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Abstract. It has been conjectured by Sárközy that with finitely many exceptions,
the set of quadratic residues modulo a prime p cannot be represented as a sumset
{a + b : a ∈ A, b ∈ B} with non-singleton A,B ⊆ Fp. The case A = B of this
conjecture has been recently established by Shkredov. The analogous problem for
differences remains open: is it true that for all sufficiently large primes p, the set of
quadratic residues modulo p is not of the form {a′ − a′′ : a′, a′′ ∈ A, a′ 6= a′′} with
A ⊆ Fp?

We attack here a presumably more tractable variant of this problem, which is
to show that there is no A ⊆ Fp such that every quadratic residue has a unique
representation as a′ − a′′ with a′, a′′ ∈ A, and no non-residue is represented in
this form. We give a number of necessary conditions for the existence of such A,
involving for the most part the behavior of primes dividing p− 1. These conditions
enable us to rule out all primes p in the range 13 < p < 1020 (the primes p = 5 and
p = 13 being conjecturally the only exceptions).

1. Background and Motivation

Sárközy [Sa12] conjectured that the set Rp of all quadratic residues modulo a

prime p is not representable as a sumset {a+ b : a ∈ A, b ∈ B}, whenever A,B ⊆ Fp
satisfy min{|A|, |B|} > 1. Shkredov [Sh14] has recently established the particular

case B = A of this conjecture, showing that {a′ + a′′ : a′, a′′ ∈ A} 6= Rp, except if

p = 3 and A = {2}. He has also proved that Rp cannot be represented as a restricted

sumset : {a′ + a′′ : a′, a′′ ∈ A, a′ 6= a′′} 6= Rp for A ⊆ Fp, with several exceptions for

p ≤ 13.

The argument of [Sh14] does not seem to extend to handle differences (instead of

sums) and to show that

{a′ − a′′ : a′, a′′ ∈ A, a′ 6= a′′} 6= Rp, A ⊆ Fp. (1)

We notice that for equality to hold in (1), one needs to have 2
(|A|

2

)
≥ |Rp|, which

readily yields

|A| >
√
p/2. (2)
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At the same time, there is a famous, long-standing conjecture saying that for every

ε > 0, if A ⊆ Fp has the property that a′ − a′′ ∈ Rp for all a′, a′′ ∈ A with a′ 6= a′′,

then

|A| < pε (3)

provided that p is sufficiently large. (We refer the reader to [Sh14] for several more

related conjectures and discussion.) Combining (2) and (3), one immediately derives

that (1) is true for all but finitely many primes p.

Unfortunately, the conjecture just mentioned is presently out of reach, and nei-

ther could we prove (1). As a step in this direction, we investigate the following,

presumably easier, problem:

Does there exist a subset A ⊆ Fp such that the differences a′ − a′′, with

a′, a′′ ∈ A, a′ 6= a′′, list all quadratic residues modulo p, and every

quadratic residue is listed exactly once?

Even this question does not eventually receive a complete answer. However, we were

able to establish a number of necessary conditions, and use them to show that in the

range 13 < p < 1020, there are no “exceptional primes”. This makes it extremely

plausible to conjecture that no such primes exist at all, with just two exceptions p = 5

and p = 13 addressed below.

2. Summary of Results

In this section we introduce basic notation and present our results. Most of the

proofs are postponed to subsequent sections; see the “proof locator” at the very end

of the section.

Recall, that for a prime p we denote by Fp the finite field of order p, and by Rp the

set of all quadratic residues modulo p. We also denote by Np the set of all quadratic

non-residues modulo p, to have the decomposition Fp = Rp ∪Np ∪ {0}.
For subsets A and S of an additively written abelian group, the notation A−A !

= S

will indicate that every element of S has a unique representation as a difference of

two elements of A and, moreover, every such non-zero difference belongs to S. (In

our context, the underlying group is always the additive group of the field Fp, and S

is one of the sets Rp and Np.) Our goal is thus to show that, with few exceptions,

A− A !
= Rp (4)

does not hold.

One immediate observation is that for (4) to hold, letting n := |A|, one needs to

have n(n − 1) = p−1
2

; that is, p = 2n(n − 1) + 1. As a result, p ≡ 1 (mod 4) — a
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conclusion which also follows by observing that the set of all differences a′ − a′′ is

symmetric, whence Rp must be symmetric too.

Experimenting with small values of p, one finds two remarkable counterexamples

to (4): namely, the sets A5 := {2, 3} ⊆ F5 and A13 := {2, 5, 6} ⊆ F13. Clearly, all

affinely equivalent sets of the form {µa + c : a ∈ Ap}, where µ ∈ Rp and c ∈ Fp are

fixed parameters (and p ∈ {5, 13}) work too, and it is not difficult to see that no

other sets A satisfying (4) exist for p ≤ 13; indeed, we believe that there are no more

such sets at all.

What makes the two sets A5 and A13 special? An interesting feature they have in

common is that both of them are cosets of a subgroup of the multiplicative group of

the corresponding field; indeed, A13 is a coset of the subgroup {1, 3, 9} < F×13, while

A5 is a coset of the subgroup {1, 4} < F×5 . In addition, A5 is affinely equivalent to

the set {0, 1}, which is a union of 0 and a subgroup of F×5 . Our first two theorems

show that constructions of this sort do not work for p > 13.

Theorem 1. For a prime p > 13, there is no coset A = gH, with H < F×p and

g ∈ F×p , such that A− A !
= Rp.

Theorem 2. For a prime p > 5, there is no coset gH, with H < F×p and g ∈ F×p ,

such that, letting A := gH ∪ {0}, we have A− A !
= Rp.

For integer µ and a subset A of an additively written abelian group, by µA we

denote the dilate of A by the factor of µ:

µA := {µa : a ∈ A}.

Extending slightly one of the central notions of the theory of difference sets, we say

that µ is a multiplier of A if µ is co-prime with the exponent of the group, say e,

and there exists a group element g such that µA = A+ g. Clearly, in this case every

integer from the residue class of µ modulo e is also a multiplier of A. This shows that

the multipliers of a given set A can be considered as elements of the group of units

(Z/eZ)×, and it is immediately seen that they actually form a subgroup; we denote

this subgroup by MA, and call it the multiplier subgroup of A.

It is readily seen that all translates of a subset A of an abelian group have the same

multiplier subgroup. If, furthermore, |A| is co-prime with the exponent e of the group,

then there is a translate of A whose elements add up to 0. Denoting this translate by

A0 and observing that µA0 = A0 +g implies g = 0 (as follows by comparing the sums

of elements of each side), we conclude that if gcd(|A|, e) = 1, then A has a translate

which is fixed by every multiplier µ ∈MA.
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Here we are interested in the situation where the underlying group has prime order.

In this case, every subset A has a translate fixed by its multiplier subgroup MA. This

translate is then a union of several cosets of MA and, possibly, the zero element of the

group. Consequently, using multipliers, Theorems 1 and 2 can be restated as follows:

if p > 13 and A ⊆ Fp satisfies A−A !
= Rp, then choosing g ∈ Fp so that the elements

of the translate A − g add up to 0, the set (A − g) \ {0} is a union of at least two

cosets of MA.

Our next result shows, albeit in a rather indirect way, that “normally”, a set A ⊆ Fp
satisfying A− A !

= Rp must have a large multiplier subgroup.

For a prime p ≡ 1 (mod 4), let Gp denote the greatest common divisor of the orders

modulo p of all primes dividing p−1
4

:

Gp := gcd
{

ordp(q) : q | p−1
4
, q is prime

}
.

Theorem 3. If p is a prime and A ⊆ Fp satisfies A − A !
= Rp, then the multiplier

subgroup MA lies above the order-Gp subgroup of F×p ; equivalently, |MA| is divisible

by Gp.

The quantity Gp is difficult to study analytically, but one can expect that it is

usually quite large: for, if rv | p− 1 with r prime and v > 0 integer, then in order for

rv not to divide Gp, there must be a prime q | p−1
4

which is a degree-r residue modulo

p, the “probability” of which for every specific q is 1/r. Computations show that, for

instance, among all primes p ≤ 1012 of the form p = 2n(n−1) + 1, there are less than

1.4% satisfying Gp <
√
p.

Recalling that A−A !
= Rp implies p = 2n(n−1)+1 with n = |A|, from Theorem 3

and in view of Theorems 1 and 2 we get

Corollary 1. Suppose that p is a prime. If there exists a subset A ⊆ Fp with A−A !
=

Rp then, writing p = 2n(n − 1) + 1, either Gp is a proper divisor of n, or Gp is a

proper divisor of n− 1.

To give an impression of how strong Corollary 1 is, we remark that it sieves out

over 99.7% of all primes p = 2n(n− 1) + 1 with p < 1012.

For integer k ≥ 1, let Φk denote the k th cyclotomic polynomial. Yet another useful

consequence of Theorem 3 is

Corollary 2. Let p be a prime, and suppose that there exists a subset A ⊆ Fp with

A − A
!

= Rp. If an element z ∈ F×p and an integer k ≥ 2 satisfy ordp(z) - k and

ordp(z) | Gp, then Φk(z) ∈ Rp.
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The practical implication of Corollary 2 is that if we can find a residue z ∈ F×p of

degree p−1
Gp

and an integer k ≥ 2 such that zk 6= 1 and Φk(z) ∈ Np, then there is no

set A ⊆ Fp with A− A !
= Rp.

To prove Corollary 2, denote by H the order-Gp subgroup of F×p , and consider the

differences h′−h′′ with h′, h′′ ∈ H, h′ 6= h′′. By Theorem 3, either all these differences

are quadratic residues, or they all are quadratic non-residues. If ordp(z) | Gp and

ordp(z) - k, then both z and zk are non-unit elements of H, and consequently either

both z−1 and zk−1 are quadratic residues, or they both are quadratic non-residues.

In either case, ∏
d|k
d>1

Φd(z) =
zk − 1

z − 1
∈ Rp,

and the claim follows by induction on k.

It is somewhat surprising that if a set A ⊆ Fp with A − A !
= Rp exists, then all

orders ordp(q) appearing in the definition of the quantity Gp are odd.

Theorem 4. Let p be a prime. If there exists a subset A ⊆ Fp satisfying A−A !
= Rp,

then for every prime q | p−1
4

, the order ordp(q) is odd.

Corollary 3. Let p be a prime. If there exists a subset A ⊆ Fp satisfying A−A !
= Rp,

then writing p = 2n(n − 1) + 1 we have n ≡ 2 (mod 4) or n ≡ 3 (mod 4); hence,

p ≡ 5 (mod 8).

To derive Corollary 3 from Theorem 4, observe that if we had n ≡ 0 (mod 4) or

n ≡ 1 (mod 4), then p−1
4

were even and, consequently, p−1
4

and p−1 would have same

prime divisors. As a result, all prime divisors of p− 1 would be of odd order modulo

p, which is impossible as p− 1 itself has even order.

Using a biquadratic reciprocity law due to Lemmermeyer [Le00], from Theorem 4

we will derive

Theorem 5. Let p be a prime. If there exists a subset A ⊆ Fp satisfying A−A !
= Rp

then, writing p = 2n(n − 1) + 1, neither n nor n − 1 have prime divisors congruent

to 7 modulo 8. Moreover, of the two numbers n and n− 1, the odd one has no prime

divisors congruent to 5 modulo 8, and the even one has no prime divisors congruent

to 3 modulo 8.

Computations show that there are very few primes passing both the test of Corol-

lary 1 and that of Theorem 5. In the range 13 < p < 1020, there are only five such

primes, corresponding to the values of n listed in the following table:
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n δ (n− δ)/Gp n− 1, n

51 1 2 2 · 52, 3 · 17

650 0 2 11 · 59, 2 · 52 · 13

32283 1 2 2 · 16141, 32 · 17 · 211

57303490 1 3 3 · 1579 · 12097, 2 · 5 · 5730349

377687811 0 3 2 · 5 · 17 · 113 · 19661, 3 · 1787 · 70451

Fig. 1. The second column gives the value of δ ∈ {0, 1} such that Gp | n− δ,
the last column contains the prime decompositions of n− 1 and n.

Every individual value of n in the table is easy to rule out using Corollary 2. For

instance, the first exceptional value n = 51 corresponds to the prime p = 5101; since

(5101−1)/G5101 = 204, applying Corollary 2 with k = 2 we conclude that if A ⊆ F5101

satisfying A − A !
= R5101 existed, then every degree-204 residue z ∈ Fp with z2 6= 1

would satisfy z + 1 ∈ R5101; this conclusion, however, is violated for z = 2204.

The remaining four exceptional cases can be dealt with in an analogous way; say,

one can take z = 2(p−1)/Gp for n = 650 and n = 377687811, and z = 3(p−1)/Gp for

n = 32283 and n = 57303490 (with k = 2 in each case). We thus conclude that there

are no primes 13 < p < 1020 for which A ⊆ Fp with A− A !
= Rp exists.

Theorem 4 will be derived as a straightforward corollary of the Semi-primitivity

Theorem from the theory of difference sets. Recall, that for positive integer v, k, and λ,

a (v, k, λ)-difference set is a k-element subset of a v-element group such that (assuming

additive notation) every non-zero group element has exactly λ representations as a

difference of two elements of the set. The following somewhat unexpected claim shows

how difference sets come into the play, and allows us to apply the well-established

machinery of difference sets in our problem.

Claim 1. Suppose that p is a prime and A ⊆ Fp satisfies A − A
!

= Rp. Write

n := |A| and fix arbitrarily a quadratic non-residue ν ∈ Np. Then the n2 sums

a′ + νa′′ with a′, a′′ ∈ A are pairwise distinct, and the set D of all these sums is a

(p, n2, n(n+ 1)/2)-difference set in Fp.

We remark that the Multiplier Conjecture [La83, Conjecture 6.7] along with Claim 1

lead to a conclusion much stronger than Corollary 1: namely, if there is a subset

A ⊆ Fp with A−A !
= Rp, then, writing p = 2n(n− 1) + 1, the least common multiple

lcm
{

ordp(q) : q | p−1
4

}
is a divisor of either n or n− 1.

On a historical note, it was Broughton [B95] who first used biquadratic reciprocity

to study (2n(n− 1) + 1, n2, n(n+ 1)/2)-difference sets.

Our last result is a lemma which is used in the proof of Theorems 1 and 2, and

which we believe is also of independent interest.
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Lemma 1. If p > 5 is a prime and A ⊆ Fp satisfies A− A !
= Rp, then |MA| is odd;

that is, −1 /∈MA.

The rest of the paper is devoted to the proofs of the above-discussed results. We

prove Lemma 1 in the next section, and Theorems 1 and 2 in Section 4. In Section 5

we prove Claim 1, present the Semi-primitivity Theorem, and derive Theorem 4. In

Section 6 we state Lemmermeyer’s biquadratic reciprocity law and prove Theorem 5.

Theorem 3 is proved in Section 7; the proof uses some basic algebraic number theory.

Finally, in the Appendix we give an equivalent restatement of the problem studied in

this paper in terms of algebraic number theory.

3. |MA| is Odd: the Proof of Lemma 1

Suppose that p is a prime and A ⊆ Fp satisfies A−A !
= Rp; we want to show that

the multiplier subgroup MA < F×p has odd order.

For a subset S ⊆ Fp and integer j ≥ 0, let

σj(S) =
∑
s∈S

sj,

subject to the agreement that if 0 ∈ S and j = 0, then the corresponding summand

is equal to 1 (so that σ0(S) = |S|). For every 1 ≤ k < (p− 1)/2 we have∑
a′,a′′∈A

(a′ − a′′)k =
∑
x∈Rp

xk = 0;

expanding the binomial and changing the order of summation, we get

k∑
j=0

(−1)j
(
k

j

)
σj(A)σk−j(A) = 0. (5)

Write m := |MA|. Having A suitably translated, we can assume that A \ {0} is a

union of cosets of MA, and let then C be the set of arbitrarily chosen representatives

of these cosets. We distinguish two cases.

Suppose first that 0 /∈ A. In this case σj(A) = σj(C)σj(MA) and

σj(MA) =

{
m if m | j,
0 otherwise,

whence (5) is non-trivial only if m | k, and in this case (with a minor change of

notation) it can be re-written as

k∑
j=0

(−1)jm
(
km

jm

)
σjm(C)σ(k−j)m(C) = 0, 0 < k <

p− 1

2m
. (6)
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Taking k = 1 gives (1 + (−1)m)σ0(C)σm(C) = 0, and if m were even (contrary to the

assertion of the lemma) then, in view of σ0(C) = |C| 6= 0, we would have σm(C) = 0.

Furthermore, we could then re-write (6) as

2|C|σkm(C) = −
k−1∑
j=1

(
km

jm

)
σjm(C)σ(k−j)m(C),

and substituting subsequently k = 2, 3, . . . we conclude that σkm(C) = 0 whenever

0 < k < (p − 1)/(2m). Equivalently, the |C| elements cm (c ∈ C) have the property

that the sum of their kth powers vanish for all 0 < k < (p − 1)/(2m); hence for all

0 < k ≤ |C| in view of

|C| = |A|
|MA|

=
n

m
<
n(n− 1)

m
=
p− 1

2m
.

(we use here our standard notation: n = |A| and p = 2n(n − 1) + 1. Notice that

this estimate assumes p > 5.) As a result, all these elements, and therefore also all

elements of C, are equal to 0, a contradiction establishing the assertion in the case

0 /∈ A.

Turning to the situation where 0 ∈ A, we write A0 := A \ {0} and notice that

in this case σ0(A) = |A| = m|C| + 1 and σj(A) = σj(A0) = σj(C)σj(MA) for every

j > 0; as a result,

σj(A) =


m|C|+ 1 if j = 0,

mσj(C) if m | j and j > 0,

0 if m - j.

Hence, assuming that m is even, from (5) we get

2(m|C|+ 1) ·mσkm(C) = −m2

k−1∑
j=1

(
km

jm

)
σjm(C)σ(k−j)m(C), 0 < k <

p− 1

2m
.

Now taking k = 1 yields σm(C) = 0, and then subsequently σkm(C) = 0 for each

0 < k < (p− 1)/(2m), leading to a contradiction exactly as above.

This completes the proof of Lemma 1.

4. Proofs of Theorems 1 and 2: One Coset is Not Enough

For a prime p, let χp denote the quadratic character modulo p extended onto the

whole field Fp by χp(0) = 0. We need the following well-known identity (which is

equivalent, for instance, to [IR90, Chapter 5, Exercise 8]):∑
x∈Fp

χp((x+ a)(x+ b)) =

{
p− 1 if a = b,

−1 if a 6= b,
a, b ∈ Fp. (7)
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Recall, that we are interested in the situation where p ≡ 1 (mod 4), in which case

χp(−1) = 1; equivalently, χp(−x) = χp(x) for all x ∈ Fp.

Proof of Theorem 1. Clearly, it suffices to show that for p > 13 prime and H < F×p ,

one cannot have H − H !
= Rp or H − H !

= Np. For a contradiction, suppose that

one of these relations holds true. Write n := |H|, so that p = 2n(n − 1) + 1. From

Lemma 1 (as applied to a suitable coset of H in the case H−H !
= Np), we know that

n is odd, implying −1 /∈ H; hence, H is disjoint with −H := {−h : h ∈ H}.
For any h1, h2 ∈ H with h1 6= h2, either both h21 − h22 and h1 − h2 are quadratic

residues, or they both are quadratic non-residues. In either case, their quotient h1+h2
is a quadratic residue; that is,

χp(h1 + h2) = 1, h1, h2 ∈ H, h1 6= h2. (8)

We distinguish two cases, according to whether H −H !
= Rp or H −H !

= Np.
Suppose first that H −H !

= Rp, and let in this case

σ(x) :=
∑
h∈H

(
χp(x+ h) + χp(x− h)

)
, x ∈ Fp.

In view of (8) and our present assumption H −H !
= Rp, for each x ∈ H we have

σ(x) ≥ (n− 2) + (n− 1) = 2n− 3.

Along with σ(−x) = σ(x) (following from p ≡ 1 (mod 4) and χp(−1) = 1 resulting

from it), this yields ∑
x∈H∪(−H)

σ2(x) ≥ 2n(2n− 3)2. (9)

On the other hand, the sum extended over all x ∈ Fp can be computed explicitly:∑
x∈Fp

σ2(x) =
∑
x∈Fp

∑
h1,h2∈H

(
χp(x+ h1) + χp(x− h1)

)(
χp(x+ h2) + χp(x− h2)

)
=

∑
h1,h2∈H

∑
x∈Fp

(
χp((x+ h1)(x+ h2)) + χp((x− h1)(x− h2))

+ χp((x+ h1)(x− h2)) + χp((x− h1)(x+ h2))
)

= 2pn− 4n2

= 2n(2n2 − 4n+ 1), (10)

as it follows from (7) and since h1 6= −h2 whenever h1, h2 ∈ H in view of −1 /∈ H.

Comparing (9) and (10) we conclude that 2n(2n − 3)2 ≤ 2n(2n2 − 4n + 1), which

simplifies to (n− 2)2 ≤ 0 and thus yields n = 2, contrary to the assumption p > 13.
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Addressing now the case where H−H !
= Np, we re-define the sum σ(x) letting this

time

σ(x) :=
∑
h∈H

(
χp(x+ h)− χp(x− h)

)
, x ∈ Fp.

In view of (8) and the assumption H −H !
= Np, we have again

σ(x) ≥ (n− 2) + (n− 1) = 2n− 3, x ∈ H.

Since σ(−x) = −σ(x), we derive that∑
x∈H∪(−H)

σ2(x) ≥ 2n(2n− 3)2.

On the other hand, a computation similar to (10) gives∑
x∈Fp

σ2(x) = 2pn = 2n(2n2 − 2n+ 1).

As a result, 2n(2n − 3)2 ≤ 2n(2n2 − 2n + 1), leading to n ≤ 4. To complete the

proof we notice that n ≤ 3 correspond to p ≤ 13, while n = 4 yields p = 25, which is

composite. �

Proof of Theorem 2. The proof is a variation of that of Theorem 1.

Aiming at a contradiction, suppose that p > 5 is prime, H < F×p , g ∈ F×p , and

A := gH ∪ {0} satisfies A − A !
= Rp. Since g is representable as a difference of two

elements of A, we have g ∈ Rp, and dilating A by the factor g−1 we can assume that,

indeed, g = 1; that is, A = H ∪ {0}.
Write n := |A|, so that p = 2n(n − 1) + 1 and |H| = n − 1. From Lemma 1, we

know that |H| is odd, whence −1 /∈ H and therefore H is disjoint with −H.

For any h ∈ H and a1, a2 ∈ A with a1 6= a2, both a1h − a2h and a1 − a2 are

quadratic residues, and so must be their quotient h; thus,

χp(h) = 1, h ∈ H. (11)

Similarly,

χp(h1 + h2) = 1, h1, h2 ∈ H, h1 6= h2 (12)

in view of h1 + h2 = (h21 − h22)/(h1 − h2).
Let

σ(x) :=
∑
a∈A

(
χp(x+ a) + χp(x− a)

)
, x ∈ Fp.

From (11) and (12), and since A− A !
= Rp, we have

σ(x) ≥ (n− 2) + (n− 1) = 2n− 3, x ∈ H
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and

σ(0) = 2(n− 1).

Observing that σ(−x) = σ(x) we derive that∑
x∈H∪(−H)∪{0}

σ2(x) ≥ 2(n− 1)(2n− 3)2 + 4(n− 1)2 = 2(n− 1)(4n2 − 10n+ 7).

On the other hand, a computation similar to (10) gives∑
x∈Fp

σ2(x) = 2(n+ 1)p− 4n2 = 2(n− 1)(2n2 − 1).

As a result, 4n2 − 10n + 7 ≤ 2n2 − 1, implying n ≤ 4. The assumption p > 5 now

gives n = 3; consequently, p = 13 and |H| = 2, whence H = {1,−1}. However, the

set A = {0, 1,−1} ⊆ F13 does not have the property A− A !
= R13. �

5. Proofs of Claim 1 and Theorem 4

Proof of Claim 1. To see that the sums a′ + νa′′ are pairwise distinct, we notice that

a′1 + νa′′1 = a′2 + νa′′2 with (a′1, a
′′
1) 6= (a′2, a

′′
2) would result in ν = (a′1 − a′2)/(a′′2 − a′′1),

while for a′1, a
′′
1, a
′
2, a
′′
2 ∈ A, both the numerator and the denominator are quadratic

residues in view of A− A !
= Rp.

It remains to show that every non-zero element of Fp has exactly n(n + 1)/2 rep-

resentations as a difference of two elements of the set D := {a′ + νa′′ : a′, a′′ ∈ A}.
Let ζ be a fixed primitive root of unity of degree p, and denote by K the pth

cyclotomic field; that is, ζ 6= ζp = 1 and K = Q[ζ]. Write α :=
∑

a∈A ζ
a, so that

A− A !
= Rp yields

|α|2 = n+ ρ, (13)

where

ρ :=
∑
x∈Rp

ζx =

√
p− 1

2
(14)

is a quadratic Gaussian period (see, for instance, [D82, Chapter 3,]).

Set δ :=
∑

d∈D ζ
d; thus,

δ =
∑
a′∈A

ζa
′ ·
∑
a′′∈A

ζνa
′′

= αϕ(α), (15)

with ϕ ∈ Gal(K/Q) defined by ϕ(ζ) = ζν . Let τ ∈ Gal(K/Q) denote the complex

conjugation automorphism. Since Gal(K/Q) is abelian ([IR90, Chapter 13, §2, Corol-

lary 2] or [M77, Page 18, Corollary 2]), we have

ϕ(|α|2) = ϕ(ατ(α)) = ϕ(α)τ(ϕ(α)) = |ϕ(α)|2. (16)
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From (13)–(16) and

ϕ(ρ) =
∑
x∈Rp

ζνx =
∑
x∈Np

ζx = −1−
∑
x∈Rp

ζx = −1− ρ,

we obtain

|δ|2 = |α|2|ϕ(α)|2 = |α|2ϕ(|α|2)

= (n+ ρ)(n− 1− ρ) =
n(n− 1)

2
= |D|+ n(n+ 1)

2

∑
x∈F×p

ζx.

Comparing this equality with

|δ|2 = |D|+
∑
x∈F×p

r(x)ζx,

where r(x) is the number of representations of x as a difference of two elements of D,

we conclude that r(x) = n(n+ 1)/2 for every x ∈ F×p . �

We remark that the second assertion of Claim 1 can also be proved using the

group ring approach. Namely, identifying subsets A,D,Rp,Np,F×p ⊆ Fp with the

corresponding elements of the group ring ZFp, we have

D = AA(ν), AA(−1) = n+Rp, R(ν)
p = Np, and RpNp =

n(n− 1)

2
Fp,

the last equality reflecting the well-known fact that for p ≡ 1 (mod 4), every element

of F×p has exactly p−1
4

representations as a sum of quadratic residue and a quadratic

non-residue. Hence, we have the chain of group ring equalities

DD(−1) = AA(ν)A(−1)A(−ν) = (n+Rp)(n+Rp)
(ν)

= (n+Rp)(n+Np) = n2 + nF×p +
n(n− 1)

2
F×p = n2 +

n(n+ 1)

2
F×p ,

proving the assertion.

We now state the part of the Semi-primitivity Theorem that is relevant for our

purposes. For co-prime integer q, e ≥ 1, by 〈q〉e we denote the subgroup of (Z/eZ)×,

multiplicatively generated by q.

Theorem 6 ([La83, Theorem 4.5]). Suppose that G is a finite abelian group of expo-

nent e. If G possesses a (v, k, λ)-difference set, then for any prime q with q | k − λ
and q - e, we have −1 /∈ 〈q〉e.

To deduce Theorem 4 from Theorem 6, we apply the latter to the set D of Claim 1.

Since

n2 − n(n+ 1)

2
=
n(n− 1)

2
=
p− 1

4
,
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we conclude that if q | p−1
4

is prime, then 〈q〉p is an odd-order subgroup of F×p ; that

is, ordp(q) is odd. This proves Theorem 4.

6. Bi-quadratic Reciprocity and the Proof of Theorem 5

The proof of Theorem 5 relies on Lemmermeyer’s biquadratic reciprocity law. To

state it, we recall that the rational biquadratic residue symbol is defined for prime

p ≡ 1 (mod 4) and quadratic residue b ∈ Rp by(
b

p

)
4

=

{
1 if b is a biquadratic residue modulo p,

−1 if b is not a biquadratic residue modulo p.

Notice, that (b/p)4 ≡ b
p−1
4 (mod p) implies multiplicativity of the rational biquadratic

residue symbol.

For consistency, in this section we use the Legendre symbol (·/p) for the quadratic

character modulo p (which was denoted χp(·) in Section 4, mostly for typographical

reasons).

Theorem 7 ([Le00, Proposition 5.5]). Suppose that p ≡ 1 (mod 4) is prime, and

write p = u2 + v2 with u odd and v even. Suppose also that q > 2 is a prime

with (p/q) = 1, and let c be an integer such that c2 ≡ p (mod q). Finally, let

q∗ := (−1)(q−1)/2q, so that (q∗/p) = 1 by multiplicativity of the Legendre symbol and

the quadratic reciprocity law. Then(
q∗

p

)
4

=


(
c(v+c)
q

)
if q - v + c,(

2
q

)
if q | v + c.

We remark that, strictly speaking, the case where q | v + c is not addressed in

[Le00], but it is easy to deduce from the case where q - v + c. For, if q | v + c, then

q - v− c in view of q - c, and applying then the original Lemmermeyer’s theorem with

c replaced by −c, we get(
q∗

p

)
4

=

(
−c(v − c)

q

)
=

(
−c(−2c)

q

)
=

(
2

q

)
.

Proof of Theorem 5. Suppose that p is a prime and A ⊆ Fp satisfies A − A
!

= Rp;

thus, p = 2n(n − 1) + 1 where n := |A|. From Corollary 3, we have p ≡ 5 (mod 8),

whence (
−1

p

)
4

= (−1)
p−1
4 = −1. (17)

Let u and v denote the odd and the even of the two numbers n − 1 and n, re-

spectively; notice that this is consistent with the notation of Theorem 7 as p =
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(n − 1)2 + n2 = u2 + v2. Since p ≡ 5 (mod 8), a prime q divides p−1
4

= 1
2
uv if and

only if it is odd and divides either u, or v. In this case p ≡ 1 (mod q), and we apply

Theorem 7 with c = 1 to obtain(
q∗

p

)
4

=


(
v+1
q

)
if q - v + 1,(

2
q

)
if q | v + 1,

(18)

where q∗ := (−1)(q−1)/2q. On the other hand, Theorem 4 shows that q is a biquadratic

residue modulo p, and therefore using (17) we get(
q∗

p

)
4

=

(
(−1)(q−1)/2

p

)
4

(
q

p

)
4

=

(
−1

q

)(
q

p

)
4

=

(
−1

q

)
. (19)

From(18) and (19), (
v + 1

q

)
=

(
−1

q

)
if q - v + 1, (20)

and (
2

q

)
=

(
−1

q

)
if q | v + 1. (21)

If q | v, then the former of these equalities immediately gives q ∈ {1, 5} (mod 8). If

q | u, we distinguish two further sub-cases: q | v + 1 and q - v + 1. If q | v + 1, then

(21) gives q ∈ {1, 3} (mod 8). If q - v + 1, then u ∈ {v − 1, v + 1} along with our

present assumption q | u show that u = v − 1; thus, q | v − 1, and (20) leads to the

same conclusion q ∈ {1, 3} (mod 8) as above.

We have shown that for a prime q > 2, if q divides the even of the two numbers

n − 1 and n, then q ≡ 1 (mod 8) or q ≡ 5 (mod 8), and if q divides the odd of

these two numbers, then q ≡ 1 (mod 8) or q ≡ 3 (mod 8). This is equivalent to the

assertion of Theorem 5. �

7. Proof of Theorem 3: MA Lies Above the Order-Gp Subgroup of F×p
In this section and the Appendix we use several basic algebraic number theory

facts, such as for instance:

i) the Galois group of the mth cyclotomic field is isomorphic to the group of

units (Z/mZ)×; hence, it is abelian;

ii) if p and q are distinct odd primes, then, letting f := ordp(q), the principal

ideal (q) in the pth cyclotomic field splits into a product of (p− 1)/f pairwise

distinct prime ideals, all of which are fixed by the order-f subgroup of the

corresponding Galois group;
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iii) Kronecker’s theorem: an algebraic integer all of whose algebraic conjugates

lie on the unit circle is a root of unity; consequently, any cyclotomic integer

of modulus 1 is a root of unity;

iv) if m is odd, then the only roots of unity of the mth cyclotomic field are the

roots of degree 2m.

The proofs can be found in any standard algebraic number theory textbook, as [IR90]

or [M77].

Proof of Theorem 3. Suppose that p is a prime and A ⊆ Fp satisfies A − A
!

= Rp.

Write n := |A|, so that p = 2n(n−1) + 1. Let ζ be a primitive root of unity of degree

p, and denote by K the p th cyclotomic field (thus, K = Q[ζ]), and by O the ring of

integers of K. As in the proof of Claim 1, write α :=
∑

a∈A ζ
a, so that α ∈ O and

|α|2 = n+ ρ (22)

with

ρ :=
∑
x∈Rp

ζx =

√
p− 1

2
. (23)

It is well known that every rational prime q 6= p splits in O into a product of

(p− 1)/ ordp(q) pairwise distinct prime ideals, all of which are fixed by the subgroup

of Gal(K/Q) of order ordp(q). The intersection of these subgroups over all primes

q | p−1
4

is the subgroup H ≤ Gal(K/Q) of order |H| = Gp, and since, by (22), α is a

divisor of n + ρ, which in turn is a divisor of p−1
4

= (n + ρ)(n − 1 − ρ), we conclude

that the ideal generated by α is fixed by H. Hence, for every automorphism ϕ ∈ H
there exists a unit u ∈ O (depending on ϕ) such that

ϕ(α) = uα. (24)

Since p is a quadratic residue modulo every odd prime q dividing p−1, by quadratic

reciprocity, q is a quadratic residue modulo p; that is, q
p−1
2 ≡ 1 (mod p). This shows

that ordp(q) is a divisor of (p − 1)/2. As a result, Gp divides (p − 1)/2; that is, H

is contained in the subgroup of order (p − 1)/2, which is easily seen to have Q[
√
p]

as its fixed field. Therefore, re-using equality (16) from the proof of Claim 1 and in

view of (22), for every automorphism ϕ ∈ H we have

|ϕ(α)|2 = ϕ(|α|2) = n+ ρ = |α|2.

Comparing this with (24), we conclude that |u| = 1. From the fact that Gal(K/Q)

is abelian it follows then that all algebraic conjugates of u have modulus 1, and by

Kronecker’s theorem u is a root of unity; thus, either u = ζv, or u = −ζv with some

v ∈ Fp depending on ϕ. The latter option is ruled out by considering traces from K to
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Q: we have tr(ϕ(α)) = tr(α) and tr(−ζvα) ≡ − tr(α) (mod p), while tr(α) ≡ −n 6≡ 0

(mod p). Therefore,

ϕ(α) = ζvα; ϕ ∈ H, v = v(ϕ) ∈ Fp. (25)

Recalling the definition of α and identifying Gal(K/Q) with F×p , we can interpret

(25) as saying that for every ϕ ∈ H < F×p , there exists v = v(ϕ) ∈ Fp such that the

dilate ϕA = {ϕa : a ∈ A} satisfies ϕA = A+ v; that is, ϕ is a multiplier of A. �

Appendix: An Algebraic Number Theory Restatement

We aim here to pursue a little further the algebraic approach that was employed

in the proofs of Claim 1 and Theorem 3, in the hope that it can ultimately give more

insights into the problem. We keep using the notation introduced in these proofs:

namely, given a prime p, we denote by ζ a fixed primitive root of unity of degree p, by

K the p th cyclotomic field, by O the ring of integers of K, and we let ρ := (
√
p−1)/2.

By tr we denote the trace function from K to Q. Our goal is to prove the two following

results.

Proposition 1. Let p be a prime number. For a subset A ⊆ Fp with A−A !
= Rp to

exist, it is necessary and sufficient that p = 2n(n− 1) + 1 with an integer n, and that

there is an algebraic integer α ∈ O such that |α|2 = n+ρ and tr(αζ−k) ∈ {−n, p−n}
for every integer k.

Proposition 2. Let p be a prime of the form p = 2n(n − 1) + 1 with n an integer.

For an algebraic integer α ∈ O with |α|2 = n+ρ to exist, it is necessary and sufficient

that for every prime q dividing p− 1 to an odd power, the order ordp(q) is odd.

To prove Proposition 1, we need

Lemma 2. Let p be a prime and n ∈ [1, p − 1] an integer. In order for α ∈ O to

satisfy tr(αζ−k) ∈ {−n, p− n} for every integer k, it is necessary and sufficient that

α =
∑

a∈A ζ
a, where A is an n-element subset of Fp.

Proof. It is readily seen that the condition is sufficient: if α =
∑

a∈A ζ
a with A ⊆ Fp

and |A| = n, then

tr(αζ−k) =

{
−n if k /∈ A,
p− n if k ∈ A.

To prove necessity, write α =
∑

x∈Fp
axζ

x with integer coefficients ax. For every k ∈ Z
we have then

tr(αζ−k) = pak −
∑
x∈Fp

ax
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(where k in the right-hand side is identified with its canonical image in Fp), and the

assumption tr(αζ−k) ∈ {−n, p−n} implies that the coefficients ax attain at most two

distinct integer values. Since adding simultaneously the same integer to all ax does

not affect the value of the sum
∑

x∈Fp
axζ

x, we can assume without loss of generality

that actually at most one value assumed by ax is distinct from 0; hence, writing

A := {x ∈ Fp : ax 6= 0}, there is an integer c such that

α = c
∑
a∈A

ζa. (26)

In fact, the subset A ⊆ Fp is proper and non-empty and c 6= 0, as otherwise we

would have α = 0 which is inconsistent with tr(αζ−k) ∈ {−n, p− n}. Consequently,

(26) implies that tr(αζ−k) assumes exactly two distinct values, both divisible by c.

Observing, on the other hand, that gcd(−n, p−n) = gcd(n, p) = 1, we conclude that

c ∈ {−1, 1}. Replacing now A with its complement in Fp, if necessary, we can assume

that, indeed, c = 1 holds. Thus, α =
∑

a∈A ζ
a, and it remains to notice that this

yields tr(αζ−k) ∈ {−|A|, p− |A|}, whence |A| = n. �

Proof of Proposition 1. We know from Lemma 2 (see also the proofs of Claim 1 and

Theorem 3) that if A − A
!

= Rp for a subset A ⊆ Fp then, writing n := |A| and

α :=
∑

a∈A ζ
a, we have p = 2n(n− 1) + 1, |α|2 = n+ ρ, and tr(αζ−k) ∈ {−n, p− n}

for every integer k.

Conversely, suppose that p = 2n(n − 1) + 1 and that for some α ∈ O we have

|α|2 = n + ρ and tr(αζ−k) ∈ {−n, p − n} for every integer k. By Lemma 2, there is

an n-element subset A ⊆ Fp such that α =
∑

a∈A ζ
a. Hence,∑

x∈Rp

ζx = ρ = |α|2 − n =
∑

a′,a′′∈A
a′ 6=a′′

ζa
′−a′′ ,

implying A− A !
= Rp. �

Proof of Proposition 2. Consider a prime divisor q of p−1 and denote by v the power

to which q divides (p − 1)/4; thus, v is either equal, or smaller by 2 than the power

to which q divides p− 1. Since p ≡ 1 (mod q) and, consequently, p is a square mod

q, if q is odd, then it splits into two ideal primes in Q(
√
p). This conclusion stays

true also if q = 2 and v > 0: for, in this case p ≡ 1 (mod 8) (see, for instance,

[IR90, Propositions 13.1.3 and 13.1.4] or [M77, Chapter 3, Theorem 25]). Now the

decomposition
p− 1

4
= (n+ ρ)(n− 1− ρ)
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and the fact that n+ ρ and n− 1− ρ are co-prime elements of Q(
√
p) show that the

v th power of one of the two ideal primes into which q splits divides n+ ρ, while the

v th power of another one divides n− 1− ρ. Denote by q the prime whose v th power

divides n+ ρ; we thus have (n+ ρ) = qvI, where I < O is an ideal co-prime with q.

Write f := ordp(q), so that q splits into (p − 1)/f pairwise distinct ideal primes

in O and, accordingly, q splits into k := (p − 1)/(2f) pairwise distinct ideal primes:

q = q1 . . . qk, where each qi is stable under the subgroup H < Gal(Q/K) of order

f . Assuming |α|2 = n + ρ and observing that |α|2 = ατ(α), where τ is the complex

conjugation automorphism of K, we thus have

(α)τ((α)) = qv1 . . . q
v
k I. (27)

Suppose now that f is even, so that τ ∈ H and, consequently, τ(qi) = qi for each

i ∈ [1, k]. Comparing this with (27) we conclude that the factor qvi in its right-hand

side must split evenly between the two factors (α) and τ((α)); therefore, v must be

even. This proves necessity.

To prove sufficiency we invoke the Hasse norm theorem [J73, Theorem V.4.5] which

says that if K is a cyclic extension of a number field L, then an element of L is the

norm (from K to L) of an element of K if and only if it is a norm locally everywhere.

The reader will see that, in fact, the theorem also gives necessity; however, we prefer

to keep the simple “elementary” argument presented above.

Specified to our situation, Hasse’s theorem gives the following. Let K+ be the real

subfield of K. For a prime ideal p ⊂ K+, denote by K+
p the completion of K+ at p,

and by Kp the corresponding completion of K; thus, Kp = KK+
p . Then, according to

the Hasse theorem, n+ ρ is a norm from K to K+ if and only if it is a norm from Kp

to K+
p for every prime p of K+, including the infinite primes.

Accordingly, let p ⊂ K+ be a prime. We first show that n+ρ is always a norm from

Kp to K+
p whenever p - p−1

4
. For notational convenience, we write below K

√
:= Q(

√
p).

If p is an infinite prime, then it is a real prime and K+
p is the field R of real

numbers, as K+ is totally real. Furthermore, every real square, hence every positive

real number, and in particular n+ρ, is a norm from the quadratic extension Kp = C.

If p is a finite prime dividing p, then it is unique with this property, and p is totally

and tamely ramified in K. Thus the extension Kp/K+
p is a tamely ramified quadratic

extension. Since n+ρ is not divisible by p, it is a unit in K+
p , so by [Se79, Chapter V,

§3, Proposition 5] it is a norm from Kp if and only if it is a square modulo p. As the

residue field of Kp modulo p is Fp, this is equivalent to n+ρ being a square modulo the

uniformizer
√
p of K

√
Qp, where Qp is the field of p-adic rationals, i.e. the completion

of Q at p. Now n + ρ ≡ n− 1
2

(mod
√
p), with the congruence in (a localization of)

the ring of integers of K
√
. At the same time, p = 2n(n − 1) + 1 implies n − 1

2
≡ n2
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(mod p). It follows that n− 1
2
≡ n2 (mod

√
p), hence n+ ρ ≡ n2 (mod

√
p), and so

n+ ρ ≡ n2 (mod p).

Finally, if p is a finite prime not dividing p (and also not dividing p−1
4

), then the

extension Kp/K+
p is unramified, in which case every unit of K+

p is a norm from Kp

[Se79, Chapter V, §2, Corollary to Proposition 3]. But n+ρ is a unit of K+
p , as follows

from the observation that NK
√
/Q(n+ ρ) = p−1

4
is not divisible by p.

We have thus shown that n+ ρ is always a norm from Kp to K+
p whenever p - p−1

4
,

and it remains to determine when n + ρ is a norm for the primes p | p−1
4

. Fix such

a prime p ⊆ K+, and let q be the prime in K
√

lying below p, and q be the rational

prime lying below p and q. Also, let q′ be the conjugate of q over Q; since q splits

into two primes in K
√

(see the very beginning of the proof for the explanation), we

have the prime factorization qOK
√ = qq′.

Let vp, vq, vq′ , and vq be the valuations on K+,K
√
,K
√
, and Q, corresponding to

p, q, q′, and q, respectively. Since q is unramified in K (the only ramified prime in

K is p), we may assume that all these valuations are normalized; that is, their value

groups are Z.

Trivially, n+ ρ is a norm from Kp to K+
p if Kp = K+

p . This happens if and only if p

splits completely in K; that is, if and only if the complex conjugation automorphism

τ does not lie in the decomposition group of a prime P ⊂ K lying above p. Since the

Galois group Gal(K/Q) is cyclic, τ is its unique involution. Hence for Kp = K+
p to

hold it is necessary and sufficient that the decomposition group of P has odd order;

equivalently, the inertia degree of q in K/Q is odd; that is, the order ordp(q) is odd.

Thus, if ordp(q) is odd, then n+ ρ is a norm from Kp to K+
p .

To complete the proof, we show that for ordp(q) even, n + ρ is a norm from Kp

to K+
p if and only if vq(

p−1
4

) is also even. So assume now that ordp(q) is even. Since

Kp/K+
p is an unramified quadratic extension, by [Se79, Chapter V, §2, Corollary to

Proposition 3], the group of norms from Kp to K+
p inside (K+

p )× is 〈π2
p〉 ×UK+

p
, where

πp is a uniformizer of K+
p (i.e. vp(πp) = 1) and UK+

p
is the unit group of K+

p . Thus,

n + ρ is a norm from Kp to K+
p if and only if vp(n + ρ) is even. Let ρ′ :=

−√p−1
2

be

the conjugate of ρ over Q. Observe that

0 = vq(2n− 1) = vq(2n− 1) = vq(n+ ρ+ n+ ρ′) ≥ min{vq(n+ ρ), vq(n+ ρ′)}

implies

min{vq(n+ ρ), vq(n+ ρ′)} = 0, (28)

and also that

vq(
p−1
4

) = vq(
p−1
4

) = vq((n+ ρ)(n+ ρ′)) = vq(n+ ρ) + vq(n+ ρ′). (29)
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If vq(
p−1
4

) is odd, then either vq(n + ρ) is odd, or vq(n + ρ′) = vq′(n + ρ) is odd;

hence, either n+ ρ is not a norm from Kp to K+
p , or it is not a norm from Kp′ to K+

p′

for some prime p′ of K+ lying above q′. It follows that if vq(
p−1
4

) is odd, then n + ρ

is not a norm from K to K+. On the other hand, if vq(
p−1
4

) is even, then by (28) and

(29), vq(n + ρ) is also even and, similarly, vq′(n + ρ) = vq(n + ρ′) is even. Therefore

if vq(
p−1
4

) is even, then n+ ρ is a norm from Kp to K+
p for all p lying above q.

This completes the proof. �
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