any integers n, s ≥ 1 and m1, . . . ,ms ≥ 0, we have

σn(m1 + · · · + ms) ≤ σn−1(m1) + · · · + σn−1(ms) + max {m1, . . . ,ms}. (10)

In Sect. 7 we derive Theorem 2.4 from Theorem 2.1 and, indeed, show that, some-
what unexpectedly, the two theorems are equivalent in the sense that each of them
follows easily from the other one.

In the next section we introduce important notation and terminology used through-
out. Having finished with this, we prove Lemma 2.3 in Sect. 4, and Theorems 2.1
and 2.2 in Sects. 5 and 6, respectively. The equivalence of the former theorem and
Theorem 2.4 is established in Sect. 7. Finally, in the Appendix we develop a similar
theory for the one-dimensional projections, and in particular show that their sum is
also minimised when the set under consideration is an initial segment.

The proofs are purely combinatorial, based on point rearrangements.

3 Notation and Terminology

For integer 1 ≤ i ≤ n, we denote by {e1, . . . , en} the standard basis of R
n , and write

Xi := Sp {ei }

for the coordinate axes, and

Li := Sp {e1, . . . , ei−1, ei+1, . . . , en}

for the coordinate hyperplanes. The axis Xn will be referred to as vertical, and the
corresponding hyperplane Ln and its translates, as well as the projection πn , as hori-
zontal.

The reader may find helpful to think of points x ∈ Z
n as unit cubes, with the base

vertex at x , and visualise sets A ⊆ Z
n as built of such cubes.

123



Discrete Comput Geom

The intersections of a set A ⊆ Z
n with horizontal hyperplanes will be called the

slabs of A. If n = 1, then the slabs are zero-dimensional; hence, either empty, or
singletons.

Recall that an initial segment of N
n
0 is closed if it is an axis-aligned rectangular

parallelepiped whose edges differ by at most 1, and for all 1 ≤ i < j ≤ n, the
edge along X j is not longer than the edge along Xi (cf. (2)). Notice that closed initial
segments in N

n
0 are stable under permuting non-empty slabs.

Given an initial segment I ⊂ N
n
0, we define its (strict) interior to be the longest

closed initial segment (strictly) contained in I , and we denote the interior and the strict
interior of I by int(I ) and int∗(I ), respectively. Similarly we define the (strict) closure
of I to be the shortest closed initial segment (strictly) containing I , and denote the
closure and the strict closure of I by cl(I ) and cl∗(I ), respectively. The boundary of
I is defined by ∂ I := I\int(I ), and its strict boundary by ∂∗ I := I\int∗(I ); thus,
the boundary is empty if and only if I is closed, while the strict boundary is always
non-empty whenever I = ∅. Boundaries can be treated either as (n− 1)-dimensional
sets embedded in N

n
0, or as initial segments in N

n−1
0 . We remark that for an initial

segment I = ∅, any of the three conditions cl∗(I ) = cl(I ), int∗(I ) = int(I ), and
∂∗ I = ∂ I is equivalent to I not being closed.

As a version of (9), for any initial segment I ⊂ N
n
0 with |I | > 1, we have

σn(I ) = σn(int
∗(I )) + σn−1(∂

∗ I ). (11)

(If |I | = 1, then int∗(I ) = ∅ and the left-hand side of (11) exceeds by 1 its right-
hand side.) This basic, but important identity allows us to argue inductively in the
forthcoming proofs. It becomes evident upon observing that the strict boundary ∂∗ I
is an (n − 1)-dimensional set, attached to and not larger than a face of int∗(I ) which
we visualise as a rectangular parallelepiped; hence ∂∗ I does not contribute to the
projection along the axis, normal to the face under consideration. Notation-wise, we
will occasionally use (11) in the form

σn(|I |) = σn(|int∗(I )|) + σn−1(|∂∗ I |),

the equivalence following from the fact that int∗(I ) and ∂∗ I are initial segments (in
N
n
0 and N

n−1
0 , respectively).

4 Proof of Lemma 2.3

We use induction on n. The base case n = 1 is easy to verify, and we proceed assuming
that n ≥ 2. We first prove (iii), then (i), and, finally, (ii).

Addressing (iii), we use (the inner) induction on the common size m of the initial
segments In−1 and In . For m = 1 the estimate follows from

σn(In) = n = σn−1(In−1) + 1.
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For m ≥ 2, by (11) and the induction hypothesis, we have

σn(In) = σn(|int∗(In)|) + σn−1(|∂∗ In|) > σn−1(|int∗(In)|) + σn−1(|∂∗ In|).

Applying (ii) inductively, we see that the right-hand side is larger than

σn−1(|int∗(In)| + |∂∗ In|) = σn−1(|In|) = σn−1(|In−1|) = σn−1(In−1).

This completes the proof of (iii), and we now turn to (i).
If J1 = ∅, then the assertion follows from (ii), and we thus assume that J1 = ∅,

implying I1 = ∅. Our plan is to shorten I1 and lengthen I2, while keeping the sum
|I1| + |I2| intact, to get, after a number of iterations, to the situation where I2 = J2.
Formally, we act as follows. Let

δ := min {|∂∗ I1|, | cl∗(I2)\I2|} (12)

(the number of elements to be transferred from I1 to I2), and define I ′
1 and I ′

2 to be the
initial segments of N

n
0 of sizes |I ′

1| = |I1| − δ and |I ′
2| = |I2| + δ. Notice that δ > 0,

and since J2 is closed, if I2 = J2, then we have cl∗(I2) ⊆ J2, implying δ ≤ |J2\I2|.
Consequently, |I ′

2| = |I2| + δ ≤ |J2|, whence |I ′
1| = |J1| + |J2| − |I ′

2| ≥ |J1|.
We now prove that

σn(I
′
1) + σn(I

′
2) ≤ σn(I1) + σn(I2). (13)

If I ′
2 = J2 (equivalently, if I ′

1 = J1), then we iterate the procedure, until eventually we
replace the initial segments I1 and I2 with J1 and J2, respectively, and the assertion
will then follow from (13). Thus, to complete the proof of (i) it remains to establish
(13). To this end, we have to distinguish two cases.

Suppose first that |∂∗ I1| > |cl∗(I2)\I2|, so that I2 is not closed in view of |I1| ≤
|I2|; consequently, |∂ I2| = |∂∗ I2| > 0 and int(I2) = int∗(I2). In this case we have
δ = |cl∗(I2)|− |I2| whence |I ′

2| = |cl∗(I2)| and therefore I ′
2 = cl∗(I2) and int∗(I ′

2) =
int∗(I2); also, |I ′

1| > |I1| − |∂∗ I1| = |int∗(I1)|, implying int∗(I ′
1) = int∗(I1). As a

result, using (11), we get

σn(I1) + σn(I2) = σn(int
∗(I1)) + σn−1(∂

∗ I1) + σn(int
∗(I2)) + σn−1(∂

∗ I2)
= σn(int

∗(I ′
1)) + σn(int

∗(I ′
2)) + (σn−1(∂

∗ I1) + σn−1(∂
∗ I2)).

(14)

We now notice that ∂∗ I ′
2 is a closed initial segment in N

n−1
0 , and that

|∂∗ I ′
1| + |∂∗ I ′

2| = (|∂∗ I1| − δ) + (|∂∗ I2| + δ) = |∂∗ I1| + |∂∗ I2|.

Also,

|∂∗ I ′
2| = |I ′

2| − |int∗(I ′
2)| = | cl∗(I2)| − |int∗(I2)| > |I2| − |int∗(I2)| = |∂∗ I2|.
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Therefore, an inductive application of (i) in dimension n − 1 yields

σn−1(∂
∗ I1) + σn−1(∂

∗ I2) ≥ σn−1(∂
∗ I ′

1) + σn−1(∂
∗ I ′

2).

Combining this with (14), and using (11) once again, we obtain

σn(I1) + σn(I2) ≥ σn(int
∗(I ′

1)) + σn(int
∗(I ′

2)) + σn−1(∂
∗ I ′

1) + σn−1(∂
∗ I ′

2)

= σn(I
′
1) + σn(I

′
2),

which is the desired estimate (13).
Now suppose that |∂∗ I1| ≤ |cl∗(I2)\I2|. In this case δ = |∂∗ I1|, I ′

1 = int∗(I1),
int∗(I ′

2) = int(I2), and

|∂∗ I ′
2| = |I ′

2\int(I2)| = |∂ I2| + δ = |∂∗ I1| + |∂ I2|. (15)

There are two further sub-cases.
If I2 is closed, then (15) gives |∂∗ I ′

2| = |∂∗ I1|; as a result, using (11) we get

σn(I1) + σn(I2) ≥ (σn(int
∗(I1)) + σn−1(∂

∗ I1)) + σn(I2) (16)

= σn(I
′
1) + (σn−1(∂

∗ I1) + σn(int(I2)))

= σn(I
′
1) + (σn−1(∂

∗ I ′
2) + σn(int

∗(I ′
2)))

= σn(I
′
1) + σn(I

′
2),

which is 13.

Remark 4.1 The inequality in (16) is strict if and only if I1 is a singleton; this fact will
be used in the forthcoming proof of (ii).

If I2 is not closed, then ∂ I2 = ∂∗ I2 and int∗(I2) = int(I2) = int∗(I ′
2). Recall-

ing (15), in this case we apply (ii) inductively in dimension n − 1 to get

σn−1(∂
∗ I1) + σn−1(∂

∗ I2) > σn−1(∂
∗ I ′

2)

whence, by (11),

σn(I1) + σn(I2) ≥ σn(int
∗(I1)) + (σn(int

∗(I2)) + σn−1(∂
∗ I1) + σn−1(∂

∗ I2))
> σn(I

′
1) + (σn(int

∗(I ′
2)) + σn−1(∂

∗ I ′
2)) (17)

= σn(I
′
1) + σn(I

′
2).

This establishes (13), and therefore (i).
Finally, we prove (ii). Without loss of generality, we assume |I1| ≤ |I2|. If

|cl∗(I2)\I2| ≤ |I1|, (18)

then we re-use the above argument for (i) with J2 := cl∗(I2) and J1 := In(|I1|+|I2|−
|J2|), defining δ by (12) and then letting I ′

1 := In(|I1| − δ) and I ′
2 := In(|I2| + δ),
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to have the estimate (13). We notice that if |I1| > 1, then δ ≤ |∂∗ I1| < |I1|, implying
|I ′
1| ≥ 1; moreover, if |I1| = 1, then the inequality in (13) is strict, as it follows from

(17) and Remark 4.1 above, concerning (16). (This reflects the geometrically obvious
fact that if I1 consists of one single point, then moving this point to I2 reduces the
total sum of the hyperplane projections by at least 1.)

Continuing in this way, we find initial segments I ′′
1 ⊆ I ′′

2 satisfying |I ′′
1 | + |I ′′

2 | =
|I1| + |I2| and

σn(I
′′
1 ) + σn(I

′′
2 ) ≤ σn(I1) + σn(I2) (19)

such that either I ′′
1 = ∅, I ′′

2 = I , and (19) holds actually as a strict inequality, or
I ′′
1 = ∅ and |cl∗(I ′′

2 )\I ′′
2 | > |I ′′

1 |, cf. (18). In the former case (ii) follows readily. In
the latter case, recalling that I = In(|I ′′

1 | + |I ′′
2 |), we have int∗(I ) = int(I ′′

2 ), whence

|∂∗ I | = (|I ′′
1 | + |I ′′

2 |) − |int(I ′′
2 )| = |∂ I ′′

2 | + |I ′′
1 |;

consequently, using (11), and then applying (ii) inductively,

σn(I ) = σn(int
∗(I )) + σn−1(∂

∗ I )
= σn(int(I

′′
2 )) + σn−1(|∂ I ′′

2 | + |I ′′
1 |)

≤ σn(int(I
′′
2 )) + σn−1(∂ I

′′
2 ) + σn−1(I

′′
1 ). (20)

However, as a version of (11) (essentially equivalent to (9)), we have

σn(int(I
′′
2 )) + σn−1(∂ I

′′
2 ) = σn(I

′′
2 ), (21)

and by (iii),

σn−1(I
′′
1 ) < σn(I

′′
1 ). (22)

Combining (20)–(22) and (19), we get

σn(I ) < σn(I
′′
1 ) + σn(I

′′
2 ) ≤ σn(I1) + σn(I2).

This completes the proof of (ii), and hence of the whole Lemma 2.3.

5 Proof of Theorem 2.1

As explained in the introduction, it suffices to show that for any finite set A ⊂ N
n
0,

writing m := |A|, we have σn(A) ≥ σn(m). The proof goes by induction on n, the
base case n = 1 being trivial as the zero-dimensional projection of any non-empty
set has, by convention, size 1. The assertion is readily verified for m ∈ {0, 1}, too.
Suppose thus that min {n,m} ≥ 2.

Our strategy is to start out with any minimiser A ⊂ N
n
0 and modify it, in a finite

number of rearrangements not increasing the projection sum, to get the initial segment
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In(|A|). We achieve this in several steps, some of which may need to be iterated, as
explained below.

Step 1 Let H (for “height”) denote this number of non-empty slabs of A. Step 1
consists of three sub-procedures to be quoted later in the proof of Theorem 2.2, we
therefore point them out here individually.

Step 1.1 We permute the slabs so that the number of elements of A in any higher
slab does not exceed the number of elements in a lower slab; that is, letting A(k) :=
A∩(ken+Ln),wehave |A(0)| ≥ · · · ≥ |A(H−1)| > 0 and |A(k)| = 0 for k /∈ [0, H−1].
This does not affect the projection sum σn(A) as each non-horizontal projection of A
is a disjoint union of the corresponding projections of the slabs:

πi (A) =
⋃

k≥0

πi
(
A(k)), i ∈ [1, n − 1]. (23)

To simplify the notation, we keep denoting by A the resulting set. Clearly, the number
of non-empty slabs of A remains equal to H .

Step 1.2 We now replace each slab A(k) with the initial segment In−1(|A(k)|),
without enlarging the projection sum. (It is readily seen that the horizontal projection
does not increase, and the sum of the side projections does not increase in view
of (23) and by the induction hypothesis.) We use the same notation A for the new set
obtained in this way, but from now on we assume that each slab of A is an (n − 1)-
dimensional initial segment. Since the sequence (|A(k)|)k≥0 is non-increasing, this
implies A(k+1) ⊆ en + A(k) for each k ≥ 0.

Step 1.3 Let K denote the largest edge size of the closed (n−1)-dimensional initial
segment cl(A(0)); that is, the size of the projection of A(0) onto the coordinate axis
X1. If K < H , then we swap the coordinate axes X1 and Xn so that the number of
non-empty slabs decreases to K , and repeat the whole procedure from the beginning
of Step 1.

We keep permuting the slabs and swapping the axes until A gets rearranged so
that the number H of non-empty slabs does not exceed the largest edge size K of the
closure cl(A(0)) of the lowest slab, and each slab is an (n − 1)-dimensional initial
segment.

Step 2Arepeated application of this stepwill ensure that all non-empty slabs of A, with
the possible exception of the highest slab A(H−1), have the same interior. Assuming
this is not the case, there are integers k ∈ [1, H − 2] with |A(k)| < |int(A(0))|. Let k
be the smallest such integer. If, indeed, we had |A(k)| + |A(H−1)| ≤ |int(A(0))|, then
we would be able to remove A(H−1) from A and replace A(k) with the (appropriate
vertical translate of the) initial segment In−1(|A(k)|+|A(H−1)|), without changing the
horizontal projection πn(A). By Lemma 2.3 (ii), this would result in the strict decrease
of the sum of the non-horizontal projections, contradicting the assumption that A is a
minimiser. Thus, we have |A(k)|+|A(H−1)| > |int(A(0))|, and we replace the slab A(k)

with int(A(0)), and the upper slab A(H−1) with the initial segment In−1(|A(H−1)| +
|A(k)| − |int(A(0))|); by Lemma 2.3 (i), applied with I1 = A(H−1), I2 = A(k), and
J2 = int(A(0)), this does not increase the sum of non-horizontal projections of A, and
it is clear that the horizontal projection πn(A) remains unchanged.
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We emphasise that Step 2 affects neither the number H of the slabs of A, nor the
lower slab A(0), and that if this step ever gets applied, then the resulting set satisfies
|A(0)| > |A(H−1)|.

Iterating Step 2, we ensure that all non-empty slabs of A, excepting perhaps A(H−1),
have their interiors identical to that of A(0), which we assume to hold from now on.

Step 3 Recall that by K we denote the largest edge size of the closed (n − 1)-
dimensional segment cl(A(0)). As a result of the rearrangements of Step 1, we have
K ≥ H , and the present Step 3 is to be repeated as long as the strict inequality K > H
holds, or until A gets rearranged as in initial segment.

If A can be cast as an initial segment just by relabelling the coordinate axes, this
will complete the proof; this scenario will be referred to as a trivial exit.

Otherwise,we are going to cut from A a “vertical slab” resting on the strict boundary
∂∗A(0), and place it as a new horizontal slab (as a result of which H will grow by 1).
Given that only side projections of both slabs contribute to the projection sum σn(A),
it will not be affected by this rearrangement. Formally, we need to consider two cases.

The first case is |A(H−1)| ≥ |int∗(A(0))| (covering, in particular, the situation
where H = 1). In this case each slab of A contains a vertical translate of the strict
interior int∗(A(0)), and we define A′ to be the union of all these H translates, and let
A′′ := A\A′. Notice that A′′ is a non-empty subset of a hyperplane parallel to one of the
(non-horizontal) coordinate hyperplanes. Considering A′′ as an (n − 1)-dimensional
set, we have

σn(A) = σn(A
′) + σn−1(A

′′). (24)

Observe that if we replace the set A′′ with the initial segment In−1(|A′′|), by the
induction hypothesis and the assumption that A is a minimiser, this will not affect the
projection sum σn−1(A′′).

If H = K − 1, then A′ is the union of K − 1 vertical translates of the closed initial
segment int∗(A(0)),which is then-dimensional axis-aligned rectangular parallelepiped
with the edge sizes K−1 and (possibly) K . The set A′′ is strictly smaller than the face of
A′ it is attached to, for otherwise the original set A would be a closed initial segment,
up to relabelling the coordinate axes, and we would have the trivial exit scenario.
Hence A′′ can be replaced with the initial segment In−1(|A′′|) and re-attached to the
appropriate face of A′ to get a set which, up to a coordinate axes relabelling, is an
initial segment, completing the proof (for the present subcase H = K − 1). Observe,
for the forthcoming proof of Theorem 2.2, that the fact that A′′ is strictly smaller than
the face of A′ it is attached to, precludes the output initial segment In(|A|) from being
closed.

Assuming now that H < K − 1, let K1 ≥ · · · ≥ Kn−1 be the edge sizes of
int∗(A(0)), so that K ≥ K1 and Kn−1 ≥ K − 1. We have then

|A′′| ≤ |∂∗A(0)| · H < K1 . . . Kn−2 · (K − 1) ≤ K1 . . . Kn−2 · Kn−1

= |int∗(A(0))|. (25)

It follows that we can detach A′′ from A, replace it with the initial segment In−1(|A′′|),
and re-attach this initial segment as the upper slab, thus increasing H by 1 and changing
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the lower slab of A from the original A(0) to its strict interior int∗(A(0)). Notice that,
as a consequence of (25), the resulting set has fewer elements in its upper slab than in
the lower slab.

For the second case |A(H−1)| < |int∗(A(0))|, we define A′ to be the union of
H − 1 (rather than H as in the first case) vertical translates of the set int∗(A(0)), with
the coordinate along the vertical axis ranging from 0 to H − 2, and we let A′′ :=
A\(A′ ∪ A(H−1)). Thus A′ is an axis-aligned rectangular parallelepiped, attached to
two faces of which are the (n − 1)-dimensional sets A′′ and A(H−1); hence,

σn(A) = σn(A
′) + σn−1(A

′′) + σn−1(A
(H−1)).

Keeping the notation for the edges of int∗(A(0)), similarly to (25) we have

|A′′| ≤ |∂∗A(0)| · (H − 1) ≤ K1 . . . Kn−2 · (H − 1)

< K1 . . . Kn−2 · Kn−1 = |int∗(A(0))|; (26)

Therefore, A′′ can be rearranged as an (n − 1)-dimensional initial segment, and then
detached from A and re-attached as either the upper, or the second-from-the-top slab,
retaining the non-increasing order of slab sizes. As above, this rearrangement makes
H larger by 1, and changes the lower slab of A from the original A(0) to its strict
interior int∗(A(0)). Furthermore, the size of the horizontal projection of A becomes
|int∗(A(0))|.

Finally (just for the second-from-the-top slab) we invoke the rearrangement of Step
2 to ensure that all, but the upper slab of A have the same interior; hence, are actually
identical closed initial segments since A(0) is now a closed initial segment.

Observe that, unless we have achieved our goal of rearranging A as an initial
segment (as in the trivial exit scenario or the case where |A(H−1)| ≥ |int∗(A(0))| and
H = K − 1), the procedure introduced in Step 3 results in H growing by 1, with the
strict inequality |A(H−1)| < |A(0)| for the rearranged A, and with A(0) being a closed
(n−1)-dimensional initial segment. In addition, the parameter K is either unchanged,
or decreases by 1, the latter happening if and only if the new “base slab” A(0) is an
(n − 1)-dimensional cube. Therefore, if the new parameters satisfy K < H (that is,
H = K + 1), then the set A got rearranged into a cube with the edge size K , with
an (n − 1)-dimensional initial segment attached to its upper face as boundary; that is,
into a (non-closed) n-dimensional initial segment.

Let us put down the latter observation as a remark to be used in the proof of Theorem
2.2 in the sequel.

Remark 5.1 When Step 3 is applied with a non-trivial exit, the output set has strictly
fewer elements in its upper slab than in the lower one; in particular, this set cannot be
converted into a closed initial segment by relabelling the axes.

We thus see that, applying Step 3 repeatedly, we will either rearrange A as in initial
segment, or arrive at the special situation where K = H , dealt with at Step 4 below.

Step 4 For this last step of our algorithm we assume that K = H where, we recall,
H is the number of non-empty slabs of A, and K is the largest size of a projection of
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the lower slab A(0) onto a non-vertical coordinate axis. This step is not to be iterated;
it is applied at most once and after completing it, A will be rearranged as an initial
segment.

If A can be rearranged as an initial segment by merely relabelling the coordinate
axes, then the algorithm stops and proof is completed; as in Step 3, this situation will
be referred to as the trivial exit. Assuming that we cannot exit trivially, we consider
two cases, as in the above Step 3.

The first one is a straightforward modification of the corresponding case of Step 3,
with int∗(A(0)) replaced by int(A(0)) and the equality H = K −1 replaced by H = K .
Namely, if |A(H−1)| ≥ |int(A(0))|, thenwe define A′ to be the union of H = K vertical
translates of int(A(0)), one on top of the other, and let A′′ = A\A′. The set A′ is an
n-dimensional axis-aligned rectangular parallelepiped with the maximum edge size K
and minimum edge size at least K − 1, and A′′ is attached to a maximal-sized face of
A′. Hence, having A′′ replaced by the (n−1)-dimensional initial segment In−1(|A′′|),
the set A can be cast as the initial segment by relabelling the coordinate axes.

Preparing the ground for the proof of Theorem 2.2 in the next section, we notice
that A′′ is non-empty, and is strictly smaller than the face of A′ it is attached to, for
otherwise A can be rearranged as an initial segment by relabelling the coordinate axes,
which would lead to the trivial exit scenario. It follows that the output initial segment
In(|A|) is not closed.

Moving on to the second case, for the rest of Step 4 we assume that |A(H−1)| <

|int(A(0))|. The set A\A(H−1) consists of H − 1 = K − 1 slabs, each one being an
(n − 1)-dimensional initial segment with the same interior int(A(0)). All projections
onto the non-vertical axes of the closed (n − 1)-dimensional initial segment int(A(0))

have size K or K − 1; therefore, the stack of K − 1 vertical translates of int∗(A(0)),
which we denote as A′, is a closed n-dimensional initial segment. Furthermore, the
set A′′ := A\(A′ ∪ A(H−1)) is non-empty, for otherwise A could be rearranged as the
initial segment by relabelling the coordinate axes, which is ruled out by the assumption
that we have not exited Step 4 trivially.

Thus, attached to the upper horizontal face of A′ is the slab A(H−1), and to some
of its “vertical” faces—the “vertical slab” A′′ (which, by the construction, is strictly
smaller than the face of A′ it is attached to). Our plan is to replace A′′ by the same-sized
(n − 1)-dimensional initial segment, and then apply Lemma 2.3 to transfer elements
from A(H−1) and A′′ to A′, to augment this latter set to its strict closure cl∗(A′).

Since the horizontal projections of A(H−1) and A′′ are disjoint, we have

σn(A) = σn(A
′) + σn−1(A

′′) + σn−1(A
(H−1)).

By the induction hypothesis, replacing A′′ with the initial segment In−1(|A′′|) does
not increase the summand σn−1(A′′). As usual, we do not change the notation, but
assume below that A′′ is an (n − 1)-dimensional initial segment.

Let I1 and I2 be the smallest and the largest, respectively among the initial segments
A′′ and A(H−1), and let J2 := cl∗(A′)\A′; that is, J2 is the face to be added to the
closed initial segment A′ in order to obtain the “next” closed initial segment cl∗(A′).
Notice that, by the virtue of the cube order, |J2| is the size of the largest face of
A′, whence |J2| > |I2|. Also notice that I1 and I2 are non-empty as so are A′′ and
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A(H−1). If we had |J2| ≥ |I1| + |I2| then, applying Lemma 2.3 (ii), we could have
replaced A′′ and A(H−1) with one single (n − 1)-dimensional initial segment of size
|A′′|+|A(H−1)| attached to the largest face of A, decreasing the sum of the projections
of A; this would contradict the assumptions that A is a minimiser. Therefore we have
|I1| ≤ |I2| ≤ |J2| < |I1| + |I2|, we set J1 := In−1(|I1| + |I2| − |J2|) and replace
A′′ and A(H−1) with the initial segments J2 attached to the appropriate face of A′ to
convert it to cl∗(A′), and J1 attached as a boundary to cl∗(A′) (which can be done
in view of |J1| ≤ |J2|). This rearranges A as an initial segment. Observe that for
this last scenario, the output set In(|A|) cannot be closed in view of the estimate
0 < |J1| < |J2| resulting from

|J1| = |I1| + |I2| − |J2| ≤ 2|I2| − |J2| < |J2|.

In conclusion, we put down a remark adding to the claim or Remark 5.1, to be used
shortly in the proof of Theorem 2.2 that comes in the next section.

Remark 5.2 The only way that Steps 3 and 4 can yield a closed initial segment is that
they are exited trivially; in particular, the input set must be an axis-aligned rectangular
parallelepiped.

This ends the proof of Theorem 2.1.

6 Proof of Theorem 2.2

Applying the argument presented after the statement of Theorem 2.1 in Sect. 2, we
assume without loss of generality that A ⊂ N

n
0.

Wedefine similarities to be bijective transformations of the setZn involving (finitely
many) permutations of the horizontal hyperplanes and axes relabellings. Thus, two
sets in Z

n are similar if they can be obtained from each other by a finite series of
permutations of the slabs and relabellings of the coordinate axes. For n = 1, any two
sets of the same size are similar, proving the assertion in this case. For n ≥ 1, if
A1, A2 ⊂ Z

n are similar, finite sets, then σn(A1) = σn(A2).
Our argument uses induction by n and is based on a careful examination of the proof

of Theorem 2.1 in the previous section; in fact, it has been prepared by the observations
made there, and particularly at the key Steps 3 and 4. Clearly, it suffices to show that
if A ⊂ N

n
0 is a minimiser such that In(|A|) is closed, then all rearrangements made

in the course of the proof are, in fact, similarities; that is, involve only permuting the
slabs and relabelling the coordinate axes.

Suppose thus that A ⊆ N
n
0 is a minimiser with In(|A|) closed. Going back to the

proof of Theorem 2.1 in Sect. 5, we recall Remarks 5.1 and 5.2, which state that once
a Step 3 or 4 gets invoked non-trivially in the rearrangement procedure constituting
the proof of Theorem 2.1, the output of the procedure cannot be a closed segment.

It follows that after completing Steps 1 and 2, the set A may have only required an
axes relabelling to get transformed into a closed initial segment. In fact, no application
of Step 2 would have been possible either, for any such application results in a set with
its upper slab strictly smaller than the lower one.
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Thus, rearranging A to In(|A|) has only required Step 1 followed, possibly, by
an axes relabelling. We recall that Step 1 consists of a number of iterations of the
procedure that involves Steps 1.1–1.3, consisting in, respectively, permuting slabs,
replacing each slab with the equal-sized (n − 1)-dimensional initial segment, and
swapping the coordinate axes.

Consider the last iteration of Step 1 (or without loss of generality assume that
Step 1 is applied only once). Specifically, consider its part Step 1.2, which consists
in replacing each slab with the same-sized (n − 1)-dimensional initial segment. Let
A′ and A′′ denote the corresponding input and output sets, respectively. Thus, A′′ is
an axis-aligned rectangular parallelepiped, with all of its edges differing in size by
1 at most. It follows that the common size of all slabs of A′′ is the cardinality of a
closed (n−1)-dimensional initial segment, and we invoke the induction hypothesis to
conclude that on the last iteration, replacing each slab of A′ with an (n−1)-dimensional
initial segment is induced by an (n − 1)-dimensional similarity transformation.

On the other hand, we note that the horizontal projection of A′ is the union of its
slabs, viewed as (n − 1)-dimensional sets (which have the same common size, as so
do the slabs of A′′). Since we are working with minimisers, this implies that the size
of this union is equal to the size of each individual slab of A′, and therefore all the
slabs of A′ are actually identical. As a result, the same similarity transformation that
converts, say, the lower slab of A′ into a closed (n − 1)-dimensional initial segment,
will also work for all other slabs of A′ converting them into (identical) closed initial
segments. Extending this transformation to act as an identity on the last coordinate,
we obtain an n-dimensional similarity transformation that replaces all slabs of A′ with
the (n − 1)-dimensional initial segments.

We conclude that rearranging A′ into A′′, and hence the whole last iteration of Step
1, can be achieved using a similarity transformation. Making our way backwards, the
same is true for all the preceding iterations. Consequently, the whole Step 1 acted on
A as a similarity, and the assertion follows.

This completes the proof of Theorem 2.2.

7 Proof of Equivalence of Theorems 2.1 and 2.4

Given integers n, s ≥ 1 and m1, . . . ,ms ≥ 0, consider a set A ⊂ N
n
0 with s non-

empty slabs which are the (n−1)-dimensional initial segments of lengthsm1, . . . ,ms .
Since the side projections of all these slabs are pairwise disjoint, while the horizontal
projections are all contained in the largest of them, we have

σn(A) = σn−1(m1) + · · · + σn−1(ms) + max {m1, . . . ,ms}.

However, the left-hand side is at least as large as σn(|A|) = σn(m1 + · · · + ms) by
Theorem 2.1. Hence Theorem 2.1 implies Theorem 2.4.

Conversely, assuming Theorem 2.4, one can prove Theorem 2.1 by induction on
n, as follows. Given a finite set A ⊂ N

n
0, consider the slab decomposition A =

A(1) ∪ · · · ∪ A(s), with the A(k) listing all non-empty slabs of A. For each k ∈ [1, s],
let mk := |A(k)|. Trivially, we have |πn(A)| ≥ max {m1, . . . ,ms}. Also, disjointness
of the side projections yields
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n−1∑

i=1

|πi (A)| =
s∑

k=1

n−1∑

i=1

|πi (A
(k))|.

By the induction hypothesis, the double sum in the right-hand side is at least as large
as σn−1(m1) + · · · + σn−1(ms). Therefore, by Theorem 2.4,

n∑

i=1

|πi (A)| ≥ σn−1(m1) + · · · + σn−1(ms) + max {m1, . . . ,ms}

≥ σn(m1 + · · · + ms) = σn(|A|),

as claimed by Theorem 2.1.

Appendix: One-Dimensional Projections

It would be interesting to extend our results onto k-dimensional projections for all
integers k ∈ [1, n− 2]. Below we consider the case k = 1, establishing the analogs of
Theorems 2.1, 2.2, and 2.4 for the one-dimensional projections. In particular, we show
that the sum of the sizes of these projections is also minimised on the initial segments
of N

n
0 with respect to the cube order, and prove the corresponding stability result.

For each i ∈ [1, n], denote by ρi the orthogonal projections of R
n onto the coordi-

nate axis Xi , and given a finite set A ⊂ R
n , let

λn(A) :=
n∑

i=1

|ρi (A)|;

also, for integer m ≥ 0 let λn(m) := λn(In(m)). Thus, for instance, λ1(m) = m,
λ2(m) = σ2(m), and if |A| = Kn with an integer K ≥ 1, then by the arithmetic-
geometric mean inequality,

λn(A) ≥ n
( n∏

i=1

|ρi (A)|
)1/n≥ n|A|1/n = nK ,

with equality attained for the discrete cube A = [0, K −1]n . The key to understanding
the quantity λn is the equality

λn(m + 1) =
{

λn(m) + 1 if In(m) is closed,

λn(m) otherwise.
(27)

An immediate corollary is that if Kn ≤ m ≤ (K + 1)n , with a positive integer K , and
i ∈ [0, n] is the smallest integer such that m ≤ (K + 1)i K n−i , then (cf. (9))

λn(m) = λn((K + 1)i K n−i ) = nK + i.
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As an analog of Theorems 2.1 and 2.2, we now have

Theorem 8.1 For every integer n ≥ 1 and every finite set A ⊂ R
n, letting m := |A|,

we have λn(A) ≥ λn(m). Moreover, if m = (K + 1)i K n−i with integers K ≥ 1 and
i ∈ [0, n], then equality is attained if and only if A is the Cartesian product of i real
sets of size K + 1, and n − i real sets of size K .

Although it is possible to prove Theorem 8.1 adapting the proofs of Theorems 2.1
and 2.2 to our present settings, somewhat surprisingly, one can get away with a much
easier, non-inductive argument.

Proof of Theorem 8.1 The case where m = 0 is trivial, and we assume that m > 0;
that is, A is non-empty. For each j ∈ [1, n], let m j := |ρ j (m)|; thus, m ≤ m1 . . .mn

and λn(A) = m1 + · · · + mn . If the largest of the numbers m j exceeds the smallest
of them by at least 2, then we decrease by 1 the largest, and simultaneously increase
by 1 the smallest; clearly, this operation does not affect the sum of the numbers,
and their product will only get larger. Iterating, we will eventually find n positive
integers, the largest of them exceeding the smallest one by at most 1, so that their
product is at least m, and their sum is λn(A). Denoting by I the closed initial segment
whose edges are determined by these resulting integers, we then have m ≤ |I | and
λn(A) = λn(I ). The former relation gives In(m) ⊆ I , and then the latter yields
λn(A) = λn(I ) ≥ λn(In(m)) = λn(m). This proves the first assertion of the theorem.

For the second assertion, assume that λn(A) = λn(m) = nK + i . We also assume
without loss of generality that i ≤ n − 1 (if i = n, then we can replace K with
K + 1). Analysing the argument above, we conclude that if the smallest among the
projections |ρ j (A)| differed from the largest by at least 2, then the size of the above-
defined closed initial segment I would satisfy the strict inequality m < |I |, implying
λn(A) = λn(I ) > λn(m) in view of (27), a contradiction. It follows that the largest
of the projections |ρ j (A)| differs from the smallest one by at most 1. Let L denote
the smallest of these projections, and let k ∈ [0, n − 1] be the number of indices
j ∈ [1, n] with |ρ j (A)| = L + 1 (so that there are n − k those indices j ∈ [1, n]
with |ρ j (A)| = L). From nK + i = λn(A) = (L + 1)k + L(n − k) = nL + k and
k, i ∈ [0, n − 1] we then conclude that L = K and k = i . Thus, A is contained in
the Cartesian product of i sets of size K + 1 and n − i sets of size K , and it is in fact
equal to this product since |A| = (K + 1)i K n−i . ��

In conclusion, we remark that the one-dimensional analog of Theorem 2.4 is the
estimate

λn(sm) ≤ λn−1(m) + s, m, s ≥ 0.

The interested readerwill easily verify that this estimate follows from the first assertion
of Theorem 8.1 and, in fact, is equivalent to it.
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