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Abstract. Let A be a finite, nonempty subset of an abelian group. We show that
if every element of A is a sum of two other elements, then A has a nonempty zero-
sum subset. That is, a (finite, nonempty) sum-full subset of an abelian group is not
zero-sum-free.

1. Introduction: Sum-full vs Zero-sum-free

A subset A of an abelian group is called sum-full if every element of A is a sum of

two other elements, possibly equal to each other; that is, in the standard notation, if

A ⊆ 2A. The subset is zero-sum if the sum of its elements is equal to 0; it is zero-sum-

free if it does not contain itself a non-empty zero-sum subset.

In these terms, a problem posted in 2010 by Gjergji Zaimi at the MathOverflow web

site [4] reads:

Can a finite, nonempty, sum-full set of real numbers be zero-sum-free?

Similar or related problems appeared in [3, 5, 6].

The problem has attracted some attention from the mathematical community, per-

haps due to the fact that a priori, there is no obvious link between the properties

of being sum-full and being zero-sum-free. Despite the interest, the only publication

spanned by this problem we are aware of is [1], by Taras Banakh and Alex Ravsky.

It is immediately seen that a finite, nonempty, sum-full, zero-sum-free set cannot

contain zero, and that it must contain at least two negative and at least two positive

numbers (which can be made three with a minor effort). Furthermore, considering

subsets of any torsion-free abelian group, not necessarily the additive group of real

numbers, leads to an equivalent problem. Indeed, there is no reason to confine our-

selves to torsion-free groups; the same question can be asked for any abelian group.

Apart from several basic observations of this sort, the problem remained wide open: no
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counterexample in any group has ever been found, and virtually no progress towards a

nonexistence result has been made.

In this note we present a complete solution to this problem.

Theorem 1. Let A be a finite, nonempty subset of an abelian group. If A is sum-full,

then it is not zero-sum-free; that is, if every element of A is representable as a sum of

two other elements, then A has a nonempty zero-sum subset.

The proof of Theorem 1 is of combinatorial nature; it is both surprisingly short and

elementary, requiring nothing beyond very basic linear algebra.

Let Mn denote the set of all integer square matrices of order n with all elements

on the main diagonal greater than or equal to −1, all elements off the main diagonal

non-negative, and all row sums equal to 1. The following lemma is at the heart of the

proof of Theorem 1.

Lemma 1. For any matrix M ∈ Mn there exist nonzero vectors u, v ∈ {0, 1}n such

that M tu = v; that is, there exists a system of rows of M such that their sum is a

nonzero, zero-one vector.

Deriving Theorem 1 from Lemma 1 is a matter of several lines. Namely, given a finite,

nonempty, sum-full subset A = {a1, . . . , an} of an abelian group, for each k ∈ [n] we fix

a representation ak = ai+aj with i, j ∈ [n]. Interpreting the resulting representations as

n-dimensional vectors, consider the matrix M having these vectors as its rows. (Thus,

for instance, if in the representation ak = ai + aj the indices i, j, k are pairwise distinct,

then M contains three nonzero elements in row k: the element on the main diagonal

is equal to −1, and the elements in columns i and j are equal to 1.) Clearly, we

have M ∈ Mn. By the lemma, there is a nonzero vector v = (v1, . . . , vn) ∈ {0, 1}n
representable as a linear combination of the rows of M . On the other hand, by the

construction, every row of M is orthogonal to the vector a := (a1, . . . , an); hence, v is

orthogonal to a, too. Denoting by S the set of those indices k ∈ [n] with vk = 1, we

then get
∑

k∈S ak = 0, showing that A is not zero-sum-free.

We prove Lemma 1 in the next section. The proof is inductive; this is why the class

Mn is slightly wider than the class of matrices which can actually arise from sum-full

sets.

Although Theorem 1 solves the original problem completely, in Section 3 we present

yet another solution for the special case of the elementary abelian 3-groups. The reason

for presenting a dedicated solution in this particular case is that the solution is based on

a totally different approach relating sum-full sets and Sidon sets. Moreover, the central

lemma used in this case is in fact valid for any abelian group. Postponing the details
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to Section 3, here we confine ourselves to the remark that for the elementary abelian

2-groups, the assertion of Theorem 1 is almost immediate.

Finally, we note that Theorem 1 stays true in the more general settings of sequences

(multisets) instead of sets. This follows by observing that repeated elements can be

removed from a set without acquiring or violating the sumfullness property.

2. Proof of Lemma 1

Our goal in this section is to prove Lemma 1, and hence Theorem 1.

We use induction on n. For n ≤ 2 the assertion is easy to verify; assume thus that

n ≥ 3. Write M = (mij)1≤i,j≤n and for i ∈ [n], denote by ri the ith row of M .

If there exists i ∈ [n] with mii ≥ 0, then ri is a nonzero zero-one vector; considering

the row sum including ri as its only summand, we get the assertion. We therefore

assume that mii = −1 for all i ∈ [n].

By the assumption just made, the sum of all off-diagonal elements of M is 2n. If

the sum in every column is 2, then the sum of all the rows of M is the all-one vector,

completing the proof in this case. Assume that there is a column with the sum of its

off-diagonal elements 0 or 1. Changing the order of the columns if necessary, we further

assume that the first column has this property.

If the sum of all off-diagonal elements of the first column is 0, then the first column

contains only zero elements except that m11 = −1, and we apply the induction hypoth-

esis to the matrix obtained from M by removing its first row and first column. This

yields a system of rows of this new matrix with a nonzero zero-one sum. Prefixing 0 at

the beginning of each of these rows, we get a system of rows of the original matrix M

with a nonzero, zero-one sum, as wanted.

Hence, we can assume that the sum of the off-diagonal elements of the first column

of M is 1; that is, one of the off-diagonal elements is 1, while the rest vanish. Without

loss of generality, m21 = 1 while mj1 = 0 for j ∈ [3, n]. In addition to the element

m21 = 1, the second row of M contains an element equal to 1 in a column other than

the first or the second one, and we assume, for definiteness, that it is the third column:

m23 = 1. With all the assumptions made so far, M can be visualized as follows:

M =



−1 ∗ ∗ ∗ · · · ∗
1 −1 1 0 · · · 0
0 ∗ −1 ∗ · · · ∗
0 ∗ ∗ −1 · · · ∗
...

...
...

...
. . .

...
0 ∗ ∗ ∗ · · · −1
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We now come to the crucial stage of the argument. Consider the square matrix M ′

of order n− 2 obtained from M by adding its second column to the third one, and then

removing the first two columns and first two rows of the resulting matrix. Numbering

the rows and columns of M ′ from 3 to n, we write M ′ = (m′ij)3≤i,j≤n.

Recalling that by ri we have denoted the ith row of M , let r′i denote the ith row of

M ′. It is easily seen that M ′ ∈ Mn−2; hence, by the induction hypothesis, there is a

subset I ⊆ [3, n] such that the vector
∑

i∈I r
′
i is nonzero and zero-one.

We remark that m′ii = mii = −1 for all i ∈ [4, n], but m′33 ≥ 0 is possible (this

happens if and only if m32 > 0). That is, all elements on the main diagonal of M ′, with

the possible exception of m′33, are equal to −1.

For j ∈ {2, 3} let σj :=
∑

i∈I mij. If 3 /∈ I, then both σ2 and σ3 are sums of non-

negative terms; hence, are nonnegative themselves. Also, σ2 + σ3 =
∑

i∈I m
′
i3 ∈ {0, 1}.

This shows that σ2, σ3 ∈ {0, 1}, and, as a result,
∑

i∈I ri is a (nonzero) zero-one vector,

as wanted.

We thus assume that 3 ∈ I. In this case we have σ2 + σ3 ∈ {0, 1} and σ2 ≥ 0. If also

σ3 ≥ 0, then σ2, σ3 ∈ {0, 1} and we reach again the conclusion that
∑

i∈I ri is nonzero

and zero-one.

We are left with the situation where 3 ∈ I and σ3 < 0. In this case we have σ2 ∈ {1, 2}
and σ3 = −1, and it follows that r2 +

∑
i∈I ri is a zero-one vector.

3. The elementary abelian 3-groups

In this section we prove a version of Theorem 1 restricted to the elementary abelian

3-groups.

Theorem 2. Let A be a finite, nonempty subset of an elementary abelian 3-group. If

A is sum-full, then it is not zero-sum-free.

Here is our main lemma.

Lemma 2. Let A be a finite, generating, sum-full, zero-sum-free subset of an abelian

group. Then for any proper subgroup H, there are a1, a2, a3, a4 ∈ A \H with a1 + a2 =

a3 + a4 and {a1, a2} 6= {a3, a4}.

Proof. Since A is generating and H is proper, there is an element a1 ∈ A \H. Since A

is sum-full, there are a2, b1 ∈ A with a1 = a2 + b1. In view of a1 /∈ H, at least one of

a2 and b1 is not in H; switching a2 and b1 if needed, we assume that a2 /∈ H. Iterating,
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we get an infinite chain of equalities

a1 = a2 + b1,

a2 = a3 + b2,

...

with a1, a2, . . . ∈ A \H and b1, b2, . . . ∈ A. Since A is finite, there are indices 1 ≤ i < j

such that ai = aj, while as 6= at whenever i ≤ s < t ≤ j − 1. Taking the sum of the

corresponding equalities, after a cancellation we obtain

bi + · · ·+ bj−1 = 0.

Since A is zero-sum-free, the summands in the left-hand side are not pairwise distinct;

thus we have, say, bσ = bτ with i ≤ σ < τ ≤ j − 1. This leads to

aσ − aσ+1 = bσ = bτ = aτ − aτ+1

and then

aσ + aτ+1 = aσ+1 + aτ

proving the assertion unless either aσ = aτ , or aσ = aσ+1 hold. However, in the former

case we get a contradiction with the assumption as 6= at (i ≤ s < t ≤ j − 1), while

in the latter case we have bσ = aσ − aσ+1 = 0, contradicting the assumption that A is

zero-sum-free. �

A subset S of an abelian group is called a Sidon set if it does not contain nontrivial

additive quadruples; that is, if an equality s1 + s2 = s3 + s4 with s1, s2, s3, s4 ∈ S is

possible only for {s1, s2} = {s3, s4}. Clearly, any independent set in a vector space, and

in particular any basis of a vector space, is Sidon.

The following corollary of Lemma 2 shows that a sum-full, zero-sum-free set cannot

be “too close” to a Sidon set.

Corollary 1. Suppose that A is a finite, generating, sum-full, zero-sum-free subset of

an abelian group. If B ⊆ A is Sidon (in particular, if B is minimal generating), then

A \B is generating.

For the proof, just apply the lemma to the subgroup H generated by the set A \ B:

having H proper would produce a direct contradiction with the assertion of the lemma

in view of A \H ⊆ A \ (A \B) = B.

The notion of a zero-sum-free set extends literally onto sequences with repeated

elements allowed. Namely, a sequence is zero-sum-free if it does not contain nonempty

zero-sum subsequences. The following classical result of Olson [2] establishes an upper

bound for the largest possible size of a zero-sum-free sequence in a finite vector space.
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Lemma 3 (Olson). Let A be a finite sequence of vectors of the finite vector space V

over the p-element field, with a prime p. If A is zero-sum-free, then |A| ≤ (p−1) dimV .

Indeed, Olson has shown that for the finite abelian p-group with the invariants

pα1 , . . . , pαm , the largest size of a zero-sum-free sequence is pα1 + · · · + pαm − m; this

easily implies Lemma 3.

Proof of Theorem 2. We consider the underlying group as a vector space over the field

F3 and denote it V .

Suppose that the theorem is wrong, and let A ⊆ V be a counterexample; that is,

A does not contain a zero-sum subset, while every element of A is a sum of two other

elements. Without loss of generality we assume that A generates V ; therefore, V is

finite.

Choose arbitrarily an element a ∈ A and find a representation a = b+c with some (not

necessarily distinct) b, c ∈ A. It is easily verified that the set {a, b, c} is Sidon; hence,

by Corollary 1, its complement A \ {a, b, c} is generating. Fix a basis B ⊆ A \ {a, b, c}.
Applying Corollary 1 a second time, the complement A \ B is generating. Since some

of the vectors of A \B (namely, a, b, and c) are linearly dependent, we have

dimV < |A \B| = |A| − dimV

whence |A| > 2 dimV , contradicting Lemma 3. �
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