STABILITY RESULT FOR SETS WITH $3 A \neq \mathbb{Z}_{5}^{n}$

VSEVOLOD F. LEV

Abstract

As an easy corollary of Kneser's Theorem, if A is a subset of the elementary abelian group \mathbb{Z}_{5}^{n} of density $5^{-n}|A|>0.4$, then $3 A=\mathbb{Z}_{5}^{n}$. We establish the complementary stability result: if $5^{-n}|A|>0.3$ and $3 A \neq \mathbb{Z}_{5}^{n}$, then A is contained in a union of two cosets of an index- 5 subgroup of \mathbb{Z}_{5}^{n}. Here the density bound 0.3 is sharp.

Our argument combines combinatorial reasoning with a somewhat non-standard application of the character sum technique.

1. Introduction

For a subset A of an (additively written) abelian group G, and a positive integer k, denote by $k A$ the k-fold sumset of A :

$$
k A:=\left\{a_{1}+\cdots+a_{k}: a_{1}, \ldots, a_{k} \in A\right\} .
$$

How large can A be given that $k A \neq G$? Assuming that G is finite, let

$$
\mathrm{M}_{k}(G):=\max \{|A|: A \subseteq G, k A \neq G\}
$$

This quantity was introduced and completely determined by Bajnok in [B15]. The corresponding result, expressed in [B15] in a somewhat different notation, can be easily restated in our present language.

Theorem 1 (Bajnok [B15, Theorem 6]). For any finite abelian group G and integer $k \geq 1$, writing $m:=|G|$, we have

$$
\mathrm{M}_{k}(G)=\max \left\{\left(\left\lfloor\frac{d-2}{k}\right\rfloor+1\right) \frac{m}{d}: d \mid m\right\}
$$

(where $\lfloor\cdot\rfloor$ is the floor function, and the maximum extends over all divisors d of m).
Once $\mathrm{M}_{k}(G)$ is known, it is natural to investigate the associated stability problem: what is the structure of those $A \subseteq G$ with $k A \neq G$ and $|A|$ close to $\mathrm{M}_{k}(G)$?

2010 Mathematics Subject Classification. Primary: 11P70; secondary: 20K01, 05D99, 11B75.
Key words and phrases. Sumsets, stability, finite abelian groups, Kneser's theorem.

There are two "trivial" ways to construct large subsets $A \subseteq G$ satisfying $k A \neq G$. One is to simply remove elements from a yet larger subset with this property; another is to fix a subgroup $H<G$ and a set $\bar{A} \subseteq G / H$ with $k \bar{A} \neq G / H$, and define $A \subseteq G$ to be the full inverse image of \bar{A} under the canonical homomorphism $G \rightarrow G / H$. It is thus natural to consider as "primitive" those subsets $A \subseteq G$ with $k A \neq G$ which are maximal subject to this property and, in addition, cannot be obtained by the lifting procedure just described.

To proceed, we recall that the period of a subset $A \subseteq G$, denoted $\pi(A)$ below, is the subgroup consisting of all elements $g \in G$ such that $A+g=A$:

$$
\pi(A):=\{g \in G: A+g=A\} .
$$

Alternatively, $\pi(A)$ can be defined as the (unique) maximal subgroup such that A is a union of its cosets. The set A is called aperiodic if $\pi(A)=\{0\}$, and periodic otherwise.

It is readily seen that a set $A \subseteq G$ with $k A \neq G$ can be obtained by lifting if and only if it is periodic. Accordingly, motivated by the discussion above, for a finite abelian group G and integer $k \geq 1$, we define $\mathrm{N}_{k}(G)$ to be the largest size of an aperiodic subset $A \subseteq G$ satisfying $k A \neq G$ and maximal under this condition:

$$
\begin{aligned}
\mathrm{N}_{k}(G):=\max \{|A|: A \subseteq G, \pi(A) & =\{0\}, \\
& k A \neq G \text { and } k(A \cup\{g\})=G \text { for each } g \in G \backslash A\}
\end{aligned}
$$

(subject to the agreement that $\max \varnothing=0$). Clearly, we have $\mathrm{N}_{k}(A) \leq \mathrm{M}_{k}(A)$, and if the inequality is strict (which is often the case), then determining $\mathrm{N}_{k}(G)$ is, in fact, a stability problem; for if $k A \neq G$ and $|A|>\mathrm{N}_{k}(G)$, then A is contained in the set obtained by lifting a subset $\bar{A} \subseteq G / H$ with $k \bar{A} \neq G / H$, for a proper subgroup $H<G$.

The quantity $\mathrm{N}_{k}(G)$ is quite a bit subtler than $\mathrm{M}_{k}(G)$ and indeed, the latter can be easily read off from the former; specifically, it is not difficult to show that

$$
\mathbf{M}_{k}(G)=\max \left\{|H| \cdot \mathbf{N}_{k}(G / H): H \leq G\right\} .
$$

An invariant tightly related to $\mathrm{N}_{k}(G)$ was studied in [KL09]. To state (the relevant part of) the results obtained there, following [KL09], we denote by $\operatorname{diam}^{+}(G)$ the smallest non-negative integer k such that every generating subset $A \subseteq G$ satisfies $\{0\} \cup A \cup \cdots \cup k A=G$; that is, $k(A \cup\{0\})=G$. As shown in [KL09, Theorem 2.1],
if G is of type $\left(m_{1}, \ldots, m_{r}\right)$ with positive integers $m_{1}|\cdots| m_{r}$, then

$$
\begin{equation*}
\operatorname{diam}^{+}(G)=\sum_{i=1}^{r}\left(m_{i}-1\right) \tag{1}
\end{equation*}
$$

Theorem 2 ([KL09, Theorem 2.5 and Proposition 2.8]). For any finite abelian group G and integer $k \geq 1$, we have

$$
\mathrm{N}_{k}(G) \leq\left\lfloor\frac{|G|-2}{k}\right\rfloor+1
$$

If G is cyclic of order $|G| \geq k+2$ then, indeed, equality holds.
Theorem 3 ([KL09, Theorem 2.4]). For any finite abelian group G and integer $k \geq 1$, denoting by $\operatorname{rk}(G)$ the smallest number of generators of G, we have

$$
\mathrm{N}_{k}(G)= \begin{cases}|G|-1 & \text { if } k=1 \\ \left\lfloor\frac{1}{2}|G|\right\rfloor & \text { if } k=2<\operatorname{diam}^{+}(G) \\ \operatorname{rk}(G)+1 & \text { if } k=\operatorname{diam}^{+}(G)-1, \\ 1 & \text { if } k \geq \operatorname{diam}^{+}(G) \text { and }|G| \text { is prime } \\ 0 & \text { if } k \geq \operatorname{diam}^{+}(G) \text { and }|G| \text { is composite. }\end{cases}
$$

Theorem 4 ([KL09, Theorem 2.7]). For any finite abelian group G with $\operatorname{diam}^{+}(G) \geq$ 4, we have

$$
\mathrm{N}_{3}(G)= \begin{cases}\frac{1}{3}|G| & \text { if } 3 \text { divides }|G|, \\ \frac{1}{3}(|G|-1) & \text { if every divisor of }|G| \text { is congruent to } 1 \text { modulo } 3 .\end{cases}
$$

In Section 4, we explain exactly how Theorems 2-4 follow from the results of [KL09].
Theorem 4 is easy to extend to show that, in fact, the equality

$$
\mathrm{N}_{3}(G)=\frac{1}{3}(|G|-1)
$$

holds true for any finite abelian group G decomposable into a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3 . Here the upper bound is an immediate consequence of Theorem 2, while a construction matching this bound is as follows.

Example 1. Suppose that $G=G_{1} \oplus \cdots \oplus G_{n}$, where $G_{1}, \ldots, G_{n} \leq G$ are cyclic with $\left|G_{i}\right| \equiv 1(\bmod 3)$, for each $i \in[1, n]$. Write $\left|G_{1}\right|=3 m+1$ and let $H:=G_{2} \oplus \cdots \oplus G_{n}$ so that $G=G_{1} \oplus H$. Assuming that $\mathrm{N}_{3}(H)=\frac{1}{3}(|H|-1)$, find an aperiodic subset $S \subseteq H$ with $|S|=\frac{1}{3}(|H|-1)$, such that $3 S \neq H$ and S is maximal subject to this last condition. (If $n=1$ and H is the trivial group, then take $S=\varnothing$.) Fix a generator $e \in G_{1}$, and consider the set

$$
A:=H \cup(e+H) \cup \cdots \cup((m-1) e+H) \cup(m e+S) \subseteq G
$$

It is readily seen that $3 A \neq G$ and A is maximal with this property. Furthermore,

$$
|A|=m|H|+|S|=\frac{1}{3}(|G|-1)
$$

implying $\operatorname{gcd}(|A|,|G|)=1$, whence A is aperiodic. As a result, $\mathrm{N}_{3}(G) \geq|A|=$ $\frac{1}{3}(|G|-1)$.

Applying this construction recursively, we conclude that $\mathrm{N}_{3}(G) \geq \frac{1}{3}(|G|-1)$ whenever G is a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3.

In contrast with Theorem 3 establishing the values of $\mathrm{N}_{1}(G)$ and $\mathrm{N}_{2}(G)$ for all finite abelian groups G, Theorem 4 and the remark following it address certain particular groups only, and it is by far not obvious whether $\mathrm{N}_{3}(G)$ can be found explicitly in the general case. In this situation it is interesting to investigate at least the most "common" families of groups not covered by Theorem 4 and Example 1, such as the homocyclic groups \mathbb{Z}_{m}^{n} with $m \equiv 2(\bmod 3)$.

An important result of Davydov and Tombak [DT89], well known for its applications in coding theory and finite geometries, settles the problem for the groups \mathbb{Z}_{2}^{n}; stated in our terms, it reads as

$$
\mathrm{N}_{3}\left(\mathbb{Z}_{2}^{n}\right)=2^{n-2}+1, \quad n \geq 4
$$

The goal of this paper is to resolve the next major open case, determining the value of $\mathrm{N}_{3}\left(\mathbb{Z}_{5}^{n}\right)$. To state our main result, we need two more observations.

Example 2. If $A \subset \mathbb{Z}_{5}^{n}$ is a union of two cosets of a subgroup of index 5 , then $3 A \neq \mathbb{Z}_{5}^{n}$, and A is maximal with this property: that is, $3(A \cup\{g\})=\mathbb{Z}_{5}^{n}$ for every element $g \in \mathbb{Z}_{5}^{n} \backslash A$.

We omit the (straightforward) verification.
Example 3. Let $n \geq 2$ be an integer. Fix a subgroup $H<\mathbb{Z}_{5}^{n}$ of index 5 , an element $e \in \mathbb{Z}_{5}^{n}$ with $\mathbb{Z}_{5}^{n}=H \oplus\langle e\rangle$, and a set $S \subseteq H$ such that $|S|=(|H|-1) / 2$ and $0 \notin 2 S$. Finally, let

$$
A:=(H \backslash\{0\}) \cup(e+S) \cup\{2 e\} .
$$

We have then $|A|=\left(3 \cdot 5^{n-1}-1\right) / 2$, and hence A is aperiodic. Also, it is easily verified that $3 A=\mathbb{Z}_{5}^{n} \backslash\{4 e\}$, and that $4 e \in 3(A \cup\{g\})$ for any $g \in \mathbb{Z}_{5}^{n} \backslash A$.

The last example shows that

$$
\mathrm{N}_{3}\left(\mathbb{Z}_{5}^{n}\right) \geq \frac{1}{2}\left(3 \cdot 5^{n-1}-1\right), \quad n \geq 2 .
$$

With this estimate in view, we can eventually state the main result of our paper.

Theorem 5. Suppose that n is a positive integer, and $A \subseteq \mathbb{Z}_{5}^{n}$ satisfies $3 A \neq \mathbb{Z}_{5}^{n}$. If $|A|>3 \cdot 5^{n-1} / 2$, then A is contained in a union of two cosets of a subgroup of index 5 . Consequently, in view of Theorem 2 and Example 3,

$$
\mathrm{N}_{3}\left(\mathbb{Z}_{5}^{n}\right)= \begin{cases}2 & \text { if } n=1 \\ \frac{1}{2}\left(3 \cdot 5^{n-1}-1\right) & \text { if } n \geq 2\end{cases}
$$

We collect several basic results used in the proof of Theorem 5 in the next section; the proof itself is presented in Section 3. In Section 4 we explain exactly how Theorems 2-4 follow from the results of [KL09].

In conclusion, we remark that any finite abelian group not addressed in Example 1 has a direct-summand subgroup of order congruent to 2 modulo 3, and Example 3 generalizes onto "most" of such groups, as follows.

Example 4. Suppose that the finite abelian group G has a direct-summand subgroup $G_{1}<G$ of order $\left|G_{1}\right|=3 m+2$ with integer $m \geq 1$, and find a generator $e \in G_{1}$ and a subgroup $H<G$ such that $G=G_{1} \oplus H$.

Assuming first that $|H|$ is odd, fix a subset $S \subseteq H$ with $0 \notin 2 S$ and $|S|=\frac{1}{2}(|H|-1)$, and let

$$
\begin{aligned}
A:=H \cup(e+H) \cup \cdots \cup(& (m-2) e+H) \\
& \cup((m-1) e+(H \backslash\{0\})) \cup(m e+S) \cup\{(m+1) e\} .
\end{aligned}
$$

A simple verification shows that $(3 m+1) e \notin 3 A$ and A is maximal with this property. Furthermore, since there is a unique H-coset containing exactly $|H|-1$ elements of A, we have $\pi(A) \leq H$, and since there is an H-coset containing exactly one element of A, we actually have $\pi(A)=\{0\}$. Therefore,

$$
\mathrm{N}_{3}(G) \geq|A|=(m|H|-1)+|S|+1=\frac{2 m+1}{6 m+4}|G|-\frac{1}{2} .
$$

Assuming now that $|H|$ is even, fix arbitrarily an element $g \in H$ not representable in the form $g=2 h$ with $h \in H$, find a subset $S \subseteq H$ with $g \notin 2 S$ and $|S|=\frac{1}{2}|H|$, and let

$$
\begin{aligned}
A:=H \cup(e+H) \cup \cdots \cup(& (m-2) e+H) \\
& \cup((m-1) e+(H \backslash\{g\})) \cup(m e+S) \cup\{(m+1) e\} .
\end{aligned}
$$

We have then $(3 m+1) e+g \notin 3 A$, and A is maximal with this property. Also, it is not difficult to see that $\pi(A)=\{0\}$. Hence,

$$
\mathrm{N}_{3}(G) \geq|A|=(m|H|-1)+|S|+1=\frac{2 m+1}{6 m+4}|G| .
$$

2. Auxiliary Results

For subsets A and B of an abelian group, we write $A+B:=\{a+b: a \in A, b \in B\}$. The following immediate corollary from the pigeonhole principle will be used repeatedly.

Lemma 1. If A and B are subsets of a finite abelian group G such that $A+B \neq G$, then $|A|+|B| \leq|G|$.

An important tool utilized in our argument is the following result that we will refer to below as Kneser's Theorem.

Theorem 6 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then

$$
|A+B| \geq|A|+|B|-|\pi(A+B)| .
$$

Finally, we need the following lemma used in Kneser's original proof of his theorem.
Lemma 2 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then

$$
|A \cup B|+|\pi(A \cup B)| \geq \min \{|A|+|\pi(A)|,|B|+|\pi(B)|\} .
$$

3. Proof of Theorem 5

We start with a series of results preparing the ground for the proof. Unless explicitly indicated, at this stage we do not assume that A satisfies the assumptions of Theorem 5.

For subsets $A, B \subseteq \mathbb{Z}_{5}^{n}$ with $0<|B|<\infty$, by the density of A in B we mean the quotient $|A \cap B| /|B|$. In the case where $B=\mathbb{Z}_{5}^{n}$, we speak simply about the density of A.

Proposition 1. Let $n \geq 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is a subset of density larger than 0.3 . If $3 A \neq \mathbb{Z}_{5}^{n}$, then A cannot have non-empty intersections with exactly three cosets of an index- 5 subgroup of \mathbb{Z}_{5}^{n}.

Proof. Assuming that $3 A \neq \mathbb{Z}_{5}^{n}$ and $F<\mathbb{Z}_{5}^{n}$ is an index- 5 subgroup such that A intersects exactly three of its cosets, we obtain a contradiction.

Translating A appropriately, we assume without loss of generality that $0 \notin 3 A$. Fix $e \in \mathbb{Z}_{5}^{n}$ such that $\mathbb{Z}_{5}^{n}=F \oplus\langle e\rangle$, and for $i \in[0,4]$ let $A_{i}:=(A-i e) \cap F$; thus, $A=A_{0} \cup\left(e+A_{1}\right) \cup\left(2 e+A_{2}\right) \cup\left(3 e+A_{3}\right) \cup\left(4 e+A_{4}\right)$ with exactly three of the sets A_{i} non-empty. Considering the action of the automorphisms of \mathbb{Z}_{5} on its two-element subsets (equivalently, passing from e to $2 e, 3 e$, or $4 e$, if necessary), we further assume that one of the following holds:
(i) $A_{2}=A_{3}=\varnothing$;
(ii) $A_{3}=A_{4}=\varnothing$;
(iii) $A_{0}=A_{4}=\varnothing$.

We consider these three cases separately.
Case (i): $A_{2}=A_{3}=\varnothing$. In this case we have $A=A_{0} \cup\left(e+A_{1}\right) \cup\left(4 e+A_{4}\right)$, and from $0 \notin 3 A$ we obtain $0 \notin A_{0}+A_{1}+A_{4}$. Consequently, $\left|A_{0}\right|+\left|A_{1}+A_{4}\right| \leq|F|$ by Lemma 1, whence

$$
\left|A_{0}\right|+\max \left\{\left|A_{1}\right|,\left|A_{4}\right|\right\} \leq|F|
$$

and similarly,

$$
\begin{aligned}
\left|A_{1}\right|+\max \left\{\left|A_{0}\right|,\left|A_{4}\right|\right\} & \leq|F|, \\
\left|A_{4}\right|+\max \left\{\left|A_{0}\right|,\left|A_{1}\right|\right\} & \leq|F| .
\end{aligned}
$$

Thus, denoting by M the largest, and m the second largest of the numbers $\left|A_{0}\right|,\left|A_{1}\right|$, and $\left|A_{4}\right|$, we have $M+m \leq|F|$. It follows that

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{4}\right| \leq \frac{3}{2}(M+m) \leq \frac{3}{2}|F|,
$$

contradicting the density assumption $|A|>0.3 \cdot 5^{n}$.
Case (ii): $A_{3}=A_{4}=\varnothing$. In this case from $0 \notin 3 A$ we get $3 A_{0} \neq F$ and $A_{1}+2 A_{2} \neq F$, whence also $2 A_{0} \neq F$ and $A_{1}+A_{2} \neq F$ and therefore $2\left|A_{0}\right| \leq|F|$ and $\left|A_{1}\right|+\left|A_{2}\right| \leq|F|$ by Lemma 1. This yields

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right| \leq \frac{3}{2}|F|,
$$

a contradiction as above.
Case (iii): $A_{0}=A_{4}=\varnothing$. Here we have $2 A_{1}+A_{3} \neq F$ and $A_{1}+2 A_{2} \neq F$ implying $\left|A_{1}\right|+\left|A_{3}\right| \leq|F|$ and $2\left|A_{2}\right| \leq|F|$, respectively. This leads to a contradiction as in Case (ii).

Lemma 3. Let $n \geq 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$. If $2 A$ has density smaller than 0.5 , then A has density smaller than 0.25 .

Proof. Write $H:=\pi(2 A)$ and let $\varphi_{H}: \mathbb{Z}_{5}^{n} \rightarrow \mathbb{Z}_{5}^{n} / H$ be the canonical homomorphism. Applying Kneser's theorem to the set $A+H$ and observing that $2(A+H)=2 A+H=$ $2 A$, we get $|2 A| \geq 2|A+H|-|H|$, whence $\left|\varphi_{H}(2 A)\right| \geq 2\left|\varphi_{H}(A)\right|-1$. If the density of $2 A$ in \mathbb{Z}_{5}^{n} is smaller than 0.5 , then so is the density of $\varphi_{H}(2 A)$ in \mathbb{Z}_{5}^{n} / H (in fact, the two densities are equal); hence, in this case

$$
\frac{1}{2}\left|\mathbb{Z}_{5}^{n} / H\right|>\left|\varphi_{H}(2 A)\right| \geq 2\left|\varphi_{H}(A)\right|-1
$$

This yields $\left|\varphi_{H}(A)\right|<\frac{1}{4}\left(\left|\mathbb{Z}_{5}^{n} / H\right|+2\right)$ and thus, indeed, $\left|\varphi_{H}(A)\right|<\frac{1}{4}\left|\mathbb{Z}_{5}^{n} / H\right|$ as $\left|\mathbb{Z}_{5}^{n} / H\right| \equiv 1(\bmod 4)$. It remains to notice that the density of A in \mathbb{Z}_{5}^{n} does not exceed the density of $\varphi_{H}(A)$ in \mathbb{Z}_{5}^{n} / H.

Proposition 2. Let $n \geq 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is a subset of density larger than 0.3 , such that $3 A \neq \mathbb{Z}_{5}^{n}$. If A has density larger than 0.5 in a coset of an index-5 subgroup $F<\mathbb{Z}_{5}^{n}$, then A has non-empty intersections with at most three cosets of F.

Proof. Fix $e \in \mathbb{Z}_{5}^{n}$ with $\mathbb{Z}_{5}^{n}=F \oplus\langle e\rangle$, and for $i \in[0,4]$ set $A_{i}:=(A-i e) \cap F$; thus, $A=A_{0} \cup\left(e+A_{1}\right) \cup \cdots \cup\left(4 e+A_{4}\right)$. Having A replaced with its appropriate translate, we can assume that A_{0} has density larger than 0.5 in F, whence $2 A_{0}=F$ by Lemma 1 . If now A_{i} is non-empty for some $i \in[1,4]$, then $i e+F=\left(i e+A_{i}\right)+2 A_{0} \subseteq 3 A$. This shows that at least one of the sets A_{i} is empty. Moreover, we can assume that exactly one of them is empty, as otherwise the proof is over. Replacing e with one of $2 e, 3 e$, or $4 e$, is necessary, we assume that $A_{4}=\varnothing$ while $A_{i} \neq \varnothing$ for $i \in[1,3]$, and aim to obtain a contradiction. Notice, that

$$
A=A_{0} \cup\left(e+A_{1}\right) \cup\left(2 e+A_{2}\right) \cup\left(3 e+A_{3}\right),
$$

and that $i e+F \subseteq 3 A$ for each $i \in[1,3]$ by the observation above, implying $4 e+F \nsubseteq$ $3 A$. The last condition yields

$$
\begin{equation*}
A_{0}+\left(\left(A_{1}+A_{3}\right) \cup 2 A_{2}\right) \neq F \tag{2}
\end{equation*}
$$

and it follows from Lemma 1 that

$$
\begin{equation*}
\left|A_{0}\right|+\left|\left(A_{1}+A_{3}\right) \cup 2 A_{2}\right| \leq|F| . \tag{3}
\end{equation*}
$$

Notice, that the last estimate implies $\left|2 A_{2}\right| \leq|F|-\left|A_{0}\right|<0.5|F|$, whence

$$
\begin{equation*}
\left|A_{2}\right|<0.25|F| \tag{4}
\end{equation*}
$$

by Lemma 3.
Let H be the period of the left-hand side of (2); thus, H is a proper subgroup of F, and we claim that, in fact,

$$
\begin{equation*}
|H| \leq 5^{-2}|F| . \tag{5}
\end{equation*}
$$

To see this, suppose for a contradiction that $|F / H|=5$. Denote by φ_{H} the canonical homomorphism $\mathbb{Z}_{5}^{n} \rightarrow \mathbb{Z}_{5}^{n} / H$. From $\left|A_{0}\right|>0.5|F|$ we conclude that $\left|\varphi_{H}\left(A_{0}\right)\right| \geq 3$, and then (2) along with Lemma 1 shows that

$$
\left|\varphi_{H}\left(\left(A_{1}+A_{3}\right) \cup 2 A_{2}\right)\right| \leq 5-\left|\varphi_{H}\left(A_{0}\right)\right| \leq 2 .
$$

This gives $\left|\varphi_{H}\left(A_{2}\right)\right|=1, \min \left\{\left|\varphi_{H}\left(A_{1}\right)\right|,\left|\varphi_{H}\left(A_{3}\right)\right|\right\}=1$, and $\max \left\{\left|\varphi_{H}\left(A_{1}\right)\right|,\left|\varphi_{H}\left(A_{3}\right)\right|\right\} \leq$ $5-\left|\varphi_{H}\left(A_{0}\right)\right|$. As a result,

$$
\left|\varphi_{H}\left(A_{0}\right)\right|+\left|\varphi_{H}\left(A_{1}\right)\right|+\left|\varphi_{H}\left(A_{2}\right)\right|+\left|\varphi_{H}\left(A_{3}\right)\right| \leq 7,
$$

implying $|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \leq 7|H|<1.5|F|$, contrary to the density assumption. This proves (5).

Since $\pi\left(\left(A_{1}+A_{3}\right) \cup 2 A_{2}\right) \leq H$ by the definition of the subgroup H, applying subsequently Lemma 2 and then Kneser's theorem we obtain

$$
\begin{align*}
\left|\left(A_{1}+A_{3}\right) \cup 2 A_{2}\right| & \geq \min \left\{\left|A_{1}+A_{3}\right|+\left|\pi\left(A_{1}+A_{3}\right)\right|,\left|2 A_{2}\right|+\left|\pi\left(2 A_{2}\right)\right|\right\}-|H| \\
& \geq \min \left\{\left|A_{1}\right|+\left|A_{3}\right|, 2\left|A_{2}\right|\right\}-|H| . \tag{6}
\end{align*}
$$

If $\left|A_{1}\right|+\left|A_{3}\right| \leq 2\left|A_{2}\right|$, then from (3), (6), (4), and (5),

$$
\begin{aligned}
|F| \geq\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{3}\right|-|H|=|A|-\left|A_{2}\right|- & |H| \\
& >\frac{3}{2}|F|-\frac{1}{4}|F|-\frac{1}{25}|F|=\frac{121}{100}|F|,
\end{aligned}
$$

a contradiction. Thus, we have

$$
\left|A_{1}\right|+\left|A_{3}\right|>2\left|A_{2}\right|
$$

and then

$$
\left|A_{0}\right|+2\left|A_{2}\right| \leq|F|+|H|
$$

by (3) and (6). The latter estimate gives

$$
\frac{3}{2}|F|<|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \leq \frac{|F|+|H|}{2}+\frac{\left|A_{0}\right|}{2}+\left|A_{1}\right|+\left|A_{3}\right|,
$$

whence

$$
\frac{1}{2}\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{3}\right|>|F|-\frac{1}{2}|H| .
$$

Using again (3) and applying Kneser's theorem, we now obtain

$$
\begin{aligned}
|F| \geq\left|A_{0}\right|+\left|A_{1}+A_{3}\right| \geq\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{3}\right| & -\left|\pi\left(A_{1}+A_{3}\right)\right| \\
& >\frac{1}{2}\left|A_{0}\right|+|F|-\frac{1}{2}|H|-\left|\pi\left(A_{1}+A_{3}\right)\right|
\end{aligned}
$$

leading, in view of (5), to $\left|\pi\left(A_{1}+A_{3}\right)\right| \geq\left(\left|A_{0}\right|-|H|\right) / 2>|F| / 5$ and thus to $\pi\left(A_{1}+\right.$ $\left.A_{3}\right)=F$. This, however, means that $A_{1}+A_{3}=F$, contradicting (2).

Propositions 1 and 2 show that to establish Theorem 5, it suffices to consider sets $A \subseteq \mathbb{Z}_{5}^{n}$ with density smaller than 0.5 in every coset of every index- 5 subgroup.

Lemma 4. Let $n \geq 1$ be an integer, and suppose that $A, B, C \subseteq \mathbb{Z}_{5}^{n}$ are subsets of densities α, β, and γ, respectively. If $0.4<\alpha, \beta<0.5$ and $\alpha+\beta+3 \gamma>1.5$, then $A+B+C=\mathbb{Z}_{5}^{n}$.
Proof. Let $H:=\pi(A+B+C)$; assuming that $H \neq \mathbb{Z}_{5}^{n}$, we obtain a contradiction. As above, let $\varphi_{H}: \mathbb{Z}_{5}^{n} \rightarrow \mathbb{Z}_{5}^{n} / H$ denote the canonical homomorphism.

If $\left|\mathbb{Z}_{5}^{n} / H\right|=5$ then, in view of $|A| /|H|=5 \alpha>2$ we have $\left|\varphi_{H}(A)\right| \geq 3$. Similarly, $\left|\varphi_{H}(B)\right| \geq 3$, and it follows that $\varphi_{H}(A)+\varphi_{H}(B)=\mathbb{Z}_{5}^{n} / H$; that is, $A+B+H=\mathbb{Z}_{5}^{n}$. Hence, $A+B+C=(A+B+H)+C=\mathbb{Z}_{5}^{n}$, contradicting the assumption $H \neq \mathbb{Z}_{5}^{n}$.

If $\left|\mathbb{Z}_{5}^{n} / H\right| \geq 125$ then, by Kneser's Theorem and taking into account that

$$
\begin{equation*}
\pi(A+B) \leq \pi(A+B+C)=H \tag{7}
\end{equation*}
$$

we have

$$
\begin{aligned}
|A+B+C| & \geq|A+B|+|C|-|H| \\
& \geq|A|+|B|+|C|-2|H| \\
& =\frac{2}{3}|A|+\frac{2}{3}|B|+\frac{1}{3}(|A|+|B|+3|C|)-2|H| \\
& >\left(\frac{2}{3} \cdot 0.4+\frac{2}{3} \cdot 0.4+\frac{1}{3} \cdot 1.5-\frac{2}{125}\right) \cdot 5^{n} \\
& >5^{n},
\end{aligned}
$$

a contradiction.
Finally, consider the situation where $\left|\mathbb{Z}_{5}^{n} / H\right|=25$. In this case $|A| /|H|=25 \alpha>10$ whence $|A+H| \geq 11|H|$ and similarly, $|B+H| \geq 11|H|$. In view of (7), Kneser's Theorem gives

$$
|A+B+H|=|(A+H)+(B+H)| \geq|A+H|+|B+H|-|H| \geq 21|H| .
$$

Also,

$$
|C| /|H|=25 \gamma>\frac{25}{3}(1.5-\alpha-\beta)>\frac{25}{6}>4 .
$$

Consequently, $|C+H| \geq 5|H|$ and therefore

$$
|A+B+H|+|C+H| \geq 26|H|>5^{n}
$$

Lemma 1 now implies $A+B+C=(A+B+H)+(C+H)=\mathbb{Z}_{5}^{n}$, contrary to the assumption $H \neq \mathbb{Z}_{5}^{n}$.
Proposition 3. Let $n \geq 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_{5}^{n}$ is a subset of density larger than 0.3 , such that $3 A \neq \mathbb{Z}_{5}^{n}$. If $F<\mathbb{Z}_{5}^{n}$ is an index-5 subgroup with the density of A in every F-coset smaller than 0.5 , then there is at most one F-coset where the density of A is larger than 0.4.

Proof. Suppose for a contradiction that there are two (or more) F-cosets containing more than $0.4|F|$ elements of A each. Shifting A and choosing $e \in \mathbb{Z}_{5}^{n} \backslash F$ appropriately, we can then write $A=A_{0} \cup\left(e+A_{1}\right) \cup\left(2 e+A_{2}\right) \cup\left(3 e+A_{3}\right) \cup\left(4 e+A_{4}\right)$ with $A_{0}, A_{1}, A_{2}, A_{3}, A_{4} \subseteq F$ satisfying $\min \left\{\left|A_{0}\right|,\left|A_{1}\right|\right\}>0.4|F|$.

By Lemma 4 (applied to the group F), we have

$$
3 A_{0}=2 A_{0}+A_{1}=A_{0}+2 A_{1}=3 A_{1}=F
$$

implying $F \cup(e+F) \cup(2 e+F) \cup(3 e+F) \subseteq 3 A$ and, consequently, $4 e+F \nsubseteq 3 A$ by the assumption $3 A \neq \mathbb{Z}_{5}^{n}$. Furthermore, if we had $2\left|A_{0}\right|+3\left|A_{4}\right|>1.5|F|$, this would imply $2 A_{0}+A_{4}=F$ by Lemma 4 , resulting in $4 e+F \subseteq 3 A$; thus,

$$
\begin{equation*}
2\left|A_{0}\right|+3\left|A_{4}\right|<1.5|F| \tag{8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|A_{0}\right|+\left|A_{1}\right|+3\left|A_{3}\right|<1.5|F| \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left|A_{1}\right|+3\left|A_{2}\right|<1.5|F| \tag{10}
\end{equation*}
$$

(as otherwise by Lemma 4 we would have $A_{0}+A_{1}+A_{3}=F$ and $2 A_{1}+A_{2}=F$, respectively, resulting in $4 e+F \subseteq 3 A$). Adding up (8)-(10) we obtain

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right|<1.5|F|=0.3 \cdot 5^{n}
$$

contrary to the assumption on the density of A.
We now use Fourier analysis to complete the argument and prove Theorem 5.
Suppose that $n \geq 2$, and that a set $A \subseteq \mathbb{Z}_{5}^{n}$ has density $\alpha>0.3$ and satisfies $3 A \neq \mathbb{Z}_{5}^{n}$; we want to show that A is contained in a union of two cosets of an index- 5 subgroup. Having translated A appropriately, we can assume that $0 \notin 3 A$. Denoting by 1_{A} the indicator function of A, consider the Fourier coefficients

$$
\hat{1}_{A}(\chi):=5^{-n} \sum_{a \in A} \chi(a), \chi \in \widehat{\mathbb{Z}_{5}^{n}}
$$

For every character $\chi \in \widehat{\mathbb{Z}_{5}^{n}}$, find a cube root of unity $\zeta(\chi)$ such that, letting $z(\chi):=$ $-\hat{1}_{A}(\chi) \zeta(\chi)$, we have $\Re(z(\chi)) \geq 0$. The assumption $0 \notin 3 A$ gives

$$
\sum_{\chi}\left(\hat{1}_{A}(\chi)\right)^{3}=0
$$

Consequently,

$$
\sum_{\chi \neq 1} \Re\left((z(\chi))^{3}\right)=\Re\left(\sum_{\chi \neq 1}\left(-\hat{1}_{A}(\chi)\right)^{3}\right)=\alpha^{3}
$$

and since $\Re(z) \geq 0$ implies $\Re\left(z^{3}\right) \leq|z|^{2} \Re(z)$ (as one can easily verify), it follows that

$$
\sum_{\chi \neq 1}|z(\chi)|^{2} \Re(z(\chi)) \geq \alpha^{3}
$$

Comparing this to

$$
\sum_{\chi \neq 1}|z(\chi)|^{2}=\alpha(1-\alpha)
$$

(which is an immediate corollary of the Parseval identity), we conclude that there exists a non-principal character χ such that

$$
\begin{equation*}
\Re(z(\chi)) \geq \frac{\alpha^{2}}{1-\alpha} \tag{11}
\end{equation*}
$$

In view of $\alpha>0.3$, it follows that $\Re\left(-\hat{1}_{A}(\chi) \zeta(\chi)\right)>\frac{9}{70}$.
Replacing χ with the conjugate character, if needed, we can assume that $\zeta(\chi)=1$ or $\zeta(\chi)=\exp (2 \pi i / 3)$. Let $F:=\operatorname{ker} \chi$, fix $e \in \mathbb{Z}_{5}^{n}$ with $\chi(e)=\exp (2 \pi i / 5)$, and for each $i \in[0,4]$, let α_{i} denote the density of $A-i e$ in F. By Propositions 1 and 2 , we can assume that $\max \left\{\alpha_{i}: i \in[0,4]\right\}<0.5$, and then by Proposition 3 we can assume that there is at most one index $i \in[0,4]$ with $\alpha_{i}>0.4$; that is, of the five conditions $\alpha_{i} \leq 0.4(i \in[0,4])$, at most one may fail to hold and must be relaxed to $\alpha_{i}<0.5$. We show that these assumptions are inconsistent with (11). To this end, we consider two cases.
Case (i): $\zeta(\chi)=1$. In this case we have

$$
\begin{equation*}
\alpha_{0}+\alpha_{1} \cos (2 \pi / 5)+\cdots+\alpha_{4} \cos (8 \pi / 5)=5 \Re\left(\hat{1}_{A}(\chi)\right)<-\frac{9}{14} . \tag{12}
\end{equation*}
$$

For each $k \in[0,4]$, considering $\alpha_{0}, \ldots, \alpha_{4}$ as variables, we now minimize the left-hand side of (12) under the constrains

$$
\begin{gather*}
\alpha_{0}+\cdots+\alpha_{4} \geq 1.5, \tag{13}\\
\alpha_{k} \in[0,0.5], \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\alpha_{i} \in[0,0.4] \text { for all } i \in[0,4], i \neq k \tag{15}
\end{equation*}
$$

This is a standard linear optimization problem which can be solved precisely, and computations show that for every $k \in[0,4]$, the smallest possible value of the expression under consideration exceeds $-9 / 14$. This rules out Case (i).

Case (ii): $\zeta(\chi)=\exp (2 \pi i / 3)$. In this case we have

$$
\begin{equation*}
\sum_{j=0}^{4} \alpha_{j} \cos \left(2 \pi\left(\frac{1}{3}+\frac{j}{5}\right)\right)=5 \Re\left(\hat{1}_{A}(\chi) \exp (2 \pi i / 3)\right)<-\frac{9}{14} \tag{16}
\end{equation*}
$$

Minimizing the left-hand side of (16) under the constrains (13)-(15), we see that its minimum is larger than $-9 / 14$. This rules out Case (ii), completing the proof of Theorem 5.

4. $\operatorname{From} \mathbf{t}_{\rho}^{+}(G)$ тO $\mathrm{N}_{k}(G)$

In Section 1, we mentioned the close relation between the quantity $\mathrm{N}_{k}(G)$ and an invariant introduced in [KL09]. Denoted by $\mathbf{t}_{\rho}^{+}(G)$ in [KL09], this invariant was defined for integer $\rho \geq 1$ and a finite abelian group G to be the largest size of an aperiodic generating subset $A \subseteq G$ such that $(\rho-1)(A \cup\{0\}) \neq G$ and A is maximal under this condition. It was shown in [KL09] that $\mathbf{t}_{\rho}^{+}(G)=0$ if $\rho>\operatorname{diam}^{+}(G)$, while otherwise $\mathbf{t}_{\rho}^{+}(G)$ is the largest size of an aperiodic subset $A \subseteq G$ satisfying $(\rho-1)(A \cup\{0\}) \neq G$ and maximal under this condition. Our goal in this section is to prove the following simple lemma allowing one to "translate" the results of [KL09] into our present Theorems 2-4.

Lemma 5. For any finite abelian group G and integer $k \geq 1$, we have

$$
\begin{equation*}
\mathbf{t}_{k+1}^{+}(G)=\mathrm{N}_{k}(G), \tag{17}
\end{equation*}
$$

except if $|G|$ is prime and $k \geq|G|-1$, in which case $\mathbf{t}_{k+1}^{+}(G)=0$ and $\mathrm{N}_{k}(G)=1$.
Proof. We show that (17) holds true unless $k \geq \operatorname{diam}^{+}(G)$ and $|G|$ is prime; the rest follows easily.

Let \mathcal{G} denote the set of all aperiodic subsets $A \subseteq G$, and let \mathcal{G}_{0} be the set of all aperiodic subsets $A \subseteq G$ with $0 \in A$.

Since translating a set $A \subseteq G$ affects neither its periodicity, nor the property $k A=G$, we have

$$
\mathrm{N}_{k}(G)=\max \left\{|A|: A \in \mathcal{G}_{0}, k A \neq G, k(A \cup\{g\})=G \text { for each } g \in G \backslash A\right\}
$$

As a trivial restatement,

$$
\begin{align*}
\mathrm{N}_{k}(G)=\max \left\{|A|: A \in \mathcal{G}_{0}, k(A \cup\{0\})\right. & \neq G, \\
& k(A \cup\{0\} \cup\{g\})=G \text { for each } g \in G \backslash A\} . \tag{18}
\end{align*}
$$

However, letting $g=0$ shows that the conditions

$$
k(A \cup\{0\}) \neq G \text { and } k(A \cup\{0\} \cup\{g\})=G \text { for each } g \in G \backslash A
$$

automatically imply $0 \in A$. Thus, in (18), the assumption $A \in \mathcal{G}_{0}$ can be replaced with $A \in \mathcal{G}$, meaning that $\mathrm{N}_{k}(G)$ is the largest size of an aperiodic subset $A \subseteq G$ satisfying $k(A \cup\{0\}) \neq G$ and maximal under this condition; consequently, taking into account the discussion at the beginning of this section, if $k<\operatorname{diam}^{+}(G)$, then $\mathrm{N}_{k}(G)=\mathbf{t}_{k+1}^{+}(G)$.

Consider now the situation where $k \geq \operatorname{diam}^{+}(G)$. In this case $\mathbf{t}_{k+1}^{+}(G)=0$, and by the definition of $\operatorname{diam}^{+}(G)$, for any generating subset $A \subseteq G$ we have $k(A \cup\{0\})=G$. Suppose that $A \in \mathcal{G}$ satisfies $k A \neq G$ and is maximal subject to this condition. (If such sets do not exist, then $\mathrm{N}_{k}(G)=0=\mathbf{t}_{k+1}^{+}(G)$.) Translating A appropriately, we can assume that $0 \in A$, and then $k(A \cup\{0\})=k A \neq G$. It follows that A is not generating; that is, $H:=\langle A\rangle$ is a proper subgroup of G. Furthermore, the maximality of A shows that $A=H$ is a maximal subgroup, and aperiodicity of A gives $A=H=\{0\}$. Therefore G has prime order.

References

[B15] B. Bajnok, The h-critical number of finite abelian groups, Uniform Distribution Theory 10 (2015), no. 2, 93-115.
[DT89] A.A. Davydov and L.M. Tombak, Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry (Russian), Problemy Peredachi Informatsii 25 (1989), no. 4, 11-23; translation in Problems Inform. Transmission 25 (1989), no. 4, 265-275 (1990).
[KL09] B. Klopsch and V.F. Lev, Generating abelian groups by addition only, Forum Mathematicum 21 (2009), no. 1, 23-41.
[Kn53] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484.
[Kn55] , Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429-434.

E-mail address: seva@math.haifa.ac.il
Department of Mathematics, The University of Haifa at Oranim, Tivon 36006, IsRaEL

