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Abstract. We prove that there is an absolute constant c > 0 with the following
property: if Z/pZ denotes the group of prime order p, and a subset A ⊂ Z/pZ satisfies
1 < |A| < p/2, then for any positive integer m < min{c|A|/ ln |A|,

√
p/8} there are at

most 2m non-zero elements b ∈ Z/pZ with |(A + b) \A| ≤ m. This (partially) extends
onto prime-order groups the result, established earlier by S. Konyagin and the present
author for the group of integers.

We notice that if A ⊂ Z/pZ is an arithmetic progression and m < |A| < p/2, then
there are exactly 2m non-zero elements b ∈ Z/pZ with |(A+b)\A| ≤ m. Furthermore,
the bound c|A|/ ln |A| is best possible up to the value of the constant c. On the other
hand, it is likely that the assumption m <

√
p/8 can be dropped or substantially

relaxed.

1. Background and motivation

For a finite subset A and an element b of an additively written abelian group, let

∆A(b) := |(A+ b) \ A|.

If A does not contain cosets of the subgroup, generated by b, then the quantity ∆A(b)

can be interpreted as the smallest number of arithmetic progressions with difference

b into which A can be partitioned. We also note that |A| − ∆A(b) is the number of

representations of b as a difference of two elements of A; thus, ∆A(b) measures the

“popularity” of b as such a difference (with 0 corresponding to the largest possible

popularity).

The function ∆A has been considered by a number of authors, the two earliest ap-

pearances in the literature we are aware of being [EH64] and [O68]. Evidently, we have

∆A(0) = 0; other well-known properties of this function are as follows:

P1. ∆A(−b) = ∆A(b) for any group element b.

P2. If the underlying group is finite and Ā is the complement of A, then ∆Ā(b) =

∆A(b) for any group element b.

P3. ∆A(b1 + · · · + bk) ≤ ∆A(b1) + · · · + ∆A(bk) for any integer k ≥ 1 and group

elements b1, . . . , bk.
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P4. Any finite, non-empty subset B of the group contains an element b with ∆A(b) ≥(
1− |A||B|

)
|A|.

The interested reader can find the proofs in [EH64, O68, HLS08] or work them out as

an easy exercise. We confine ourselves to the remark that the last property follows by

averaging over all elements of B.

The basic problem arising in connection with the function ∆A is to show that it

does not attain “too many” small values; that is, every set B contains an element b

with ∆A(b) large, with the precise meaning of “large” determined by the size of B.

Accordingly, we let

µA(B) := max
b∈B

∆A(b).

Property P4 readily yields the simple lower-bound estimate

µA(B) ≥
(

1− |A|
|B|

)
|A|; (1)

however, this estimate is far from sharp, and insufficient for most applications.

Notice, that if d is a group element of sufficiently large order, A is an arithmetic

progression with difference d, and B = {d, 2d, . . . ,md} with m = |B| ≤ |A|, then

µA(B) = |B|. Thus,

µA(B) ≥ |B| (2)

is the best lower-bound estimate one can hope to prove under the assumption B ∩
(−B) = ∅ (cf. Property P1). In view of the trivial inequality µA(B) ≤ |A|, a necessary

condition for (2) to hold is |B| ≤ |A|, but this may not be enough to require: say,

an example presented in [KL] shows that (2) fails in general for the group of integers,

unless |B| < c|A|/ ln |A| with a sufficiently small absolute constant c. As shown in [KL],

this last assumption already suffices.

Theorem 1 ([KL, Theorem 1]). There is an absolute constant c > 0 such that if A is

a finite set of integers with |A| > 1, and B is a finite set of positive integers satisfying

|B| < c|A|/ ln |A|, then µA(B) ≥ |B|.

2. The main result

It is natural to expect that an analogue of Theorem 1 remains valid for groups of

prime order, particularly since the arithmetic progression case is “worst in average” for

these groups: namely, it is easy to derive from [L98, Theorem 1] that for all sets A and

B of given fixed size in such a group, satisfying B ∩ (−B) = ∅, the sum
∑

b∈B ∆A(b) is

minimized when A is an arithmetic progression, and B = {d, 2d, . . . ,md}, where m is

a positive integer and d is the difference of the progression. The goal of this note is to

establish the corresponding supremum-norm result.
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Throughout, we denote by Z the group of integers, and by Z/pZ with p prime the

group of order p.

Theorem 2. There exists an absolute constant c > 0 with the following property: if

p is a prime and the sets A,B ⊂ Z/pZ satisfy 1 < |A| < p/2, B ∩ (−B) = ∅, and

|B| < min{c|A|/ ln |A|,
√
p/8}, then µA(B) ≥ |B|.

As Property P2 shows, the assumption |A| < p/2 of Theorem 2 does not restrict

its generality. In contrast, the assumption |B| <
√
p/8 seems to be an artifact of the

method and it is quite possible that the assertion of Theorem 2 remains valid if this

assumption is substantially relaxed or dropped altogether.

We notice that Theorem 2 is formally stronger than Theorem 1. However, the proof

of the former theorem (presented in Section 4) relies on the latter one, used “as a black

box”. The proof also employs a rectification result of Freiman, and elements of the

argument used in [KL] to prove Theorem 1, in a somewhat modified form.

The rest of this paper is divided into three parts: having prepared the ground in

the next section, we prove Theorem 2 in Section 4, and present an application to the

problem of estimating the size of a restricted sumset in the last section.

3. The toolbox

In this section we collect some auxiliary results, needed in the course of the proof of

Theorem 2.

Given a subset B of an abelian group and an integer h ≥ 1, by hB we denote the

h-fold sumset of B:

hB := {b1 + · · ·+ bh : b1, . . . , bh ∈ B}.
Our first lemma is an immediate consequence of Property P3.

Lemma 1. For any integer h ≥ 1 and finite subsets A and B of an abelian group we

have

µA(hB) ≤ hµA(B).

The following lemma of Hamidoune, Lladó, and Serra gives an estimate which, looking

deceptively similar to (1), for B small is actually rather sharp. We quote below a slightly

simplified version, which is marginally weaker than the original result.

Lemma 2 ([HLS08, Lemma 3.1]). Suppose that A and B are non-empty subsets of a

finite cyclic group such that B ∩ (−B) = ∅ and the size of A is at most half the size of

the group. If every element of B generates the group, then

µA(B) >

(
1− |B|
|A|

)
|B|.
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Yet another ingredient of our argument is a rectification theorem due to Freiman.

Theorem 3 ([N96, Theorem 2.11]). Let p be a prime and suppose that B ⊂ Z/pZ is

a subset with |B| < p/35. If |2B| ≤ 2.4|B| − 3, then B is contained in an arithmetic

progression with at most |2B| − |B|+ 1 terms.

Finally, we need a lemma showing that if B is a dense set of integers, then the

difference set

B −B := {b′ − b′′ : b′, b′′ ∈ B}

contains a long block of consecutive integers.

Lemma 3 ([L06, Lemma 3]). Let B be a finite, non-empty set of integers. If maxB −
minB < 2k−1

k
|B| − 1 with an integer k ≥ 2, then B − B contains all integers from the

interval (−|B|/(k − 1), |B|/(k − 1)).

4. Proof of Theorem 2

For real u < v and prime p, by ϕp we denote the canonical homomorphism from Z
onto Z/pZ, and by [u, v]p the image of the set [u, v] ∩ Z under ϕp. In a similar way we

define [u, v)p and (u, v)p.

We begin with the important particular case where B is a block of consecutive group

elements, starting from 1. Thus, we assume that p is a prime, A ⊂ Z/pZ satisfies

1 < |A| < p/2, and m < min{c|A|/ ln |A|,
√
p/8} is a positive integer (where c is the

constant of Theorem 1), and show that, letting then B := [1,m]p, we have µA(B) ≥ m.

Suppose, for a contradiction, that µA(B) < m. Since A is a union of ∆A(1) blocks

of consecutive elements of Z/pZ, so is its complement Ā := (Z/pZ) \A, and we choose

integers u < v such that [u, v)p ⊆ Ā and

v − u ≥ |Ā|
∆A(1)

>
p

2m
> m. (3)

Rectifying the circle, we identify A with a set of integers A ⊆ [v, u+p), and B with the

set B := [1,m] ∩ Z. Inequality (3) shows that an arithmetic progression in Z/pZ with

difference d ∈ [1,m]p cannot “jump over” the block [u, v)p; hence, µA(B) = µA(B). On

the other hand, we have µA(B) ≥ |B| = m by Theorem 1. It follows that µA(B) ≥ m,

the contradicting sought.

We notice that so far instead of m <
√
p/8 we have only used the weaker inequality

m <
√
p/2; (4)

this observation is used below in the proof.
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Having finished with the case where B consists of consecutive elements of Z/pZ, we

now address the general situation. Suppose, therefore, that A,B ⊆ Z/pZ satisfy the

assumptions of the theorem and, again, assume that µA(B) < |B|.
For a subset S of an abelian group we write S± := S ∪ {0} ∪ (−S); thus, by

Property P1, we have µA(S±) = µA(S) for any finite subset A of the group, and if

S ∩ (−S) = ∅, then |S±| = 2|S|+ 1.

If |2B±| ≥ 1
3
|A| + 1, then by the well-known Cauchy-Davenport inequality (see, for

instance, [N96, Theorem 2.2]), we have |12B±| > 2|A|. Thus, using Lemma 1 and

estimate (1), and assuming that c is sufficiently small, we conclude that

µA(B) = µA(B±) ≥ 1

12
µA(12B±) >

1

24
|A| ≥ |B|,

a contradiction; accordingly, we assume

|2B±| < 1

3
|A|+ 1.

Let C := (2B±) ∩ [1, p/2)p. Observing that |C| = (|2B±| − 1)/2 < 1
6
|A|, by Lemmas 2

and 1 and the assumption µA(B) < |B| we get

5

6
|C| < µA(C) = µA(2B±) ≤ 2µA(B±) = 2µA(B) ≤ 2(|B| − 1) = |B±| − 3;

hence,

|2B±| = 2|C|+ 1 <
12

5
|B±| − 31

5
< 2.4|B±| − 3. (5)

We now apply Theorem 3 to derive that the set B± is contained in an arithmetic

progression with at most |2B±|−|B±|+1 < 1
3
|A| < p/2+1 terms. Taking into account

that 0 ∈ B± and dilating A and B suitably, we assume without loss of generality that

B± ⊆ (−p/4, p/4)p and B± is actually contained in a block of at most |2B±|− |B±|+ 1

consecutive elements of Z/pZ.

Let B ⊆ [1, p/4) be the set of integers such that B± = ϕp(B±), and write l :=

max(B±)−min(B±). From (5) we conclude that

l ≤ |2B±| − |B±| < 3

2
|B±| − 1 =

3

2
|B±| − 1.

Therefore, by Lemma 3 (applied with k = 2) we have

[1, |B±| − 1] ⊆ B± − B± = 2B±,

whence

[1, |B±| − 1]p ⊆ 2B±.

Recalling that the result is already established for the consecutive residues case, and

observing that |B±| − 1 = 2|B| <
√
p/2 (to be compared with (4)), we obtain

µA(2B±) ≥ µA([1, |B±| − 1]p) ≥ |B±| − 1 = 2|B|.
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Using now Lemma 1 we get

2µA(B) = 2µA(B±) ≥ µA(2B±) ≥ 2|B|,

a contradiction completing the proof of Theorem 2.

5. An application: restricted sumsets in abelian groups

Given two subsets A and B of an abelian group and a mapping τ : B → A, let

A
τ
+ B := {a+ b : a ∈ A, b ∈ B, a 6= τ(b)}.

Restricted sumsets of this form, generalizing in a natural way the “classical” restricted

sumset {a+ b : a ∈ A, b ∈ B, a 6= b}, were studied, for instance, in [L00]. Since

|(A+ b1) ∪ (A+ b2)| = |A|+ |(A+ b1 − b2) \ A|

for any b1, b2 ∈ B, we have

|A+B| ≥ |A|+ µA(B −B)

and, furthermore,

|A
τ
+ B| ≥ |A|+ µA(B −B)− 2;

hence, lower-bound estimates for µA(B − B) translate immediately into estimates for

the cardinalities of the sumset A + B and the restricted sumset A
τ
+ B. Here we

confine ourselves to stating three corollaries of estimate (1), Lemma 2, and Theorem 2,

respectively.

Theorem 4. Suppose that A and B are finite subsets of an abelian group. If for some

real ε > 0 we have |B| ≤ (1− ε)|A| and |B −B| ≥ ε−1|A|, then

|A+B| ≥ |A|+ |B|

and

|A
τ
+ B| ≥ |A|+ |B| − 2

for any mapping τ : B → A.

Theorem 5. Suppose that p is a prime and A,B ⊆ Z/pZ are non-empty. If |A| < p/2

and |B| <
√
|A|+ 1, then for any mapping τ : B → A we have

|A
τ
+ B| ≥ |A|+ |B| − 3.
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For the proof just notice that if 2 ≤ |B| ≤ (p+ 1)/2, then by the Cauchy-Davenport

inequality there exists a subset C ⊆ B − B with C ∩ (−C) = ∅ and |C| = |B| − 1,

whence, in view of Lemma 2,

µA(B −B) ≥ µA(C) ≥
(

1− |C|
|A|

)
|C| = |B| − 1− (|B| − 1)2

|A|
> |B| − 2.

Theorem 6. Suppose that p is a prime and A,B ⊆ Z/pZ. If 1 < |A| < p/2 and

0 < |B| < min{
√
p/8, c|A|/ ln |A|}, where c is a positive absolute constant, then for

any mapping τ : B → A we have

|A
τ
+ B| ≥ |A|+ |B| − 3.

In connection with the last two theorems we notice that a construction presented

in [L00] shows that for (non-empty) subsets A,B ⊆ Z/pZ and a mapping τ : B → A,

the estimate |A
τ
+ B| ≥ |A| + |B| − 3 may fail in general, even if the right-hand side

is substantially smaller than p. A question raised in [L00] and ramaining open till now

is whether this estimate holds true under the additional assumption that τ is injective

and |A|+ |B| ≤ p.
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