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FOR SETS WITH 3A 6= Zn5

VSEVOLOD F. LEV

Abstract. As an easy corollary of Kneser’s Theorem, if A is a subset of the ele-
mentary abelian group Zn

5 of density 5−n|A| > 0.4, then 3A = Zn
5 . We establish the

complementary stability result: if 5−n|A| > 0.3 and 3A 6= Zn
5 , then A is contained

in a union of two cosets of an index-5 subgroup of Zn
5 . Here the density bound 0.3

is sharp.
Our argument combines combinatorial reasoning with a somewhat non-standard

application of the character sum technique.

1. Introduction

For a subset A of an (additively written) abelian group G, and a positive integer

k, denote by kA the k-fold sumset of A:

kA := {a1 + · · ·+ ak : a1, . . . , ak ∈ A}.

How large can A be given that kA 6= G? Assuming that G is finite, let

Mk(G) := max{|A| : A ⊆ G, kA 6= G}.

This quantity was introduced and completely determined by Bajnok in [B15]. The

corresponding result, expressed in [B15] in a somewhat different notation, can be

easily restated in our present language.

Theorem 1 (Bajnok [B15, Theorem 6]). For any finite abelian group G and integer

k ≥ 1, writing m := |G|, we have

Mk(G) = max

{(⌊
d− 2

k

⌋
+ 1

)
m

d
: d | m

}
(where b·c is the floor function, and the maximum extends over all divisors d of m).

Once Mk(G) is known, it is natural to investigate the associated stability problem:

what is the structure of those A ⊆ G with kA 6= G and |A| close to Mk(G)?
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There are two “trivial” ways to construct large subsets A ⊆ G satisfying kA 6= G.

One is to simply remove elements from a yet larger subset with this property; another

is to fix a subgroup H < G and a set A ⊆ G/H with kA 6= G/H, and define A ⊆ G

to be the full inverse image of A under the canonical homomorphism G→ G/H. It is

thus natural to consider as “primitive” those subsets A ⊆ G with kA 6= G which are

maximal subject to this property and, in addition, cannot be obtained by the lifting

procedure just described.

To proceed, we recall that the period of a subset A ⊆ G, denoted π(A) below, is

the subgroup consisting of all elements g ∈ G such that A+ g = A:

π(A) := {g ∈ G : A+ g = A}.

Alternatively, π(A) can be defined as the (unique) maximal subgroup such that A

is a union of its cosets. The set A is called aperiodic if π(A) = {0}, and periodic

otherwise.

It is readily seen that a set A ⊆ G with kA 6= G can be obtained by lifting if and

only if it is periodic. Accordingly, motivated by the discussion above, for a finite

abelian group G and integer k ≥ 1, we define Nk(G) to be the largest size of an

aperiodic subset A ⊆ G satisfying kA 6= G and maximal under this condition:

Nk(G) := max{|A| : A ⊆ G, π(A) = {0},
kA 6= G and k(A ∪ {g}) = G for each g ∈ G \ A}

(subject to the agreement that max∅ = 0). Clearly, we have Nk(A) ≤ Mk(A), and if

the inequality is strict (which is often the case), then determining Nk(G) is, in fact,

a stability problem; for if kA 6= G and |A| > Nk(G), then A is contained in the

set obtained by lifting a subset A ⊆ G/H with kA 6= G/H, for a proper subgroup

H < G.

The quantity Nk(G) is quite a bit subtler than Mk(G) and indeed, the latter can

be easily read off from the former; specifically, it is not difficult to show that

Mk(G) = max{|H| · Nk(G/H) : H ≤ G}.

An invariant tightly related to Nk(G) was studied in [KL09]. To state (the relevant

part of) the results obtained there, following [KL09], we denote by diam+(G) the

smallest non-negative integer k such that every generating subset A ⊆ G satisfies

{0} ∪A ∪ · · · ∪ kA = G; that is, k(A ∪ {0}) = G. As shown in [KL09, Theorem 2.1],
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if G is of type (m1, . . . ,mr) with positive integers m1 | · · · | mr, then

diam+(G) =
r∑
i=1

(mi − 1). (1)

Theorem 2 ([KL09, Theorem 2.5 and Proposition 2.8]). For any finite abelian group

G and integer k ≥ 1, we have

Nk(G) ≤
⌊
|G| − 2

k

⌋
+ 1.

If G is cyclic of order |G| ≥ k + 2 then, indeed, equality holds.

Theorem 3 ([KL09, Theorem 2.4]). For any finite abelian group G and integer k ≥ 1,

denoting by rk(G) the smallest number of generators of G, we have

Nk(G) =



|G| − 1 if k = 1,⌊
1
2
|G|
⌋

if k = 2 < diam+(G),

rk(G) + 1 if k = diam+(G)− 1,

1 if k ≥ diam+(G) and |G| is prime,

0 if k ≥ diam+(G) and |G| is composite.

Theorem 4 ([KL09, Theorem 2.7]). For any finite abelian group G with diam+(G) ≥
4, we have

N3(G) =

{
1
3
|G| if 3 divides |G|,

1
3

(|G| − 1) if every divisor of |G| is congruent to 1 modulo 3.

In Section 4, we explain exactly how Theorems 2–4 follow from the results of [KL09].

Theorem 4 is easy to extend to show that, in fact, the equality

N3(G) =
1

3
(|G| − 1)

holds true for any finite abelian group G decomposable into a direct sum of its cyclic

subgroups of orders congruent to 1 modulo 3. Here the upper bound is an immediate

consequence of Theorem 2, while a construction matching this bound is as follows.

Example 1. Suppose that G = G1 ⊕ · · · ⊕Gn, where G1, . . . , Gn ≤ G are cyclic with

|Gi| ≡ 1 (mod 3), for each i ∈ [1, n]. Write |G1| = 3m+ 1 and let H := G2⊕· · ·⊕Gn

so that G = G1 ⊕ H. Assuming that N3(H) = 1
3
(|H| − 1), find an aperiodic subset

S ⊆ H with |S| = 1
3
(|H|−1), such that 3S 6= H and S is maximal subject to this last

condition. (If n = 1 and H is the trivial group, then take S = ∅.) Fix a generator

e ∈ G1, and consider the set

A := H ∪ (e+H) ∪ · · · ∪ ((m− 1)e+H) ∪ (me+ S) ⊆ G.
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It is readily seen that 3A 6= G and A is maximal with this property. Furthermore,

|A| = m|H|+ |S| = 1

3
(|G| − 1)

implying gcd(|A|, |G|) = 1, whence A is aperiodic. As a result, N3(G) ≥ |A| =
1
3
(|G| − 1).

Applying this construction recursively, we conclude that N3(G) ≥ 1
3
(|G|−1) when-

ever G is a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3.

In contrast with Theorem 3 establishing the values of N1(G) and N2(G) for all finite

abelian groups G, Theorem 4 and the remark following it address certain particular

groups only, and it is by far not obvious whether N3(G) can be found explicitly in

the general case. In this situation it is interesting to investigate at least the most

“common” families of groups not covered by Theorem 4 and Example 1, such as the

homocyclic groups Znm with m ≡ 2 (mod 3).

An important result of Davydov and Tombak [DT89], well known for its applica-

tions in coding theory and finite geometries, settles the problem for the groups Zn2 ;

stated in our terms, it reads as

N3(Zn2 ) = 2n−2 + 1, n ≥ 4.

The goal of this paper is to resolve the next major open case, determining the value

of N3(Zn5 ). To state our main result, we need two more observations.

Example 2. If A ⊂ Zn5 is a union of two cosets of a subgroup of index 5, then 3A 6= Zn5 ,

and A is maximal with this property: that is, 3(A ∪ {g}) = Zn5 for every element

g ∈ Zn5 \ A.

We omit the (straightforward) verification.

Example 3. Let n ≥ 2 be an integer. Fix a subgroup H < Zn5 of index 5, an element

e ∈ Zn5 with Zn5 = H ⊕ 〈e〉, and a set S ⊆ H such that |S| = (|H| − 1)/2 and 0 /∈ 2S.

Finally, let

A := (H \ {0}) ∪ (e+ S) ∪ {2e}.
We have then |A| = (3 ·5n−1−1)/2, and hence A is aperiodic. Also, it is easily verified

that 3A = Zn5 \ {4e}, and that 4e ∈ 3(A ∪ {g}) for any g ∈ Zn5 \ A.

The last example shows that

N3(Zn5 ) ≥ 1

2
(3 · 5n−1 − 1), n ≥ 2.

With this estimate in view, we can eventually state the main result of our paper.
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Theorem 5. Suppose that n is a positive integer, and A ⊆ Zn5 satisfies 3A 6= Zn5 . If

|A| > 3 ·5n−1/2, then A is contained in a union of two cosets of a subgroup of index 5.

Consequently, in view of Theorem 2 and Example 3,

N3(Zn5 ) =

{
2 if n = 1,
1
2

(3 · 5n−1 − 1) if n ≥ 2.

We collect several basic results used in the proof of Theorem 5 in the next sec-

tion; the proof itself is presented in Section 3. In Section 4 we explain exactly how

Theorems 2– 4 follow from the results of [KL09].

In conclusion, we remark that any finite abelian group not addressed in Example 1

has a direct-summand subgroup of order congruent to 2 modulo 3, and Example 3

generalizes onto “most” of such groups, as follows.

Example 4. Suppose that the finite abelian group G has a direct-summand subgroup

G1 < G of order |G1| = 3m+ 2 with integer m ≥ 1, and find a generator e ∈ G1 and

a subgroup H < G such that G = G1 ⊕H.

Assuming first that |H| is odd, fix a subset S ⊆ H with 0 /∈ 2S and |S| = 1
2

(|H|−1),

and let

A := H ∪ (e+H) ∪ · · · ∪
(
(m− 2)e+H

)
∪
(
(m− 1)e+ (H \ {0})

)
∪ (me+ S) ∪ {(m+ 1)e}.

A simple verification shows that (3m+1)e /∈ 3A and A is maximal with this property.

Furthermore, since there is a unique H-coset containing exactly |H| − 1 elements of

A, we have π(A) ≤ H, and since there is an H-coset containing exactly one element

of A, we actually have π(A) = {0}. Therefore,

N3(G) ≥ |A| = (m|H| − 1) + |S|+ 1 =
2m+ 1

6m+ 4
|G| − 1

2
.

Assuming now that |H| is even, fix arbitrarily an element g ∈ H not representable

in the form g = 2h with h ∈ H, find a subset S ⊆ H with g /∈ 2S and |S| = 1
2
|H|,

and let

A := H ∪ (e+H) ∪ · · · ∪
(
(m− 2)e+H

)
∪
(
(m− 1)e+ (H \ {g})

)
∪ (me+ S) ∪ {(m+ 1)e}.

We have then (3m + 1)e + g /∈ 3A, and A is maximal with this property. Also, it is

not difficult to see that π(A) = {0}. Hence,

N3(G) ≥ |A| = (m|H| − 1) + |S|+ 1 =
2m+ 1

6m+ 4
|G|.
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2. Auxiliary Results

For subsets A and B of an abelian group, we write A+B := {a+b : a ∈ A, b ∈ B}.
The following immediate corollary from the pigeonhole principle will be used re-

peatedly.

Lemma 1. If A and B are subsets of a finite abelian group G such that A+B 6= G,

then |A|+ |B| ≤ |G|.

An important tool utilized in our argument is the following result that we will refer

to below as Kneser’s Theorem.

Theorem 6 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then

|A+B| ≥ |A|+ |B| − |π(A+B)|.

Finally, we need the following lemma used in Kneser’s original proof of his theorem.

Lemma 2 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then

|A ∪B|+ |π(A ∪B)| ≥ min{|A|+ |π(A)|, |B|+ |π(B)|}.

3. Proof of Theorem 5

We start with a series of results preparing the ground for the proof. Unless ex-

plicitly indicated, at this stage we do not assume that A satisfies the assumptions of

Theorem 5.

For subsets A,B ⊆ Zn5 with 0 < |B| < ∞, by the density of A in B we mean the

quotient |A ∩ B|/|B|. In the case where B = Zn5 , we speak simply about the density

of A.

Proposition 1. Let n ≥ 1 be an integer, and suppose that A ⊆ Zn5 is a subset of

density larger than 0.3. If 3A 6= Zn5 , then A cannot have non-empty intersections with

exactly three cosets of an index-5 subgroup of Zn5 .

Proof. Assuming that 3A 6= Zn5 and F < Zn5 is an index-5 subgroup such that A

intersects exactly three of its cosets, we obtain a contradiction.

Translating A appropriately, we assume without loss of generality that 0 /∈ 3A.

Fix e ∈ Zn5 such that Zn5 = F ⊕ 〈e〉, and for i ∈ [0, 4] let Ai := (A − ie) ∩ F ; thus,

A = A0 ∪ (e+ A1) ∪ (2e+ A2) ∪ (3e+ A3) ∪ (4e+ A4) with exactly three of the sets

Ai non-empty. Considering the action of the automorphisms of Z5 on its two-element

subsets (equivalently, passing from e to 2e, 3e, or 4e, if necessary), we further assume

that one of the following holds:
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(i) A2 = A3 = ∅;

(ii) A3 = A4 = ∅;

(iii) A0 = A4 = ∅.

We consider these three cases separately.

Case (i): A2 = A3 = ∅. In this case we have A = A0 ∪ (e + A1) ∪ (4e + A4), and

from 0 /∈ 3A we obtain 0 /∈ A0 + A1 + A4. Consequently, |A0| + |A1 + A4| ≤ |F | by

Lemma 1, whence

|A0|+ max{|A1|, |A4|} ≤ |F |

and similarly,

|A1|+ max{|A0|, |A4|} ≤ |F |,
|A4|+ max{|A0|, |A1|} ≤ |F |.

Thus, denoting by M the largest, and m the second largest of the numbers |A0|, |A1|,
and |A4|, we have M +m ≤ |F |. It follows that

|A| = |A0|+ |A1|+ |A4| ≤
3

2
(M +m) ≤ 3

2
|F |,

contradicting the density assumption |A| > 0.3 · 5n.

Case (ii): A3 = A4 = ∅. In this case from 0 /∈ 3A we get 3A0 6= F and A1 + 2A2 6= F ,

whence also 2A0 6= F and A1+A2 6= F and therefore 2|A0| ≤ |F | and |A1|+|A2| ≤ |F |
by Lemma 1. This yields

|A| = |A0|+ |A1|+ |A2| ≤
3

2
|F |,

a contradiction as above.

Case (iii): A0 = A4 = ∅. Here we have 2A1 + A3 6= F and A1 + 2A2 6= F implying

|A1| + |A3| ≤ |F | and 2|A2| ≤ |F |, respectively. This leads to a contradiction as in

Case (ii). �

Lemma 3. Let n ≥ 1 be an integer, and suppose that A ⊆ Zn5 . If 2A has density

smaller than 0.5, then A has density smaller than 0.25.

Proof. Write H := π(2A) and let ϕH : Zn5 → Zn5/H be the canonical homomorphism.

Applying Kneser’s theorem to the set A+H and observing that 2(A+H) = 2A+H =

2A, we get |2A| ≥ 2|A + H| − |H|, whence |ϕH(2A)| ≥ 2|ϕH(A)| − 1. If the density

of 2A in Zn5 is smaller than 0.5, then so is the density of ϕH(2A) in Zn5/H (in fact,

the two densities are equal); hence, in this case

1

2
|Zn5/H| > |ϕH(2A)| ≥ 2|ϕH(A)| − 1.
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This yields |ϕH(A)| < 1
4

(
|Zn5/H| + 2

)
and thus, indeed, |ϕH(A)| < 1

4
|Zn5/H| as

|Zn5/H| ≡ 1 (mod 4). It remains to notice that the density of A in Zn5 does not

exceed the density of ϕH(A) in Zn5/H. �

Proposition 2. Let n ≥ 1 be an integer, and suppose that A ⊆ Zn5 is a subset of

density larger than 0.3, such that 3A 6= Zn5 . If A has density larger than 0.5 in a coset

of an index-5 subgroup F < Zn5 , then A has non-empty intersections with at most

three cosets of F .

Proof. Fix e ∈ Zn5 with Zn5 = F ⊕ 〈e〉, and for i ∈ [0, 4] set Ai := (A− ie) ∩ F ; thus,

A = A0∪(e+A1)∪· · ·∪(4e+A4). Having A replaced with its appropriate translate, we

can assume that A0 has density larger than 0.5 in F , whence 2A0 = F by Lemma 1.

If now Ai is non-empty for some i ∈ [1, 4], then ie+ F = (ie+Ai) + 2A0 ⊆ 3A. This

shows that at least one of the sets Ai is empty. Moreover, we can assume that exactly

one of them is empty, as otherwise the proof is over. Replacing e with one of 2e, 3e,

or 4e, is necessary, we assume that A4 = ∅ while Ai 6= ∅ for i ∈ [1, 3], and aim to

obtain a contradiction. Notice, that

A = A0 ∪ (e+ A1) ∪ (2e+ A2) ∪ (3e+ A3),

and that ie+F ⊆ 3A for each i ∈ [1, 3] by the observation above, implying 4e+F *
3A. The last condition yields

A0 +
(
(A1 + A3) ∪ 2A2

)
6= F, (2)

and it follows from Lemma 1 that

|A0|+ |(A1 + A3) ∪ 2A2| ≤ |F |. (3)

Notice, that the last estimate implies |2A2| ≤ |F | − |A0| < 0.5|F |, whence

|A2| < 0.25|F | (4)

by Lemma 3.

Let H be the period of the left-hand side of (2); thus, H is a proper subgroup of

F , and we claim that, in fact,

|H| ≤ 5−2|F |. (5)

To see this, suppose for a contradiction that |F/H| = 5. Denote by ϕH the canonical

homomorphism Zn5 → Zn5/H. From |A0| > 0.5|F | we conclude that |ϕH(A0)| ≥ 3,

and then (2) along with Lemma 1 shows that

|ϕH((A1 + A3) ∪ 2A2)| ≤ 5− |ϕH(A0)| ≤ 2.
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This gives |ϕH(A2)| = 1, min{|ϕH(A1)|, |ϕH(A3)|} = 1, and max{|ϕH(A1)|, |ϕH(A3)|} ≤
5− |ϕH(A0)|. As a result,

|ϕH(A0)|+ |ϕH(A1)|+ |ϕH(A2)|+ |ϕH(A3)| ≤ 7,

implying |A| = |A0| + |A1| + |A2| + |A3| ≤ 7|H| < 1.5|F |, contrary to the density

assumption. This proves (5).

Since π((A1 + A3) ∪ 2A2) ≤ H by the definition of the subgroup H, applying

subsequently Lemma 2 and then Kneser’s theorem we obtain

|(A1 + A3) ∪ 2A2| ≥ min{|A1 + A3|+ |π(A1 + A3)|, |2A2|+ |π(2A2)|} − |H|
≥ min{|A1|+ |A3|, 2|A2|} − |H|. (6)

If |A1|+ |A3| ≤ 2|A2|, then from (3), (6), (4), and (5),

|F | ≥ |A0|+ |A1|+ |A3| − |H| = |A| − |A2| − |H|

>
3

2
|F | − 1

4
|F | − 1

25
|F | = 121

100
|F |,

a contradiction. Thus, we have

|A1|+ |A3| > 2|A2|

and then

|A0|+ 2|A2| ≤ |F |+ |H|

by (3) and (6). The latter estimate gives

3

2
|F | < |A| = |A0|+ |A1|+ |A2|+ |A3| ≤

|F |+ |H|
2

+
|A0|

2
+ |A1|+ |A3|,

whence
1

2
|A0|+ |A1|+ |A3| > |F | −

1

2
|H|.

Using again (3) and applying Kneser’s theorem, we now obtain

|F | ≥ |A0|+ |A1 + A3| ≥ |A0|+ |A1|+ |A3| − |π(A1 + A3)|

>
1

2
|A0|+ |F | −

1

2
|H| − |π(A1 + A3)|

leading, in view of (5), to |π(A1 +A3)| ≥ (|A0| − |H|)/2 > |F |/5 and thus to π(A1 +

A3) = F . This, however, means that A1 + A3 = F , contradicting (2). �

Propositions 1 and 2 show that to establish Theorem 5, it suffices to consider sets

A ⊆ Zn5 with density smaller than 0.5 in every coset of every index-5 subgroup.
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Lemma 4. Let n ≥ 1 be an integer, and suppose that A,B,C ⊆ Zn5 are subsets of

densities α, β, and γ, respectively. If 0.4 < α, β < 0.5 and α + β + 3γ > 1.5, then

A+B + C = Zn5 .

Proof. Let H := π(A + B + C); assuming that H 6= Zn5 , we obtain a contradiction.

As above, let ϕH : Zn5 → Zn5/H denote the canonical homomorphism.

If |Zn5/H| = 5 then, in view of |A|/|H| = 5α > 2 we have |ϕH(A)| ≥ 3. Similarly,

|ϕH(B)| ≥ 3, and it follows that ϕH(A) + ϕH(B) = Zn5/H; that is, A+B +H = Zn5 .

Hence, A+B + C = (A+B +H) + C = Zn5 , contradicting the assumption H 6= Zn5 .

If |Zn5/H| ≥ 125 then, by Kneser’s Theorem and taking into account that

π(A+B) ≤ π(A+B + C) = H, (7)

we have

|A+B + C| ≥ |A+B|+ |C| − |H|
≥ |A|+ |B|+ |C| − 2|H|

=
2

3
|A|+ 2

3
|B|+ 1

3

(
|A|+ |B|+ 3|C|)− 2|H|

>
(2

3
· 0.4 +

2

3
· 0.4 +

1

3
· 1.5− 2

125

)
· 5n

> 5n,

a contradiction.

Finally, consider the situation where |Zn5/H| = 25. In this case |A|/|H| = 25α > 10

whence |A + H| ≥ 11|H| and similarly, |B + H| ≥ 11|H|. In view of (7), Kneser’s

Theorem gives

|A+B +H| = |(A+H) + (B +H)| ≥ |A+H|+ |B +H| − |H| ≥ 21|H|.

Also,

|C|/|H| = 25γ >
25

3
(1.5− α− β) >

25

6
> 4.

Consequently, |C +H| ≥ 5|H| and therefore

|A+B +H|+ |C +H| ≥ 26|H| > 5n.

Lemma 1 now implies A + B + C = (A + B + H) + (C + H) = Zn5 , contrary to the

assumption H 6= Zn5 . �

Proposition 3. Let n ≥ 1 be an integer, and suppose that A ⊆ Zn5 is a subset of

density larger than 0.3, such that 3A 6= Zn5 . If F < Zn5 is an index-5 subgroup with

the density of A in every F -coset smaller than 0.5, then there is at most one F -coset

where the density of A is larger than 0.4.
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Proof. Suppose for a contradiction that there are two (or more) F -cosets containing

more than 0.4|F | elements ofA each. ShiftingA and choosing e ∈ Zn5\F appropriately,

we can then write A = A0 ∪ (e + A1) ∪ (2e + A2) ∪ (3e + A3) ∪ (4e + A4) with

A0, A1, A2, A3, A4 ⊆ F satisfying min{|A0|, |A1|} > 0.4|F |.
By Lemma 4 (applied to the group F ), we have

3A0 = 2A0 + A1 = A0 + 2A1 = 3A1 = F,

implying F ∪ (e+ F )∪ (2e+ F )∪ (3e+ F ) ⊆ 3A and, consequently, 4e+ F 6⊆ 3A by

the assumption 3A 6= Zn5 . Furthermore, if we had 2|A0| + 3|A4| > 1.5|F |, this would

imply 2A0 + A4 = F by Lemma 4, resulting in 4e+ F ⊆ 3A; thus,

2|A0|+ 3|A4| < 1.5|F |. (8)

Similarly,

|A0|+ |A1|+ 3|A3| < 1.5|F | (9)

and

2|A1|+ 3|A2| < 1.5|F | (10)

(as otherwise by Lemma 4 we would have A0 + A1 + A3 = F and 2A1 + A2 = F ,

respectively, resulting in 4e+ F ⊆ 3A). Adding up (8)–(10) we obtain

|A| = |A0|+ |A1|+ |A2|+ |A3|+ |A4| < 1.5|F | = 0.3 · 5n,

contrary to the assumption on the density of A. �

We now use Fourier analysis to complete the argument and prove Theorem 5.

Suppose that n ≥ 2, and that a set A ⊆ Zn5 has density α > 0.3 and satisfies

3A 6= Zn5 ; we want to show that A is contained in a union of two cosets of an index-5

subgroup. Having translated A appropriately, we can assume that 0 /∈ 3A. Denoting

by 1A the indicator function of A, consider the Fourier coefficients

1̂A(χ) := 5−n
∑
a∈A

χ(a), χ ∈ Ẑn5 .

For every character χ ∈ Ẑn5 , find a cube root of unity ζ(χ) such that, letting z(χ) :=

−1̂A(χ)ζ(χ), we have <(z(χ)) ≥ 0. The assumption 0 /∈ 3A gives∑
χ

(1̂A(χ))3 = 0.

Consequently, ∑
χ 6=1

<((z(χ))3) = <
(∑
χ 6=1

(−1̂A(χ))3
)

= α3,
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and since <(z) ≥ 0 implies <(z3) ≤ |z|2<(z) (as one can easily verify), it follows that∑
χ 6=1

|z(χ)|2<(z(χ)) ≥ α3.

Comparing this to ∑
χ 6=1

|z(χ)|2 = α(1− α)

(which is an immediate corollary of the Parseval identity), we conclude that there

exists a non-principal character χ such that

<(z(χ)) ≥ α2

1− α
. (11)

In view of α > 0.3, it follows that <(−1̂A(χ)ζ(χ)) > 9
70

.

Replacing χ with the conjugate character, if needed, we can assume that ζ(χ) = 1

or ζ(χ) = exp(2πi/3). Let F := kerχ, fix e ∈ Zn5 with χ(e) = exp(2πi/5), and for

each i ∈ [0, 4], let αi denote the density of A− ie in F . By Propositions 1 and 2, we

can assume that max{αi : i ∈ [0, 4]} < 0.5, and then by Proposition 3 we can assume

that there is at most one index i ∈ [0, 4] with αi > 0.4; that is, of the five conditions

αi ≤ 0.4 (i ∈ [0, 4]), at most one may fail to hold and must be relaxed to αi < 0.5.

We show that these assumptions are inconsistent with (11). To this end, we consider

two cases.

Case (i): ζ(χ) = 1. In this case we have

α0 + α1 cos(2π/5) + · · ·+ α4 cos(8π/5) = 5<(1̂A(χ)) < − 9

14
. (12)

For each k ∈ [0, 4], considering α0, . . . , α4 as variables, we now minimize the left-hand

side of (12) under the constrains

α0 + · · ·+ α4 ≥ 1.5, (13)

αk ∈ [0, 0.5], (14)

and

αi ∈ [0, 0.4] for all i ∈ [0, 4], i 6= k. (15)

This is a standard linear optimization problem which can be solved precisely, and

computations show that for every k ∈ [0, 4], the smallest possible value of the expres-

sion under consideration exceeds −9/14. This rules out Case (i).
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Case (ii): ζ(χ) = exp(2πi/3). In this case we have

4∑
j=0

αj cos

(
2π

(
1

3
+
j

5

))
= 5<(1̂A(χ) exp(2πi/3)) < − 9

14
. (16)

Minimizing the left-hand side of (16) under the constrains (13)–(15), we see that its

minimum is larger than −9/14. This rules out Case (ii), completing the proof of

Theorem 5.

4. From t+ρ (G) to Nk(G)

In Section 1, we mentioned the close relation between the quantity Nk(G) and

an invariant introduced in [KL09]. Denoted by t+ρ (G) in [KL09], this invariant was

defined for integer ρ ≥ 1 and a finite abelian group G to be the largest size of an

aperiodic generating subset A ⊆ G such that (ρ− 1)(A∪{0}) 6= G and A is maximal

under this condition. It was shown in [KL09] that t+ρ (G) = 0 if ρ > diam+(G),

while otherwise t+ρ (G) is the largest size of an aperiodic subset A ⊆ G satisfying

(ρ − 1)(A ∪ {0}) 6= G and maximal under this condition. Our goal in this section is

to prove the following simple lemma allowing one to “translate” the results of [KL09]

into our present Theorems 2– 4.

Lemma 5. For any finite abelian group G and integer k ≥ 1, we have

t+k+1(G) = Nk(G), (17)

except if |G| is prime and k ≥ |G| − 1, in which case t+k+1(G) = 0 and Nk(G) = 1.

Proof. We show that (17) holds true unless k ≥ diam+(G) and |G| is prime; the rest

follows easily.

Let G denote the set of all aperiodic subsets A ⊆ G, and let G0 be the set of all

aperiodic subsets A ⊆ G with 0 ∈ A.

Since translating a set A ⊆ G affects neither its periodicity, nor the property

kA = G, we have

Nk(G) = max{|A| : A ∈ G0, kA 6= G, k(A ∪ {g}) = G for each g ∈ G \ A}.

As a trivial restatement,

Nk(G) = max{|A| : A ∈ G0, k(A ∪ {0}) 6= G,

k(A ∪ {0} ∪ {g}) = G for each g ∈ G \ A}. (18)

However, letting g = 0 shows that the conditions

k(A ∪ {0}) 6= G and k(A ∪ {0} ∪ {g}) = G for each g ∈ G \ A
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automatically imply 0 ∈ A. Thus, in (18), the assumption A ∈ G0 can be replaced

with A ∈ G, meaning that Nk(G) is the largest size of an aperiodic subset A ⊆ G

satisfying k(A ∪ {0}) 6= G and maximal under this condition; consequently, taking

into account the discussion at the beginning of this section, if k < diam+(G), then

Nk(G) = t+k+1(G).

Consider now the situation where k ≥ diam+(G). In this case t+k+1(G) = 0, and by

the definition of diam+(G), for any generating subset A ⊆ G we have k(A∪{0}) = G.

Suppose that A ∈ G satisfies kA 6= G and is maximal subject to this condition. (If

such sets do not exist, then Nk(G) = 0 = t+k+1(G).) Translating A appropriately,

we can assume that 0 ∈ A, and then k(A ∪ {0}) = kA 6= G. It follows that A

is not generating; that is, H := 〈A〉 is a proper subgroup of G. Furthermore, the

maximality of A shows that A = H is a maximal subgroup, and aperiodicity of A

gives A = H = {0}. Therefore G has prime order. �
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