STABILITY RESULT FOR SETS WITH $3A \neq \mathbb{Z}_5^n$

VSEVOLOD F. LEV

ABSTRACT. As an easy corollary of Kneser's Theorem, if A is a subset of the elementary abelian group \mathbb{Z}_5^n of density $5^{-n}|A| > 0.4$, then $3A = \mathbb{Z}_5^n$. We establish the complementary stability result: if $5^{-n}|A| > 0.3$ and $3A \neq \mathbb{Z}_5^n$, then A is contained in a union of two cosets of an index-5 subgroup of \mathbb{Z}_5^n . Here the density bound 0.3 is sharp.

Our argument combines combinatorial reasoning with a somewhat non-standard application of the character sum technique.

1. INTRODUCTION

For a subset A of an (additively written) abelian group G, and a positive integer k, denote by kA the k-fold sumset of A:

$$kA := \{a_1 + \dots + a_k : a_1, \dots, a_k \in A\}.$$

How large can A be given that $kA \neq G$? Assuming that G is finite, let

$$\mathsf{M}_k(G) := \max\{|A| \colon A \subseteq G, \ kA \neq G\}.$$

This quantity was introduced and completely determined by Bajnok in [B15]. The corresponding result, expressed in [B15] in a somewhat different notation, can be easily restated in our present language.

Theorem 1 (Bajnok [B15, Theorem 6]). For any finite abelian group G and integer $k \ge 1$, writing m := |G|, we have

$$\mathsf{M}_{k}(G) = \max\left\{ \left(\left\lfloor \frac{d-2}{k} \right\rfloor + 1 \right) \frac{m}{d} \colon d \mid m \right\}$$

(where $\lfloor \cdot \rfloor$ is the floor function, and the maximum extends over all divisors d of m).

Once $\mathsf{M}_k(G)$ is known, it is natural to investigate the associated stability problem: what is the structure of those $A \subseteq G$ with $kA \neq G$ and |A| close to $\mathsf{M}_k(G)$?

²⁰¹⁰ Mathematics Subject Classification. Primary: 11P70; secondary: 20K01, 05D99, 11B75.

Key words and phrases. Sumsets, stability, finite abelian groups, Kneser's theorem.

There are two "trivial" ways to construct large subsets $A \subseteq G$ satisfying $kA \neq G$. One is to simply remove elements from a yet larger subset with this property; another is to fix a subgroup H < G and a set $\overline{A} \subseteq G/H$ with $k\overline{A} \neq G/H$, and define $A \subseteq G$ to be the full inverse image of \overline{A} under the canonical homomorphism $G \to G/H$. It is thus natural to consider as "primitive" those subsets $A \subseteq G$ with $kA \neq G$ which are maximal subject to this property and, in addition, cannot be obtained by the lifting procedure just described.

To proceed, we recall that the *period* of a subset $A \subseteq G$, denoted $\pi(A)$ below, is the subgroup consisting of all elements $g \in G$ such that A + g = A:

$$\pi(A) := \{g \in G \colon A + g = A\}.$$

Alternatively, $\pi(A)$ can be defined as the (unique) maximal subgroup such that A is a union of its cosets. The set A is called aperiodic if $\pi(A) = \{0\}$, and periodic otherwise.

It is readily seen that a set $A \subseteq G$ with $kA \neq G$ can be obtained by lifting if and only if it is periodic. Accordingly, motivated by the discussion above, for a finite abelian group G and integer $k \geq 1$, we define $N_k(G)$ to be the largest size of an aperiodic subset $A \subseteq G$ satisfying $kA \neq G$ and maximal under this condition:

$$\mathsf{N}_k(G) := \max\{|A| \colon A \subseteq G, \ \pi(A) = \{0\},\$$

$$kA \neq G \text{ and } k(A \cup \{g\}) = G \text{ for each } g \in G \setminus A\}$$

(subject to the agreement that $\max \emptyset = 0$). Clearly, we have $\mathsf{N}_k(A) \leq \mathsf{M}_k(A)$, and if the inequality is strict (which is often the case), then determining $\mathsf{N}_k(G)$ is, in fact, a stability problem; for if $kA \neq G$ and $|A| > \mathsf{N}_k(G)$, then A is contained in the set obtained by lifting a subset $\overline{A} \subseteq G/H$ with $k\overline{A} \neq G/H$, for a proper subgroup H < G.

The quantity $N_k(G)$ is quite a bit subtler than $M_k(G)$ and indeed, the latter can be easily read off from the former; specifically, it is not difficult to show that

$$\mathsf{M}_k(G) = \max\{|H| \cdot \mathsf{N}_k(G/H) \colon H \le G\}.$$

An invariant tightly related to $N_k(G)$ was studied in [KL09]. To state (the relevant part of) the results obtained there, following [KL09], we denote by diam⁺(G) the smallest non-negative integer k such that every generating subset $A \subseteq G$ satisfies $\{0\} \cup A \cup \cdots \cup kA = G$; that is, $k(A \cup \{0\}) = G$. As shown in [KL09, Theorem 2.1],

 $\mathbf{2}$

if G is of type (m_1, \ldots, m_r) with positive integers $m_1 | \cdots | m_r$, then

diam⁺(G) =
$$\sum_{i=1}^{r} (m_i - 1).$$
 (1)

Theorem 2 ([KL09, Theorem 2.5 and Proposition 2.8]). For any finite abelian group G and integer $k \ge 1$, we have

$$\mathsf{N}_k(G) \le \left\lfloor \frac{|G|-2}{k} \right\rfloor + 1.$$

If G is cyclic of order $|G| \ge k+2$ then, indeed, equality holds.

Theorem 3 ([KL09, Theorem 2.4]). For any finite abelian group G and integer $k \ge 1$, denoting by rk(G) the smallest number of generators of G, we have

$$\mathsf{N}_{k}(G) = \begin{cases} |G| - 1 & \text{if } k = 1, \\ \left\lfloor \frac{1}{2} |G| \right\rfloor & \text{if } k = 2 < \operatorname{diam}^{+}(G), \\ \operatorname{rk}(G) + 1 & \text{if } k = \operatorname{diam}^{+}(G) - 1, \\ 1 & \text{if } k \ge \operatorname{diam}^{+}(G) \text{ and } |G| \text{ is prime}, \\ 0 & \text{if } k \ge \operatorname{diam}^{+}(G) \text{ and } |G| \text{ is composite.} \end{cases}$$

Theorem 4 ([KL09, Theorem 2.7]). For any finite abelian group G with diam⁺(G) \geq 4, we have

$$\mathsf{N}_{3}(G) = \begin{cases} \frac{1}{3} |G| & \text{if } 3 \text{ divides } |G|, \\ \frac{1}{3} (|G| - 1) & \text{if every divisor of } |G| \text{ is congruent to } 1 \text{ modulo } 3. \end{cases}$$

In Section 4, we explain exactly how Theorems 2–4 follow from the results of [KL09]. Theorem 4 is easy to extend to show that, in fact, the equality

$$\mathsf{N}_{3}(G) = \frac{1}{3} \left(|G| - 1 \right)$$

holds true for any finite abelian group G decomposable into a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3. Here the upper bound is an immediate consequence of Theorem 2, while a construction matching this bound is as follows.

Example 1. Suppose that $G = G_1 \oplus \cdots \oplus G_n$, where $G_1, \ldots, G_n \leq G$ are cyclic with $|G_i| \equiv 1 \pmod{3}$, for each $i \in [1, n]$. Write $|G_1| = 3m + 1$ and let $H := G_2 \oplus \cdots \oplus G_n$ so that $G = G_1 \oplus H$. Assuming that $\mathsf{N}_3(H) = \frac{1}{3}(|H| - 1)$, find an aperiodic subset $S \subseteq H$ with $|S| = \frac{1}{3}(|H| - 1)$, such that $3S \neq H$ and S is maximal subject to this last condition. (If n = 1 and H is the trivial group, then take $S = \emptyset$.) Fix a generator $e \in G_1$, and consider the set

$$A := H \cup (e+H) \cup \dots \cup ((m-1)e+H) \cup (me+S) \subseteq G$$

It is readily seen that $3A \neq G$ and A is maximal with this property. Furthermore,

$$|A| = m|H| + |S| = \frac{1}{3}(|G| - 1)$$

implying gcd(|A|, |G|) = 1, whence A is aperiodic. As a result, $N_3(G) \ge |A| = \frac{1}{3}(|G|-1)$.

Applying this construction recursively, we conclude that $N_3(G) \ge \frac{1}{3}(|G|-1)$ whenever G is a direct sum of its cyclic subgroups of orders congruent to 1 modulo 3.

In contrast with Theorem 3 establishing the values of $N_1(G)$ and $N_2(G)$ for all finite abelian groups G, Theorem 4 and the remark following it address certain particular groups only, and it is by far not obvious whether $N_3(G)$ can be found explicitly in the general case. In this situation it is interesting to investigate at least the most "common" families of groups not covered by Theorem 4 and Example 1, such as the homocyclic groups \mathbb{Z}_m^n with $m \equiv 2 \pmod{3}$.

An important result of Davydov and Tombak [DT89], well known for its applications in coding theory and finite geometries, settles the problem for the groups \mathbb{Z}_2^n ; stated in our terms, it reads as

$$\mathsf{N}_3(\mathbb{Z}_2^n) = 2^{n-2} + 1, \quad n \ge 4.$$

The goal of this paper is to resolve the next major open case, determining the value of $N_3(\mathbb{Z}_5^n)$. To state our main result, we need two more observations.

Example 2. If $A \subset \mathbb{Z}_5^n$ is a union of two cosets of a subgroup of index 5, then $3A \neq \mathbb{Z}_5^n$, and A is maximal with this property: that is, $3(A \cup \{g\}) = \mathbb{Z}_5^n$ for every element $g \in \mathbb{Z}_5^n \setminus A$.

We omit the (straightforward) verification.

Example 3. Let $n \ge 2$ be an integer. Fix a subgroup $H < \mathbb{Z}_5^n$ of index 5, an element $e \in \mathbb{Z}_5^n$ with $\mathbb{Z}_5^n = H \oplus \langle e \rangle$, and a set $S \subseteq H$ such that |S| = (|H| - 1)/2 and $0 \notin 2S$. Finally, let

$$A := (H \setminus \{0\}) \cup (e+S) \cup \{2e\}.$$

We have then $|A| = (3 \cdot 5^{n-1} - 1)/2$, and hence A is aperiodic. Also, it is easily verified that $3A = \mathbb{Z}_5^n \setminus \{4e\}$, and that $4e \in 3(A \cup \{g\})$ for any $g \in \mathbb{Z}_5^n \setminus A$.

The last example shows that

$$\mathsf{N}_3(\mathbb{Z}_5^n) \ge \frac{1}{2} (3 \cdot 5^{n-1} - 1), \quad n \ge 2.$$

With this estimate in view, we can eventually state the main result of our paper.

Theorem 5. Suppose that n is a positive integer, and $A \subseteq \mathbb{Z}_5^n$ satisfies $3A \neq \mathbb{Z}_5^n$. If $|A| > 3 \cdot 5^{n-1}/2$, then A is contained in a union of two cosets of a subgroup of index 5. Consequently, in view of Theorem 2 and Example 3,

$$\mathsf{N}_{3}(\mathbb{Z}_{5}^{n}) = \begin{cases} 2 & \text{if } n = 1, \\ \frac{1}{2} \left(3 \cdot 5^{n-1} - 1 \right) & \text{if } n \ge 2. \end{cases}$$

We collect several basic results used in the proof of Theorem 5 in the next section; the proof itself is presented in Section 3. In Section 4 we explain exactly how Theorems 2-4 follow from the results of [KL09].

In conclusion, we remark that any finite abelian group not addressed in Example 1 has a direct-summand subgroup of order congruent to 2 modulo 3, and Example 3 generalizes onto "most" of such groups, as follows.

Example 4. Suppose that the finite abelian group G has a direct-summand subgroup $G_1 < G$ of order $|G_1| = 3m + 2$ with integer $m \ge 1$, and find a generator $e \in G_1$ and a subgroup H < G such that $G = G_1 \oplus H$.

Assuming first that |H| is odd, fix a subset $S \subseteq H$ with $0 \notin 2S$ and $|S| = \frac{1}{2} (|H|-1)$, and let

$$A := H \cup (e+H) \cup \dots \cup \left((m-2)e+H \right)$$
$$\cup \left((m-1)e + (H \setminus \{0\}) \right) \cup (me+S) \cup \{(m+1)e\}.$$

A simple verification shows that $(3m+1)e \notin 3A$ and A is maximal with this property. Furthermore, since there is a unique H-coset containing exactly |H| - 1 elements of A, we have $\pi(A) \leq H$, and since there is an H-coset containing exactly one element of A, we actually have $\pi(A) = \{0\}$. Therefore,

$$N_3(G) \ge |A| = (m|H| - 1) + |S| + 1 = \frac{2m + 1}{6m + 4}|G| - \frac{1}{2}.$$

Assuming now that |H| is even, fix arbitrarily an element $g \in H$ not representable in the form g = 2h with $h \in H$, find a subset $S \subseteq H$ with $g \notin 2S$ and $|S| = \frac{1}{2}|H|$, and let

$$A := H \cup (e+H) \cup \dots \cup \left((m-2)e+H \right)$$
$$\cup \left((m-1)e + (H \setminus \{g\}) \right) \cup (me+S) \cup \{(m+1)e\}.$$

We have then $(3m + 1)e + g \notin 3A$, and A is maximal with this property. Also, it is not difficult to see that $\pi(A) = \{0\}$. Hence,

$$N_3(G) \ge |A| = (m|H| - 1) + |S| + 1 = \frac{2m + 1}{6m + 4} |G|$$

2. Auxiliary Results

For subsets A and B of an abelian group, we write $A + B := \{a + b : a \in A, b \in B\}$.

The following immediate corollary from the pigeonhole principle will be used repeatedly.

Lemma 1. If A and B are subsets of a finite abelian group G such that $A + B \neq G$, then $|A| + |B| \leq |G|$.

An important tool utilized in our argument is the following result that we will refer to below as *Kneser's Theorem*.

Theorem 6 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then $|A + B| \ge |A| + |B| - |\pi(A + B)|.$

Finally, we need the following lemma used in Kneser's original proof of his theorem.

Lemma 2 ([Kn53, Kn55]). If A and B are finite subsets of an abelian group, then $|A \cup B| + |\pi(A \cup B)| \ge \min\{|A| + |\pi(A)|, |B| + |\pi(B)|\}.$

3. Proof of Theorem 5

We start with a series of results preparing the ground for the proof. Unless explicitly indicated, at this stage we do not assume that A satisfies the assumptions of Theorem 5.

For subsets $A, B \subseteq \mathbb{Z}_5^n$ with $0 < |B| < \infty$, by the *density* of A in B we mean the quotient $|A \cap B|/|B|$. In the case where $B = \mathbb{Z}_5^n$, we speak simply about the *density* of A.

Proposition 1. Let $n \ge 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_5^n$ is a subset of density larger than 0.3. If $3A \ne \mathbb{Z}_5^n$, then A cannot have non-empty intersections with exactly three cosets of an index-5 subgroup of \mathbb{Z}_5^n .

Proof. Assuming that $3A \neq \mathbb{Z}_5^n$ and $F < \mathbb{Z}_5^n$ is an index-5 subgroup such that A intersects exactly three of its cosets, we obtain a contradiction.

Translating A appropriately, we assume without loss of generality that $0 \notin 3A$. Fix $e \in \mathbb{Z}_5^n$ such that $\mathbb{Z}_5^n = F \oplus \langle e \rangle$, and for $i \in [0, 4]$ let $A_i := (A - ie) \cap F$; thus, $A = A_0 \cup (e + A_1) \cup (2e + A_2) \cup (3e + A_3) \cup (4e + A_4)$ with exactly three of the sets A_i non-empty. Considering the action of the automorphisms of \mathbb{Z}_5 on its two-element subsets (equivalently, passing from e to 2e, 3e, or 4e, if necessary), we further assume that one of the following holds:

- (i) $A_2 = A_3 = \varnothing;$ (ii) $A_3 = A_4 = \varnothing;$ (iii) $A_0 = A_4 = \varnothing.$
- (III) $A_0 A_4 \emptyset$.

We consider these three cases separately.

Case (i): $A_2 = A_3 = \emptyset$. In this case we have $A = A_0 \cup (e + A_1) \cup (4e + A_4)$, and from $0 \notin 3A$ we obtain $0 \notin A_0 + A_1 + A_4$. Consequently, $|A_0| + |A_1 + A_4| \leq |F|$ by Lemma 1, whence

$$|A_0| + \max\{|A_1|, |A_4|\} \le |F|$$

and similarly,

$$|A_1| + \max\{|A_0|, |A_4|\} \le |F|,$$

$$|A_4| + \max\{|A_0|, |A_1|\} \le |F|.$$

Thus, denoting by M the largest, and m the second largest of the numbers $|A_0|, |A_1|$, and $|A_4|$, we have $M + m \leq |F|$. It follows that

$$|A| = |A_0| + |A_1| + |A_4| \le \frac{3}{2} (M+m) \le \frac{3}{2} |F|,$$

contradicting the density assumption $|A| > 0.3 \cdot 5^n$.

Case (ii): $A_3 = A_4 = \emptyset$. In this case from $0 \notin 3A$ we get $3A_0 \neq F$ and $A_1 + 2A_2 \neq F$, whence also $2A_0 \neq F$ and $A_1 + A_2 \neq F$ and therefore $2|A_0| \leq |F|$ and $|A_1| + |A_2| \leq |F|$ by Lemma 1. This yields

$$|A| = |A_0| + |A_1| + |A_2| \le \frac{3}{2} |F|,$$

a contradiction as above.

Case (iii): $A_0 = A_4 = \emptyset$. Here we have $2A_1 + A_3 \neq F$ and $A_1 + 2A_2 \neq F$ implying $|A_1| + |A_3| \leq |F|$ and $2|A_2| \leq |F|$, respectively. This leads to a contradiction as in Case (ii).

Lemma 3. Let $n \ge 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_5^n$. If 2A has density smaller than 0.5, then A has density smaller than 0.25.

Proof. Write $H := \pi(2A)$ and let $\varphi_H : \mathbb{Z}_5^n \to \mathbb{Z}_5^n/H$ be the canonical homomorphism. Applying Kneser's theorem to the set A+H and observing that 2(A+H) = 2A+H = 2A, we get $|2A| \ge 2|A+H| - |H|$, whence $|\varphi_H(2A)| \ge 2|\varphi_H(A)| - 1$. If the density of 2A in \mathbb{Z}_5^n is smaller than 0.5, then so is the density of $\varphi_H(2A)$ in \mathbb{Z}_5^n/H (in fact, the two densities are equal); hence, in this case

$$\frac{1}{2} |\mathbb{Z}_5^n/H| > |\varphi_H(2A)| \ge 2|\varphi_H(A)| - 1.$$

This yields $|\varphi_H(A)| < \frac{1}{4} (|\mathbb{Z}_5^n/H| + 2)$ and thus, indeed, $|\varphi_H(A)| < \frac{1}{4} |\mathbb{Z}_5^n/H|$ as $|\mathbb{Z}_5^n/H| \equiv 1 \pmod{4}$. It remains to notice that the density of A in \mathbb{Z}_5^n does not exceed the density of $\varphi_H(A)$ in \mathbb{Z}_5^n/H .

Proposition 2. Let $n \ge 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_5^n$ is a subset of density larger than 0.3, such that $3A \ne \mathbb{Z}_5^n$. If A has density larger than 0.5 in a coset of an index-5 subgroup $F < \mathbb{Z}_5^n$, then A has non-empty intersections with at most three cosets of F.

Proof. Fix $e \in \mathbb{Z}_5^n$ with $\mathbb{Z}_5^n = F \oplus \langle e \rangle$, and for $i \in [0,4]$ set $A_i := (A - ie) \cap F$; thus, $A = A_0 \cup (e+A_1) \cup \cdots \cup (4e+A_4)$. Having A replaced with its appropriate translate, we can assume that A_0 has density larger than 0.5 in F, whence $2A_0 = F$ by Lemma 1. If now A_i is non-empty for some $i \in [1,4]$, then $ie + F = (ie + A_i) + 2A_0 \subseteq 3A$. This shows that at least one of the sets A_i is empty. Moreover, we can assume that *exactly* one of them is empty, as otherwise the proof is over. Replacing e with one of 2e, 3e, or 4e, is necessary, we assume that $A_4 = \emptyset$ while $A_i \neq \emptyset$ for $i \in [1,3]$, and aim to obtain a contradiction. Notice, that

$$A = A_0 \cup (e + A_1) \cup (2e + A_2) \cup (3e + A_3),$$

and that $ie + F \subseteq 3A$ for each $i \in [1, 3]$ by the observation above, implying $4e + F \nsubseteq 3A$. The last condition yields

$$A_0 + ((A_1 + A_3) \cup 2A_2) \neq F,$$
(2)

and it follows from Lemma 1 that

$$|A_0| + |(A_1 + A_3) \cup 2A_2| \le |F|.$$
(3)

Notice, that the last estimate implies $|2A_2| \leq |F| - |A_0| < 0.5|F|$, whence

$$|A_2| < 0.25|F| \tag{4}$$

by Lemma 3.

Let H be the period of the left-hand side of (2); thus, H is a proper subgroup of F, and we claim that, in fact,

$$|H| \le 5^{-2}|F|.$$
 (5)

To see this, suppose for a contradiction that |F/H| = 5. Denote by φ_H the canonical homomorphism $\mathbb{Z}_5^n \to \mathbb{Z}_5^n/H$. From $|A_0| > 0.5|F|$ we conclude that $|\varphi_H(A_0)| \ge 3$, and then (2) along with Lemma 1 shows that

$$|\varphi_H((A_1 + A_3) \cup 2A_2)| \le 5 - |\varphi_H(A_0)| \le 2.$$

8

This gives $|\varphi_H(A_2)| = 1$, $\min\{|\varphi_H(A_1)|, |\varphi_H(A_3)|\} = 1$, and $\max\{|\varphi_H(A_1)|, |\varphi_H(A_3)|\} \le 5 - |\varphi_H(A_0)|$. As a result,

$$|\varphi_H(A_0)| + |\varphi_H(A_1)| + |\varphi_H(A_2)| + |\varphi_H(A_3)| \le 7,$$

implying $|A| = |A_0| + |A_1| + |A_2| + |A_3| \le 7|H| < 1.5|F|$, contrary to the density assumption. This proves (5).

Since $\pi((A_1 + A_3) \cup 2A_2) \leq H$ by the definition of the subgroup H, applying subsequently Lemma 2 and then Kneser's theorem we obtain

$$|(A_1 + A_3) \cup 2A_2| \ge \min\{|A_1 + A_3| + |\pi(A_1 + A_3)|, |2A_2| + |\pi(2A_2)|\} - |H| \ge \min\{|A_1| + |A_3|, 2|A_2|\} - |H|.$$
(6)

If $|A_1| + |A_3| \le 2|A_2|$, then from (3), (6), (4), and (5),

$$\begin{split} |F| \geq |A_0| + |A_1| + |A_3| - |H| &= |A| - |A_2| - |H| \\ &> \frac{3}{2} |F| - \frac{1}{4} |F| - \frac{1}{25} |F| = \frac{121}{100} |F|, \end{split}$$

a contradiction. Thus, we have

$$|A_1| + |A_3| > 2|A_2|$$

and then

$$|A_0| + 2|A_2| \le |F| + |H|$$

by (3) and (6). The latter estimate gives

$$\frac{3}{2}|F| < |A| = |A_0| + |A_1| + |A_2| + |A_3| \le \frac{|F| + |H|}{2} + \frac{|A_0|}{2} + |A_1| + |A_3|,$$

whence

$$\frac{1}{2}|A_0| + |A_1| + |A_3| > |F| - \frac{1}{2}|H|$$

Using again (3) and applying Kneser's theorem, we now obtain

$$\begin{aligned} |F| \geq |A_0| + |A_1 + A_3| \geq |A_0| + |A_1| + |A_3| - |\pi(A_1 + A_3)| \\ > \frac{1}{2} |A_0| + |F| - \frac{1}{2} |H| - |\pi(A_1 + A_3)| \end{aligned}$$

leading, in view of (5), to $|\pi(A_1 + A_3)| \ge (|A_0| - |H|)/2 > |F|/5$ and thus to $\pi(A_1 + A_3) = F$. This, however, means that $A_1 + A_3 = F$, contradicting (2).

Propositions 1 and 2 show that to establish Theorem 5, it suffices to consider sets $A \subseteq \mathbb{Z}_5^n$ with density smaller than 0.5 in every coset of every index-5 subgroup.

Lemma 4. Let $n \ge 1$ be an integer, and suppose that $A, B, C \subseteq \mathbb{Z}_5^n$ are subsets of densities α , β , and γ , respectively. If $0.4 < \alpha, \beta < 0.5$ and $\alpha + \beta + 3\gamma > 1.5$, then $A + B + C = \mathbb{Z}_5^n$.

Proof. Let $H := \pi(A + B + C)$; assuming that $H \neq \mathbb{Z}_5^n$, we obtain a contradiction. As above, let $\varphi_H : \mathbb{Z}_5^n \to \mathbb{Z}_5^n/H$ denote the canonical homomorphism.

If $|\mathbb{Z}_5^n/H| = 5$ then, in view of $|A|/|H| = 5\alpha > 2$ we have $|\varphi_H(A)| \ge 3$. Similarly, $|\varphi_H(B)| \ge 3$, and it follows that $\varphi_H(A) + \varphi_H(B) = \mathbb{Z}_5^n/H$; that is, $A + B + H = \mathbb{Z}_5^n$. Hence, $A + B + C = (A + B + H) + C = \mathbb{Z}_5^n$, contradicting the assumption $H \neq \mathbb{Z}_5^n$. If $|\mathbb{Z}_5^n/H| \ge 125$ then, by Kneser's Theorem and taking into account that

$$\pi(A+B) \le \pi(A+B+C) = H,\tag{7}$$

we have

$$\begin{split} |A+B+C| &\geq |A+B| + |C| - |H| \\ &\geq |A| + |B| + |C| - 2|H| \\ &= \frac{2}{3} |A| + \frac{2}{3} |B| + \frac{1}{3} (|A| + |B| + 3|C|) - 2|H| \\ &> \left(\frac{2}{3} \cdot 0.4 + \frac{2}{3} \cdot 0.4 + \frac{1}{3} \cdot 1.5 - \frac{2}{125}\right) \cdot 5^n \\ &> 5^n, \end{split}$$

a contradiction.

Finally, consider the situation where $|\mathbb{Z}_5^n/H| = 25$. In this case $|A|/|H| = 25\alpha > 10$ whence $|A + H| \ge 11|H|$ and similarly, $|B + H| \ge 11|H|$. In view of (7), Kneser's Theorem gives

$$|A + B + H| = |(A + H) + (B + H)| \ge |A + H| + |B + H| - |H| \ge 21|H|.$$

Also,

$$|C|/|H| = 25\gamma > \frac{25}{3}(1.5 - \alpha - \beta) > \frac{25}{6} > 4$$

Consequently, $|C + H| \ge 5|H|$ and therefore

$$|A + B + H| + |C + H| \ge 26|H| > 5^n.$$

Lemma 1 now implies $A + B + C = (A + B + H) + (C + H) = \mathbb{Z}_5^n$, contrary to the assumption $H \neq \mathbb{Z}_5^n$.

Proposition 3. Let $n \ge 1$ be an integer, and suppose that $A \subseteq \mathbb{Z}_5^n$ is a subset of density larger than 0.3, such that $3A \ne \mathbb{Z}_5^n$. If $F < \mathbb{Z}_5^n$ is an index-5 subgroup with the density of A in every F-coset smaller than 0.5, then there is at most one F-coset where the density of A is larger than 0.4.

10

Proof. Suppose for a contradiction that there are two (or more) F-cosets containing more than 0.4|F| elements of A each. Shifting A and choosing $e \in \mathbb{Z}_5^n \setminus F$ appropriately, we can then write $A = A_0 \cup (e + A_1) \cup (2e + A_2) \cup (3e + A_3) \cup (4e + A_4)$ with $A_0, A_1, A_2, A_3, A_4 \subseteq F$ satisfying min $\{|A_0|, |A_1|\} > 0.4|F|$.

By Lemma 4 (applied to the group F), we have

$$3A_0 = 2A_0 + A_1 = A_0 + 2A_1 = 3A_1 = F,$$

implying $F \cup (e+F) \cup (2e+F) \cup (3e+F) \subseteq 3A$ and, consequently, $4e+F \not\subseteq 3A$ by the assumption $3A \neq \mathbb{Z}_5^n$. Furthermore, if we had $2|A_0| + 3|A_4| > 1.5|F|$, this would imply $2A_0 + A_4 = F$ by Lemma 4, resulting in $4e + F \subseteq 3A$; thus,

$$2|A_0| + 3|A_4| < 1.5|F|. \tag{8}$$

Similarly,

$$|A_0| + |A_1| + 3|A_3| < 1.5|F| \tag{9}$$

and

$$2|A_1| + 3|A_2| < 1.5|F| \tag{10}$$

(as otherwise by Lemma 4 we would have $A_0 + A_1 + A_3 = F$ and $2A_1 + A_2 = F$, respectively, resulting in $4e + F \subseteq 3A$). Adding up (8)–(10) we obtain

$$|A| = |A_0| + |A_1| + |A_2| + |A_3| + |A_4| < 1.5|F| = 0.3 \cdot 5^n$$

contrary to the assumption on the density of A.

We now use Fourier analysis to complete the argument and prove Theorem 5.

Suppose that $n \geq 2$, and that a set $A \subseteq \mathbb{Z}_5^n$ has density $\alpha > 0.3$ and satisfies $3A \neq \mathbb{Z}_5^n$; we want to show that A is contained in a union of two cosets of an index-5 subgroup. Having translated A appropriately, we can assume that $0 \notin 3A$. Denoting by 1_A the indicator function of A, consider the Fourier coefficients

$$\hat{1}_A(\chi) := 5^{-n} \sum_{a \in A} \chi(a), \ \chi \in \widehat{\mathbb{Z}_5^n}$$

For every character $\chi \in \widehat{\mathbb{Z}_5^n}$, find a cube root of unity $\zeta(\chi)$ such that, letting $z(\chi) := -\hat{1}_A(\chi)\zeta(\chi)$, we have $\Re(z(\chi)) \ge 0$. The assumption $0 \notin 3A$ gives

$$\sum_{\chi} (\hat{1}_A(\chi))^3 = 0.$$

Consequently,

$$\sum_{\chi \neq 1} \Re((z(\chi))^3) = \Re\left(\sum_{\chi \neq 1} (-\hat{1}_A(\chi))^3\right) = \alpha^3,$$

and since $\Re(z) \ge 0$ implies $\Re(z^3) \le |z|^2 \Re(z)$ (as one can easily verify), it follows that

$$\sum_{\chi \neq 1} |z(\chi)|^2 \Re(z(\chi)) \ge \alpha^3.$$

Comparing this to

$$\sum_{\chi \neq 1} |z(\chi)|^2 = \alpha(1 - \alpha)$$

(which is an immediate corollary of the Parseval identity), we conclude that there exists a non-principal character χ such that

$$\Re(z(\chi)) \ge \frac{\alpha^2}{1-\alpha}.$$
(11)

In view of $\alpha > 0.3$, it follows that $\Re(-\hat{1}_A(\chi)\zeta(\chi)) > \frac{9}{70}$.

Replacing χ with the conjugate character, if needed, we can assume that $\zeta(\chi) = 1$ or $\zeta(\chi) = \exp(2\pi i/3)$. Let $F := \ker \chi$, fix $e \in \mathbb{Z}_5^n$ with $\chi(e) = \exp(2\pi i/5)$, and for each $i \in [0, 4]$, let α_i denote the density of A - ie in F. By Propositions 1 and 2, we can assume that $\max\{\alpha_i : i \in [0, 4]\} < 0.5$, and then by Proposition 3 we can assume that there is at most one index $i \in [0, 4]$ with $\alpha_i > 0.4$; that is, of the five conditions $\alpha_i \leq 0.4$ ($i \in [0, 4]$), at most one may fail to hold and must be relaxed to $\alpha_i < 0.5$. We show that these assumptions are inconsistent with (11). To this end, we consider two cases.

Case (i): $\zeta(\chi) = 1$. In this case we have

$$\alpha_0 + \alpha_1 \cos(2\pi/5) + \dots + \alpha_4 \cos(8\pi/5) = 5\Re(\hat{1}_A(\chi)) < -\frac{9}{14}.$$
 (12)

For each $k \in [0, 4]$, considering $\alpha_0, \ldots, \alpha_4$ as variables, we now minimize the left-hand side of (12) under the constrains

$$\alpha_0 + \dots + \alpha_4 \ge 1.5,\tag{13}$$

$$\alpha_k \in [0, 0.5],\tag{14}$$

and

$$\alpha_i \in [0, 0.4] \text{ for all } i \in [0, 4], \ i \neq k.$$
 (15)

This is a standard linear optimization problem which can be solved precisely, and computations show that for every $k \in [0, 4]$, the smallest possible value of the expression under consideration exceeds -9/14. This rules out Case (i).

Case (ii): $\zeta(\chi) = \exp(2\pi i/3)$. In this case we have

$$\sum_{j=0}^{4} \alpha_j \cos\left(2\pi \left(\frac{1}{3} + \frac{j}{5}\right)\right) = 5\Re(\hat{1}_A(\chi) \exp(2\pi i/3)) < -\frac{9}{14}.$$
 (16)

Minimizing the left-hand side of (16) under the constraints (13)–(15), we see that its minimum is larger than -9/14. This rules out Case (ii), completing the proof of Theorem 5.

4. From $\mathbf{t}_{a}^{+}(G)$ to $N_{k}(G)$

In Section 1, we mentioned the close relation between the quantity $N_k(G)$ and an invariant introduced in [KL09]. Denoted by $\mathbf{t}_{\rho}^+(G)$ in [KL09], this invariant was defined for integer $\rho \geq 1$ and a finite abelian group G to be the largest size of an aperiodic generating subset $A \subseteq G$ such that $(\rho - 1)(A \cup \{0\}) \neq G$ and A is maximal under this condition. It was shown in [KL09] that $\mathbf{t}_{\rho}^+(G) = 0$ if $\rho > \operatorname{diam}^+(G)$, while otherwise $\mathbf{t}_{\rho}^+(G)$ is the largest size of an aperiodic subset $A \subseteq G$ satisfying $(\rho - 1)(A \cup \{0\}) \neq G$ and maximal under this condition. Our goal in this section is to prove the following simple lemma allowing one to "translate" the results of [KL09] into our present Theorems 2–4.

Lemma 5. For any finite abelian group G and integer $k \ge 1$, we have

$$\mathbf{t}_{k+1}^+(G) = \mathsf{N}_k(G),\tag{17}$$

except if |G| is prime and $k \ge |G| - 1$, in which case $\mathbf{t}_{k+1}^+(G) = 0$ and $N_k(G) = 1$.

Proof. We show that (17) holds true unless $k \ge \text{diam}^+(G)$ and |G| is prime; the rest follows easily.

Let \mathcal{G} denote the set of all aperiodic subsets $A \subseteq G$, and let \mathcal{G}_0 be the set of all aperiodic subsets $A \subseteq G$ with $0 \in A$.

Since translating a set $A \subseteq G$ affects neither its periodicity, nor the property kA = G, we have

 $\mathsf{N}_k(G) = \max\{|A| \colon A \in \mathcal{G}_0, \ kA \neq G, \ k(A \cup \{g\}) = G \text{ for each } g \in G \setminus A\}.$

As a trivial restatement,

$$\mathsf{N}_k(G) = \max\{|A| \colon A \in \mathcal{G}_0, \ k(A \cup \{0\}) \neq G, \\ k(A \cup \{0\} \cup \{g\}) = G \text{ for each } g \in G \setminus A\}.$$
(18)

However, letting g = 0 shows that the conditions

 $k(A \cup \{0\}) \neq G$ and $k(A \cup \{0\} \cup \{g\}) = G$ for each $g \in G \setminus A$

automatically imply $0 \in A$. Thus, in (18), the assumption $A \in \mathcal{G}_0$ can be replaced with $A \in \mathcal{G}$, meaning that $\mathsf{N}_k(G)$ is the largest size of an aperiodic subset $A \subseteq G$ satisfying $k(A \cup \{0\}) \neq G$ and maximal under this condition; consequently, taking into account the discussion at the beginning of this section, if $k < \operatorname{diam}^+(G)$, then $\mathsf{N}_k(G) = \mathbf{t}_{k+1}^+(G)$.

Consider now the situation where $k \ge \operatorname{diam}^+(G)$. In this case $\mathbf{t}_{k+1}^+(G) = 0$, and by the definition of $\operatorname{diam}^+(G)$, for any generating subset $A \subseteq G$ we have $k(A \cup \{0\}) = G$. Suppose that $A \in \mathcal{G}$ satisfies $kA \neq G$ and is maximal subject to this condition. (If such sets do not exist, then $N_k(G) = 0 = \mathbf{t}_{k+1}^+(G)$.) Translating A appropriately, we can assume that $0 \in A$, and then $k(A \cup \{0\}) = kA \neq G$. It follows that Ais not generating; that is, $H := \langle A \rangle$ is a proper subgroup of G. Furthermore, the maximality of A shows that A = H is a maximal subgroup, and aperiodicity of Agives $A = H = \{0\}$. Therefore G has prime order. \Box

References

- [B15] B. BAJNOK, The *h*-critical number of finite abelian groups, Uniform Distribution Theory 10 (2015), no. 2, 93–115.
- [DT89] A.A. DAVYDOV and L.M. TOMBAK, Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry (Russian), *Problemy Peredachi Informatsii* 25 (1989), no. 4, 11–23; translation in *Problems Inform. Transmission* 25 (1989), no. 4, 265–275 (1990).
- [KL09] B. KLOPSCH and V.F. LEV, Generating abelian groups by addition only, Forum Mathematicum 21 (2009), no. 1, 23–41.
- [Kn53] M. KNESER, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.
- [Kn55] _____, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429–434.

E-mail address: seva@math.haifa.ac.il

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HAIFA AT ORANIM, TIVON 36006, ISRAEL