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Abstract. We present a versatile construction allowing one to obtain pairs of
integer sets with infinite symmetric difference, infinite intersection, and identical
representation functions.

Let N0 denote the set of all non-negative integers. To every subset A ⊆ N0 corre-

sponds its representation function RA defined by

RA(n) := |{(a′, a′′) ∈ A× A : n = a′ + a′′, a′ < a′′}|;

that is, RA(n) is the number of unordered representations of the integer n as a sum

of two distinct elements of A.

Answering a question of Sárközy, Dombi [D02] constructed sets A,B ⊆ N0 with

infinite symmetric difference such that RA = RB. The result of Dombi was further

extended and developed in [CW03] (where a different representation function was

considered) and [L04] (a simple common proof of the results from [D02] and [CW03]

using generating functions); other related results can be found in [C11, CT09, Q15,

T08].

The two sets constructed by Dombi actually partition the ground set N0, which

makes one wonder whether one can find A,B ⊆ N0 with RA = RB so that not only

the symmetric difference of A and B, but also their intersection is infinite. Tang

and Yu [TY12] proved that if A ∪ B = N0 and RA(n) = RB(n) for all sufficiently

large integer n, then at least one cannot have A ∩ B = 4N0 (here and below kN0

denotes the dilate of the set N0 by the factor k). They further conjectured that,

indeed, under the same assumptions, the intersection A ∩ B cannot be an infinite

arithmetic progression, unless A = B = N0. The main goal of this note is to resolve

the conjecture of Tang and Yu in the negative by constructing an infinite family of

pairs of sets A,B ⊆ N0 with RA = RB such that A ∪ B = N0, while A ∩ B is an

infinite arithmetic progression properly contained in N0. Our method also allows one

to easily construct sets A,B ⊆ N0 with RA = RB such that both their symmetric

difference and intersection are infinite, while their union is arbitrarily sparse and the

intersection is not an arithmetic progression.
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For sets A,B ⊆ N0 and integer m let A − B := {a − b : (a, b) ∈ A × B} and

m + A := {m + a : a ∈ A}.
The following basic lemma is in the heart of our construction.

Lemma 1. Suppose that A0, B0 ⊆ N0 satisfy RA0 = RB0, and that m is a non-negative

integer with m /∈ (A0 −B0) ∪ (B0 − A0). Then, letting

A1 := A0 ∪ (m + B0) and B1 := B0 ∪ (m + A0),

we have RA1 = RB1 and furthermore

i) A1 ∪B1 = (A0 ∪B0) ∪ (m + A0 ∪B0);

ii) A1 ∩B1 ⊇ (A0 ∩B0) ∪ (m + A0 ∩B0), the union being disjoint.

Moreover, if m /∈ (A0 −A0) ∪ (B0 −B0), then also in i) the union is disjoint, and in

ii) the inclusion is in fact an equality.

In particular, if A0 ∪ B0 = [0,m − 1], then A1 ∪ B1 = [0, 2m − 1], and if A0 and

B0 indeed partition the interval [0,m − 1], then A1 and B1 partition the interval

[0, 2m− 1].

Proof. Since the assumption m /∈ A0 − B0 ensures that A0 is disjoint from m + B0,

for any integer n we have

RA1(n) = RA0(n) + RB0(n− 2m) + |{(a0, b0) ∈ A0 ×B0 : a0 + b0 = n−m}|.

Similarly,

RB1(n) = RB0(n) + RA0(n− 2m) + |{(a0, b0) ∈ A0 ×B0 : a0 + b0 = n−m}|,

and in view of RA0 = RB0 , this gives RA1 = RB1 . The remaining assertions are

straightforward to verify. �

Given subsets A0, B0 ⊆ N0 and a sequence (mi)i∈N0 with mi ∈ N0 for each i ∈ N0,

define subsequently

Ai := Ai−1 ∪ (mi−1 + Bi−1) and Bi := Bi−1 ∪ (mi−1 + Ai−1), i = 1, 2, . . . (1)

and let

A := ∪i∈N0Ai, B := ∪i∈N0Bi. (2)

As an immediate corollary of Lemma 1, if RA0 = RB0 and mi /∈ (Ai−Bi)∪ (Bi−Ai)

for each i ∈ N0, then RA = RB.

The special case A0 = {0}, B0 = {1}, mi = 2i+1 yields the partition of Dombi

(which, we remark, was originally expressed in completely different terms). Below we

analyze yet another special case obtained by fixing arbitrarily an integer l ≥ 1 and
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choosing A0 := {0}, B0 := {1}, and

mi :=


2i+1, 0 ≤ i ≤ 2l − 2,

22l − 1, i = 2l − 1,

2i+1 − 2i−2l, i ≥ 2l.

(3)

We notice that RA0 = RB0 in a trivial way (both functions are identically equal to 0),

and that A0 and B0 partition the interval [0,m0− 1]. Applying Lemma 1 inductively

2l− 2 times, we conclude that in fact for each i ≤ 2l− 2, the sets Ai and Bi partition

the interval [0, 2mi−1 − 1] = [0,mi − 1], and consequently mi /∈ (Ai −Bi) ∪ (Bi −Ai)

and mi /∈ (Ai−Ai)∪ (Bi−Bi). In particular, A2l−2 and B2l−2 partition [0,m2l−2−1],

and therefore A2l−1 and B2l−1 partition [0, 2m2l−2 − 1] = [0,m2l−1]. In addition, it is

easily seen that A2l−1 contains both 0 and m2l−1, whence m2l−1 ∈ A2l−1 −A2l−1, but

m2l−1 /∈ B2l−1−B2l−1 and m2l−1 /∈ (A2l−1−B2l−1)∪ (B2l−1−A2l−1). From Lemma 1

i) it follows now that A2l ∪B2l = [0, 2m2l−1] = [0,m2l − 1], while

A2l ∩B2l =
(
A2l−1 ∩ (m2l−1 + A2l−1)

)
∪
(
B2l−1 ∩ (m2l−1 + B2l−1)

)
= {m2l−1}.

Applying again Lemma 1 we then conclude that for each i ≥ 2l,

Ai ∪Bi = [0,mi − 1]

(implying mi /∈ (Ai −Bi) ∪ (Bi − Ai)) and

Ai ∩Bi = m2l−1 + {0,m2l, 2m2l, . . . , (2
i−2l − 1)m2l}.

As a result, with A and B defined by (2), we have A∪B = N0 while the intersection

of A and B is the infinite arithmetic progression m2l−1 + m2lN0. Moreover, the

condition mi /∈ (Ai − Bi) ∪ (Bi − Ai), which we have verified above to hold for each

i ≥ 0, results in RA = RB.

We thus have proved

Theorem 1. Let l be a positive integer, and suppose that the sets A,B ⊆ N0 are

obtained as in (1)–(2) starting from A0 = {0} and B0 = {1}, with (mi) defined

by (3). Then RA = RB, while A ∪B = N0 and A ∩B = (22l − 1) + (22l+1 − 1)N0.

We notice that for any fixed integers r ≥ 22l − 1 and m ≥ 22l+1 − 1, having (3)

appropriately modified (namely, setting mi = 2i−2lm for i ≥ 2l) and translating A

and B, one can replace the progression (22l − 1) + (22l+1 − 1)N0 in the statement of

Theorem 1 with the progression r + mN0; however, the relation A ∪B = N0 will not

hold true any longer unless r = 22l−1 and m = 22l+1−1. This suggests the following

question.

Problem 1. Given that RA = RB, A∪B = N0, and A∩B = r+mN0 with integer r ≥ 0

and m ≥ 2, must there exist an integer l ≥ 1 such that r = 22l − 1, m = 22l+1 − 1,

and A,B are as in Theorem 1?
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The finite version of this question is as follows.

Problem 2. Given that RA = RB, A ∪ B = [0,m− 1], and A ∩ B = {r} with integer

r ≥ 0 and m ≥ 2, must there exist an integer l ≥ 1 such that r = 22l−1, m = 22l+1−1,

A = A2l, and B = B2l, with A2l nd B2l as in the proof of Theorem 1?

We conclude our note with yet another natural problem.

Problem 3. Do there exist sets A,B ⊆ N0 with the infinite symmetric difference and

with RA = RB which cannot be obtained by a repeated application of Lemma 1?
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