SUM-FREE SETS IN \mathbb{Z}_{5}^{n}

VSEVOLOD F. LEV

Abstract

It is well-known that for a prime $p \equiv 2(\bmod 3)$ and integer $n \geq 1$, the maximum possible size of a sum-free subset of the elementary abelian group \mathbb{Z}_{p}^{n} is $\frac{1}{3}(p+1) p^{n-1}$. We establish a matching stability result in the case $p=5$: if $A \subseteq \mathbb{Z}_{5}^{n}$ is a sum-free subset with $|A|>\frac{3}{2} \cdot 5^{n-1}$, then there are a subgroup $H<\mathbb{Z}_{5}^{n}$ of size $|H|=5^{n-1}$ and an element $e \notin H$ such that $A \subseteq(e+H) \cup(-e+H)$.

1. Background and motivation.

A subset S of an abelian group is sum-free if the equation $x+y=z$ has no solutions in the elements of S; that is, if S is disjoint from $2 S$ where we use the standard notation $2 S:=\left\{s_{1}+s_{2}: s_{1}, s_{2} \in S\right\}$. The idea of a sum-free set goes back to Schur [S16] who was motivated by the modular version of the Fermat equation $x^{n}+y^{n}=z^{n}$. Despite this initial motivation, sum-free sets are treated in [S16] as a combinatorial object of independent interest. Originating from [S16], the celebrated Schur's theorem ("the positive integers cannot be partitioned into finitely many sumfree subsets") is considered one of the origins of Ramsey theory.

In the 1960's sum-free sets were studied under the name "mutant sets"; see, for instance, [K69]. The subject gained popularity when it turned out to be related to a problem of Erdős. The reader is invited to check [GR05, TV17] for a historical account and further references.

How large can a sum-free subset of a given finite abelian group be? First considered in 1968 by Diananda and Yap [D68, DY69], this basic question did not receive a complete answer up until the year 2005 when it was eventually resolved by Green and Ruzsa [GR05].

Once the largest possible size is known, it is natural to investigate the corresponding stability problem: what is the structure of sum-free subsets of finite abelian groups of size close to the largest possible? In this respect, the cyclic groups of infinite order and prime order, and elementary abelian p-groups have received particular attention. Here we are concerned with the groups of the latter type.

The case $p=2$ is of special interest due to its connections with the coding theory and the theory of finite geometries, see [CP92, KL03] for a detailed explanation. Motivated by the applications in these areas, Davydov and Tombak [DT89] established the structure of large sum-free subsets in the binary settings. To state their principal result, we briefly review the basic notions of periodicity and maximality.

The period of a subset A of an abelian group G is the subgroup $\pi(A):=\{g \in$ $G: A+g=A\} \leq G$; that is, $\pi(A)$ is the largest subgroup $H \leq G$ such that A is a union of H-cosets. The set A is periodic if $\pi(A) \neq\{0\}$ and aperiodic otherwise. One also says that A is H-periodic if $H \leq \pi(A)$; that is, if A is the inverse image of a subset of the quotient group G / H under the canonical homomorphism $G \rightarrow G / H$.

A sum-free set is maximal if it is not properly contained in another sum-free set.
By \mathbb{Z}_{p}^{n} we denote the elementary abelian p-group of rank n.
Theorem 1 ([DT89, Theorem 1]). Let $n \geq 4$ and suppose that $A \subseteq \mathbb{Z}_{2}^{n}$ is a maximal sum-free set. If $|A|>2^{n-2}+1$, then A is periodic.

From Theorem 1 it is not difficult to derive a detailed structural characterization of large sum-free sets in \mathbb{Z}_{2}^{n}.

Theorem $1^{\prime}([\mathrm{DT} 89])$. Let $n \geq 4$ and suppose that $A \subseteq \mathbb{Z}_{2}^{n}$ is sum-free. If $|A| \geq$ $2^{n-2}+1$, then either A is contained in a nonzero coset of a proper subgroup, or there are an integer $k \in[4, n]$, a subgroup $H \leq \mathbb{Z}_{2}^{n}$ of size $|H|=2^{n-k}$, and a maximal sum-free subset $\mathcal{A} \subseteq \mathbb{Z}_{2}^{n} / H \simeq \mathbb{Z}_{5}^{k}$ of size $|\mathcal{A}|=2^{k-2}+1$ such that A is contained in the inverse image of \mathcal{A} under the canonical homomorphism $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n} / H$.

As an easy consequence, we have the following corollary.
Corollary 1 ([DT89]). Let $n \geq 4$ and suppose that $A \subseteq \mathbb{Z}_{2}^{n}$ is sum-free. If $|A| \geq$ $5 \cdot 2^{n-4}+1$, then A is contained in a nonzero coset of a proper subgroup.

Corollary 1 was independently obtained in [CP92].
In the ternary case, only an analog of Corollary 1 is known.
Theorem 2 ([L05]). Let $n \geq 3$ and suppose that $A \subseteq \mathbb{Z}_{3}^{n}$ is sum-free. If $|A| \geq$ $5 \cdot 3^{n-3}+1$, then A is contained in a nonzero coset of a proper subgroup.

As shown in [L05], the bound $5 \cdot 3^{n-3}+1$ is sharp.
In this note, we study the first open case $p=5$ proving the following result.
Theorem 3. Let $n \geq 1$ and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is sum-free. If $|A|>\frac{3}{2} \cdot 5^{n-1}$, then there are a proper subgroup $H<\mathbb{Z}_{5}^{n}$ and an element $e \notin H$ such that $A \subseteq$ $(e+H) \cup(-e+H)$.

There are no reasons to believe that the assumption $|A|>\frac{3}{2} \cdot 5^{n-1}$ of Theorem 3 is sharp. On the other hand, it cannot be relaxed to $|A|>5^{n-1}$.

Example 1. Suppose that $n \geq 3$ is an integer, and that $H<\mathbb{Z}_{5}^{n}$ is a subgroup of index 5. Fix arbitrarily an element $e \notin H$ and a subset $S \subseteq H$ with $S \cap(-S)=\varnothing$ and $S \cup(-S)=H \backslash\{0\}$, and let $A:=(e+S) \cup\{2 e,-2 e\} \cup(-e-S)$. A straightforward verification shows that A is sum-free. Suppose now that A is contained in a union of two cosets of a subgroup $F<\mathbb{Z}_{5}^{n}$. Since A meets four H-cosets and just two F-cosets, we have $F \neq H$. Furthermore, one of these F-cosets contains at least half the elements of the set $e+S$. The intersection of this F-coset with the coset $e+H$ has therefore size at least $\frac{1}{2}|S|=(|H|-1) / 4>|H| / 5$ while, on the other hand, the intersection of an H-coset with an F-coset is a coset of a proper subgroup of H, and as such, has size at most $|H| / 5$, a contradiction showing that A is not contained in a union of two cosets of a proper subgroup.

We now turn to the proof of Theorem 3.

2. Proof of Theorem 3

Our argument is self-contained except that we need the following classical result of Kneser (but see [G13, Theorem 6.1] for our present formulation).
Theorem 4 (Kneser [K53, K55]). If A_{1}, \ldots, A_{k} are finite, nonempty subsets of an abelian group, then letting $H:=\pi\left(A_{1}+\cdots+A_{k}\right)$ we have

$$
\left|A_{1}+\cdots+A_{k}\right| \geq\left|A_{1}+H\right|+\cdots+\left|A_{k}+H\right|-(k-1)|H| .
$$

Theorem 4 is referred to below as Kneser's theorem.
We start with a series of "general" claims. At this stage, it is not assumed that A is a sum-free set satisfying the assumptions of Theorem 3.

Lemma 1. Let $n \geq 1$ be an integer and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is sum-free. If $|A|>$ $\frac{3}{2} \cdot 5^{n-1}$ and A is contained in a union of two cosets of a proper subgroup $H<\mathbb{Z}_{5}^{n}$, then there is an element $e \notin H$ such that $A \subseteq(e+H) \cup(-e+H)$.

Proof. Since $2|H| \geq|A|>\frac{3}{2} \cdot 5^{n-1}$, we have $|H|=5^{n-1}$. Suppose that $A=\left(e_{1}+A_{1}\right) \cup$ $\left(e_{2}+A_{2}\right)$, where A_{1}, A_{2} are contained in H, and $e_{1}, e_{2} \in \mathbb{Z}_{5}^{n}$ lie in distinct H-cosets. From $|A|>\frac{3}{2} \cdot 5^{n-1}$ we get $\left|A_{1}\right|+\left|A_{2}\right|=|A|>\frac{3}{2}|H|$. Therefore $\min \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\}>$ $\frac{1}{2}|H|$, and by the pigeonhole principle, $2 A_{1}=2 A_{2}=A_{1}+A_{2}=H$. It follows that $2 A=\left(2 e_{1}+H\right) \cup\left(e_{1}+e_{2}+H\right) \cup\left(2 e_{2}+H\right)$. Since A is sum-free, each of the three cosets in the right-hand side is distinct from each of the cosets $e_{1}+H$ and $e_{2}+H$, which is possible only if $e_{2}+H=-e_{1}+H \neq H$.

By Lemma 1, to prove Theorem 3 it suffices to show that any sum-free set in \mathbb{Z}_{5}^{n} of size larger than $\frac{3}{2} \cdot 5^{n-1}$ is contained in a union of two cosets of a proper subgroup.

Proposition 1. Let $n \geq 1$ be an integer and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is sum-free. If $|A|>\frac{3}{2} \cdot 5^{n-1}$, then A cannot have non-empty intersections with exactly three cosets of a maximal proper subgroup of \mathbb{Z}_{5}^{n}.

Proof. The case $n=1$ is immediate. Assuming that $n \geq 2, A \subseteq \mathbb{Z}_{5}^{n}$ is sum-free, and $H<\mathbb{Z}_{5}^{n}$ is a maximal proper subgroup such that A intersects non-trivially exactly three H-cosets, we obtain a contradiction.

Fix an element $e \in \mathbb{Z}_{5}^{n} \backslash H$, and for each $i \in[0,4]$ let $A_{i}:=(A-i e) \cap H$; thus, $A=A_{0} \cup\left(e+A_{1}\right) \cup\left(2 e+A_{2}\right) \cup\left(3 e+A_{3}\right) \cup\left(4 e+A_{4}\right)$ with exactly three of the sets A_{i} non-empty. Considering the actions of the automorphisms of \mathbb{Z}_{5} on its two-element subsets (equivalently, passing from e to $2 e, 3 e$, or $4 e$, if necessary), we further assume that one of the following holds:
(i) $A_{2}=A_{3}=\varnothing$;
(ii) $A_{0}=A_{4}=\varnothing$;
(iii) $A_{3}=A_{4}=\varnothing$.

We consider these three cases separately.
Case (i): $A_{2}=A_{3}=\varnothing$. In this case, $A=A_{0} \cup\left(e+A_{1}\right) \cup\left(4 e+A_{4}\right)$, and since A is sumfree, we have $\left(A_{1}+A_{4}\right) \cap A_{0}=\varnothing$. It follows that $\left|A_{0}\right|+\left|A_{1}+A_{4}\right| \leq|H|$. Consequently, letting $F:=\pi\left(A_{1}+A_{4}\right)$, we have $|H| \geq\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{4}\right|-|F|=|A|-|F|$ by Kneser's theorem. Observing that $|F| \leq \frac{1}{5}|H|=5^{n-2}$, we conclude that

$$
|A| \leq|H|+|F| \leq \frac{6}{5}|H|=6 \cdot 5^{n-2}<\frac{3}{2} \cdot 5^{n-1}
$$

a contradiction.
Case (ii): $A_{0}=A_{4}=\varnothing$. In this case $A=\left(e+A_{1}\right) \cup\left(2 e+A_{2}\right) \cup\left(3 e+A_{3}\right)$ with $\left(A_{1}+A_{2}\right) \cap A_{3}=\varnothing$, and the proof can be completed as in Case (i).
Case (iii): $A_{3}=A_{4}=\varnothing$. In this case from $\left(A_{0}+A_{1}\right) \cap A_{1}=\varnothing$, letting $F:=\pi\left(A_{0}+A_{1}\right)$, by Kneser's theorem we get

$$
|H| \geq\left|A_{0}+A_{1}\right|+\left|A_{1}\right| \geq\left|A_{0}\right|+2\left|A_{1}\right|-|F|
$$

whence, in view of $|F| \leq \frac{1}{5}|H|$,

$$
\begin{equation*}
2\left|A_{1}\right|+\left|A_{0}\right| \leq \frac{6}{5}|H| \tag{1}
\end{equation*}
$$

Similarly, from $\left(A_{0}+A_{2}\right) \cap A_{2}=\varnothing$ we get

$$
\begin{equation*}
2\left|A_{2}\right|+\left|A_{0}\right| \leq \frac{6}{5}|H| \tag{2}
\end{equation*}
$$

Averaging (1) and (2) we obtain $|A| \leq \frac{6}{5}|H|<\frac{3}{2} \cdot 5^{n-1}$, a contradiction.
Proposition 2. Let $n \geq 1$ be an integer and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is sum-free, and that $H<\mathbb{Z}_{5}^{n}$ is a maximal proper subgroup. If there is an H-coset with more than half of its elements contained in A, then A has non-empty intersections with at most three H-cosets.

Proof. Fix an element $e \in \mathbb{Z}_{5}^{n} \backslash H$, and for each $i \in[0,4]$ set $A_{i}:=(A-i e) \cap H$; thus, $A=A_{0} \cup\left(e+A_{1}\right) \cup \cdots \cup\left(4 e+A_{4}\right)$. Suppose that $\left|A_{i}\right|>0.5|H|$ for some $i \in[0,4]$. Since $2 A_{i}=H$ by the pigeonhole principle, we have $i>0$ (as otherwise $2 A_{0}=H$ would not be disjoint from A_{0}). Normalizing, we can assume that $i=1$. From $2 A_{1} \cap A_{2}=\varnothing$ we now derive $A_{2}=\varnothing$, and from $\left(A_{1}-A_{1}\right) \cap A_{0}=\varnothing$ we get $A_{0}=\varnothing$.

In view of Lemma 1 and Propositions 1 and 2, we can assume that the set $A \subseteq \mathbb{Z}_{5}^{n}$ of Theorem 3 contains fewer than $\frac{1}{2} \cdot 5^{n-1}$ elements in every coset of every maximal proper subgroup.

Lemma 2. Let $n \geq 1$ be an integer, and suppose that $A, B, C \subseteq \mathbb{Z}_{5}^{n}$ satisfy $(A+B) \cap$ $C=\varnothing$. If $\min \{|A|,|B|\}>2 \cdot 5^{n-1}$ and $C \neq \varnothing$, then $|A|+|B|+2|C| \leq 6 \cdot 5^{n-1}$.

Proof. Write $H:=\pi(A+B-C)$, and define $k \in[0, n]$ by $|H|=5^{n-k}$. We have

$$
\begin{equation*}
\min \{|A+H|,|B+H|\}>2 \cdot 5^{n-1}=2 \cdot 5^{k-1}|H| \tag{3}
\end{equation*}
$$

while, by Kneser's theorem, and since $(A+B) \cap C=\varnothing$ implies $0 \notin A+B-C$ and, consequently, $(A+B-C) \cap H=\varnothing$,

$$
\begin{equation*}
5^{n}-|H| \geq|A+B-C| \geq|A+H|+|B+H|+|C+H|-2|H| \tag{4}
\end{equation*}
$$

Combining (3) and (4), we obtain

$$
5^{n} \geq 2\left(2 \cdot 5^{k-1}+1\right)|H|+|C+H|-|H| \geq 4 \cdot 5^{k-1}|H|+|C+H|+|H|
$$

Consequently,

$$
|C| \leq|C+H| \leq 5^{n-1}-|H|
$$

On the other hand, from (4),

$$
|A|+|B|+|C| \leq 5^{n}+|H|
$$

Taking the sum of the last two estimates gives the result.

Proposition 3. Let $n \geq 1$ be an integer and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is a sum-free subset of size $|A|>\frac{3}{2} \cdot 5^{n-1}$. If $H<\mathbb{Z}_{5}^{n}$ is a maximal proper subgroup such that every H-coset contains fewer than $\frac{1}{2}|H|$ elements of A, then there is at most one H-coset containing more than $\frac{2}{5}|H|$ elements of A.

Proof. Suppose for a contradiction that there are two (or more) H-cosets that are rich meaning that they contain more than $\frac{2}{5}|H|$ elements of A each. Fix an element $e \in \mathbb{Z}_{5}^{n} \backslash H$ and write $A_{i}=(A-i e) \cap H, i \in[0,4]$. Without loss of generality, either A_{0} and A_{1}, or A_{1} and A_{2}, or A_{1} and A_{4} are rich.

If A_{0} and A_{1} are rich, then applying Lemma 2 with H as the underlying group, in view of $\left(A_{0}+A_{1}\right) \cap A_{1}=\varnothing$ we get $4 \cdot \frac{2}{5}|H|<\left|A_{0}\right|+\left|A_{1}\right|+2\left|A_{1}\right| \leq 6 \cdot 5^{n-2}$, which is wrong.

If A_{1} and A_{2} are rich then, observing that $\left(A_{1}+A_{1}\right) \cap A_{2}=\varnothing$, we recover the contradictory $4 \cdot \frac{2}{5}|H|<\left|A_{1}\right|+\left|A_{1}\right|+2\left|A_{2}\right| \leq 6 \cdot 5^{n-2}$.

Finally, if A_{1} and A_{4} are rich, then from

$$
\left(A_{1}+A_{4}\right) \cap A_{0}=\left(A_{1}+A_{1}\right) \cap A_{2}=\left(A_{4}+A_{4}\right) \cap A_{3}=\varnothing
$$

using Lemma 2 we obtain

$$
\begin{aligned}
& \left|A_{1}\right|+\left|A_{4}\right|+2\left|A_{0}\right| \leq 6 \cdot 5^{n-2}, \\
& \left|A_{1}\right|+\left|A_{1}\right|+2\left|A_{2}\right| \leq 6 \cdot 5^{n-2}, \\
& \left|A_{4}\right|+\left|A_{4}\right|+2\left|A_{3}\right| \leq 6 \cdot 5^{n-2} .
\end{aligned}
$$

Taking the sum,

$$
3\left|A_{1}\right|+3\left|A_{4}\right|+2\left|A_{0}\right|+2\left|A_{2}\right|+2\left|A_{3}\right| \leq 18 \cdot 5^{n-2}
$$

that is, $2|A|+\left|A_{1}\right|+\left|A_{4}\right| \leq 18 \cdot 5^{n-2}$. However, from $|A|>\frac{3}{2} \cdot 5^{n-1}$ and $\min \left\{\left|A_{1}\right|,\left|A_{4}\right|\right\}>$ $\frac{2}{5} \cdot 5^{n-1}$ we derive $2|A|+\left|A_{1}\right|+\left|A_{4}\right|>3 \cdot 5^{n-1}+\frac{4}{5} \cdot 5^{n-1}=19 \cdot 5^{n-2}$, a contradiction.

We use character sums to complete the argument and prove Theorem 3.
Proof of Theorem 3. Suppose that $n \geq 2$, and that $A \subseteq \mathbb{Z}_{5}^{n}$ is a sum-free set with $\alpha:=|A| / 5^{n}>\frac{3}{10}$; we want to show that A is contained in a union of two cosets of a proper subgroup.

Denoting by 1_{A} the indicator function of A, consider the Fourier coefficients

$$
\hat{1}_{A}(\chi):=5^{-n} \sum_{a \in A} \chi(a), \chi \in \widehat{\mathbb{Z}_{5}^{n}}
$$

Since A is sum-free, we have $A \cap(A-A)=\varnothing$, whence

$$
\sum_{\chi}\left|\hat{1}_{A}(\chi)\right|^{2} \cdot \hat{1}_{A}(\chi)=0
$$

consequently,

$$
\sum_{\chi \neq 1}\left|\hat{1}_{A}(\chi)\right|^{2} \cdot \hat{1}_{A}(\chi)=-\alpha^{3}
$$

and, as a result,

$$
\sum_{\chi \neq 1}\left|\hat{1}_{A}(\chi)\right|^{2} \cdot \Re\left(\hat{1}_{A}(\chi)\right)=-\alpha^{3} .
$$

Comparing this to

$$
\sum_{\chi \neq 1}\left|\hat{1}_{A}(\chi)\right|^{2}=\alpha(1-\alpha)
$$

(which is an immediate corollary of the Parseval's identity), we obtain

$$
\sum_{\chi \neq 1}\left|\hat{1}_{A}(\chi)\right|^{2}\left((1-\alpha) \Re\left(\hat{1}_{A}(\chi)\right)+\alpha^{2}\right)=0 .
$$

We conclude that there exists a non-principal character $\chi \in \widehat{\mathbb{Z}_{5}^{n}}$ such that

$$
\begin{equation*}
\Re\left(\hat{1}_{A}(\chi)\right) \leq-\frac{\alpha^{2}}{1-\alpha} \tag{5}
\end{equation*}
$$

Let $F:=\operatorname{ker} \chi$, fix $e \in \mathbb{Z}_{5}^{n}$ with $\chi(e)=\exp (2 \pi i / 5)$, and for each $i \in[0,4]$, let $\alpha_{i}:=|(A-i e) \cap F| /|F|$. By Propositions 1 and 2, we can assume that $\max \left\{\alpha_{i}: i \in\right.$ $[0,4]\}<0.5$, and then by Proposition 3 we can further assume that there is at most one index $i \in[0,4]$ with $\alpha_{i}>0.4$; that is, of the five inequalities $\alpha_{i} \leq 0.4(i \in[0,4])$, at most one fails, but holds true once the inequality is relaxed to $\alpha_{i}<0.5$. We show that this set of assumptions is inconsistent with (5). To this end, we notice that

$$
5 \Re\left(\hat{1}_{A}(\chi)\right)=\alpha_{0}+s_{1} \cos (2 \pi / 5)+s_{2} \cos (4 \pi / 5)
$$

where $s_{1}:=\alpha_{1}+\alpha_{4}$ and $s_{2}:=\alpha_{2}+\alpha_{3} \leq 0.9$. Comparing with (5), we get

$$
\begin{aligned}
-\frac{5 \alpha^{2}}{1-\alpha} & \geq \alpha_{0}+s_{1} \cos (2 \pi / 5)+s_{2} \cos (4 \pi / 5) \\
& =\alpha_{0}+s_{1} \cos (2 \pi / 5)+\left(s_{2}-0.9\right) \cos (4 \pi / 5)+0.9 \cos (4 \pi / 5) \\
& \geq \alpha_{0}+s_{1} \cos (2 \pi / 5)+\left(s_{2}-0.9\right) \cos (2 \pi / 5)+0.9 \cos (4 \pi / 5) \\
& \geq \alpha_{0}+\left(5 \alpha-\alpha_{0}-0.9\right) \cos (2 \pi / 5)+0.9 \cos (4 \pi / 5) \\
& \geq(5 \alpha-0.9) \cos (2 \pi / 5)+0.9 \cos (4 \pi / 5),
\end{aligned}
$$

while the resulting inequality

$$
-\frac{5 \alpha^{2}}{1-\alpha} \geq(5 \alpha-0.9) \cos (2 \pi / 5)+0.9 \cos (4 \pi / 5)
$$

is easily seen to be wrong for all $\alpha \in[0.3,1)$. This completes the proof of Theorem 3 .

Acknowledgment

I am grateful to Leo Versteegen for the careful reading of the manuscript and for spotting out a problem with the initial version of Example 1.

References

[CP92] W. E. Clark and J. Pedersen, Sum-free sets in vector spaces over GF(2), J. Combin. Theory Ser. A 61 (2) (1992) 222-229.
[DT89] A. Davydov and L. Tombak, Quasi-perfect linear binary codes with distance 4 and complete caps in projective geometry, Problemy Peredachi Informatzii 25 (4) (1989), 11-23.
[D68] P. H. Diananda, Critical subsets of finite abelian groups, J. London Math. Soc. 43 (1968), 479-481.
[DY69] P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad. 45 (1969), 1-5.
[G13] D. J. Grynkiewicz, Structural additive theory, Developments in Mathematics 30. Springer, Cham, 2013. xii+426 pp.
[GR05] B. Green and I. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157-188.
[K69] J. B. Kim, Mutants in semigroups, Czechoslovak Math. J. 19 (94) (1969), 86-90.
[KL03] B. Klopsch and V. Lev, How long does it take to generate a group?, Journal of Algebra 261 (2003), 145-171.
[K53] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484.
[K55] , Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429-434.
[L05] V. Lev, Large sum-free sets in ternary spaces, J. Combin. Theory Ser. A, 111, (2005), 337-346.
[L18] , Stability result for sets with $3 A \neq \mathbb{Z}_{5}^{n}$, J. Combin. Theory Ser. A 157 (2018), 334-348.
[S16] I. Schur, On the congruence $x^{m}+y^{m} \equiv z^{m}(\bmod p)$ (German), Jahresber. Dtsch. Math.Ver. 25 (1916), 114-117.
[TV17] T. TaO and V. Vu, Sum-free sets in groups: a survey, J. Comb. 8 (3) (2017), 541-552.
Email address: seva@math.haifa.ac.il
Department of Mathematics, The University of Haifa at Oranim, Tivon 36006, ISRAEL

