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Improving upon the results of Freiman and Candela-Serra-
Spiegel, we show that for a non-empty subset A ⊆ Fp with 
p prime and |A| < 0.0045p, (i) if |A + A| < 2.59|A| − 3 and 
|A| > 100, then A is contained in an arithmetic progression of 
size |A +A| −|A| +1, and (ii) if |A −A| < 2.6|A| −3, then A is 
contained in an arithmetic progression of size |A −A| −|A| +1.
The improvement comes from using the properties of higher 
energies.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction. Summary of results

The sumset and the difference set of the subsets A and B of an additively written 
group are defined by

A + B = {a + b : a ∈ A, b ∈ B}
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and

A−B = {a− b : a ∈ A, b ∈ B},

respectively. We are mostly concerned with the groups of prime order which are identified 
with the additive group of the corresponding field and, accordingly, denoted Fp; here p
is the order of the group.

The Cauchy-Davenport theorem asserts that if A, B ⊆ Fp are nonempty, then

|A + B| ≥ min{|A| + |B| − 1, p}.

This basic theorem, proved by Cauchy [C13] and independently rediscovered by Daven-
port [D35,D47], is arguably the earliest result in the area of additive combinatorics.

The case of equality in the Cauchy-Davenport theorem was investigated by Vosper.

Theorem 1 (Vosper [V56a,V56b]). Let p be a prime. If A, B ⊆ Fp satisfy |A|, |B| ≥ 2
and |A +B| ≤ p −2, then |A +B| ≥ |A| + |B| unless A and B are arithmetic progressions 
sharing the same common difference.

A far-reaching extension of Vosper’s theorem, due to Freiman, establishes the structure 
of sets A ⊆ Fp with the doubling coefficient |A + A|/|A| up to 2.4.

Theorem 2 (Freiman [F61]). Let p be a prime. If A ⊆ Fp satisfies |A +A| < 2.4|A| −3 and 
|A| < p/35, then A is contained in an arithmetic progression with at most |A +A| −|A| +1
terms.

Theorem 2 is commonly referred to as Freiman’s 2.4-theorem.
While the expression |A + A| − |A| + 1 in Theorem 2 is sharp, the assumptions 

|A + A| < 2.4|A| − 3 and |A| < p/35 are certainly not and, conjecturally, can be sub-
stantially relaxed. Indeed, some improvements along these lines have been obtained. For 
instance, as it follows from a general result by Green and Ruzsa [GR06], the conclusion 
of Theorem 2 holds true provided that |A + A| < 3|A| − 3 (which is the best possible 
bound), and that A is very small as compared to p: namely, |A| < 96−108p. Two more 
results to mention are due to Rodseth [R06] (relaxing the density assumption in The-
orem 2 to |A| < p/10.7), and Candela-Serra-Spiegel [CSS] (replacing the assumptions 
with |A + A| < 2.48|A| − 7 and |A| < 10−10p).

We recommend the interested reader to check [CSS] for further discussion and histor-
ical comments.

In this paper we make yet another step in the indicated direction, improving the 
constants further and establishing a similar result for the difference set A −A.

Theorem 3. Let p be a prime, and suppose that A ⊆ Fp satisfies |A| < 0.0045p. If 
|A − A| < 2.6|A| − 3, then A is contained in an arithmetic progression with at most 
|A −A| − |A| + 1 terms.
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Theorem 4. Let p be a prime, and suppose that A ⊆ Fp satisfies 100 < |A| < 0.0045p. 
If |A + A| < 2.59|A| − 3, then A is contained in an arithmetic progression with at most 
|A + A| − |A| + 1 terms.

Our method allows for further slight improvements, but we tried to keep a reasonable 
balance to obtain good constants while avoiding excessively technical computations.

The proofs of Theorems 3 and 4 presented in Section 3 follow, from some point on, the 
familiar path involving Fourier bias and partial rectification. The major novelty is that 
we use an argument of combinatorial nature, based on the properties of higher energies, 
to obtain a bias larger than that obtained by the standard reasoning. Our contribution 
is therefore two-fold, including both an improvement in the constants and a new sort of 
the argument introduced, of potential use elsewhere.

In the appendix we apply our approach to obtain large Fourier bias for the indicator 
function of a small-difference set in the general settings of an arbitrary finite abelian 
group.

2. Notation and the toolbox

In this section we gather the notation and results used in Section 3 to prove Theorems 3
and 4.

We will occasionally identify sets with their indicator functions; thus, for instance, for 
a subset A of a finite abelian group G, we have 

∑
x∈G A(x) = |A|. The non-normalized 

Fourier coefficients of A are denoted Â; that is,

Â(χ) =
∑
a∈A

χ(a), χ ∈ Ĝ.

Hence, Â(1) = |A| (where 1 denotes the principal character), and the Parseval identity 
reads

∑
χ∈Ĝ

|Â(χ)|2 = |A||G|.

For a finite subset A and an element x of an abelian group, we let Ax := A ∩ (A +x); 
therefore, |Ax| is the number of representations of x as a difference of two elements of 
A, and in particular |Ax| = 0 if x /∈ A −A. We have

∑
x∈A−A

|Ax| = |A|2

and

Ax −A ⊆ (A−A)x.
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The latter relation, often called the Katz-Koester observation [KK10], can be proved as 
follows:

Ax −A = (A ∩ (A + x)) −A ⊆ (A−A) ∩ ((A + x) −A)

= (A−A) ∩ ((A−A) + x) = (A−A)x.

The sum version of the Katz-Koester observation is

Ax + A ⊆ (A + A)x.

The common energy E(A, B) of finite subsets A and B of an abelian group G is the 
number of quadruples (a1, a2, b1, b2) ∈ A2 ×B2 such that a1 −a2 = b1 − b2; equivalently,

E(A,B) =
∑
x∈G

|Ax||Bx|.

Also, if G is finite, then

E(A,B) = 1
|G|

∑
χ∈Ĝ

|Â(χ)|2|B̂(χ)|2.

We write E(A) as a commonly used abbreviation of E(A, A). For k > 0 we set

Ek(A) :=
∑

x∈A−A

|Ax|k;

thus, E2(A) = E(A), and if k is an integer, then

Ek(A) = |{(a1, . . . , ak, b1, . . . , bk) ∈ A2k : a1 − b1 = · · · = ak − bk}|.

For real u ≤ v, by [u, v] we denote the set of all integers u ≤ n ≤ v, and also the 
“canonical” image of this set in Fp.

The following theorem follows easily from the results of [F62a].

Theorem 5 (Freiman [F62a]). Suppose that A is a finite set of integers. If |A + A| ≤
3|A| − 4, then A is contained in an arithmetic progression with at most |A +A| − |A| +1
terms. Similarly, if |A −A| ≤ 3|A| − 4, then A is contained in an arithmetic progression 
with at most |A −A| − |A| + 1 terms.

We need two more lemmas due to Freiman; the former originates from [F62b], while 
the latter is implicit in [F61] and in fact in any exposition of the proof of Theorem 2, 
such as [N96, Section 2.8].
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Lemma 1 (Freiman [F62b]). Suppose that Z is a finite subset of the unit circle on the 
complex plane. If ∣∣∣∑

z∈Z

z
∣∣∣ = η|Z|, η ∈ [0, 1],

then there is an open arc of the circle of the angle measure π containing at least 12(1 +η)|Z|
elements of Z.

Lemma 2 (Freiman [F61]). Suppose that p is a prime, and that a subset A ⊆ Fp satisfies 
|A| < p/12 and |A + A| < K|A| − 3 with a real K. If there is an arithmetic progression 
in Fp with (p + 1)/2 terms, containing at least 1

3 K|A| elements of A, then, indeed, the 
whole set A is contained in an arithmetic progression with at most |A + A| − |A| + 1
terms.

An essentially identical statement holds true for the subsets A ⊆ Fp with the difference 
set satisfying |A − A| < K|A| − 3. For self-completeness, we provide a very brief sketch 
of the proof, addressing both the sum and the difference versions together.

Proof of Lemma 2. Scaling and translating A appropriately, we assume without loss of 
generality that, with an appropriate choice of 0 ≤ l ≤ (p − 1)/2, the set A′ := A ∩ [0, l]
satisfies |A′| ≥ 1

3 K|A|. Moreover, we can assume that A′ is not contained in an arithmetic 
progression with l or fewer terms.

Let A′′ be the inverse image of A′ in [0, l] under the canonical homomorphism; thus, 
|A′′| = |A′|.

The set A′ of residues modulo p and the set of integers A′′ behave identically under 
addition. As a result,

|A′′ ±A′′| = |A′ ±A′| ≤ |A±A| < K|A| − 3 ≤ 3|A′′| − 3,

and by Theorem 5, the set A′′ is contained in an arithmetic progression with at most 
|A′′ ±A′′| − |A′′| + 1 terms. Hence, so is the set A′, and it follows that

l ≤ |A′′ ±A′′| − |A′′| ≤ |A±A| − 1
3 K|A| < 2

3 K|A| − 3 < p/6

(for the last inequality notice that the assumptions of the lemma imply K ≤ 3).
Therefore, A′ ⊆ [0, l] with l < p/6, and it follows that A′ +A′−A′ ⊆ [−l, 2l], showing 

that for any element x ∈ [2l+ 1, p − l− 1] ⊆ Fp, the sets x +A′ and A′ +A′ are disjoint. 
If we had x ∈ A, then, in view of the Cauchy-Davenport theorem, we would get

|A±A| ≥ |A′ ±A′| + |x + A′| ≥ 3|A′| − 1 ≥ K|A| − 1,

a contradiction. Thus, A ⊆ [−l, 2l], showing that A is contained in an arithmetic pro-
gression with at most (p + 1)/2 terms. Considering now the inverse image of A in the 
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interval [−l, 2l], we conclude, as above, that this image, and therefore the set A itself, 
are in fact contained in arithmetic progressions with at most |A ±A| − |A| + 1 terms, as 
wanted. �

Combining Lemmas 1 and 2 we obtain

Corollary 1. Let p be a prime, and suppose that A ⊆ Fp is a set such that |A| < p/12
and |A ± A| < K|A| − 3 with a real K. If there exists a nonprincipal character χ ∈ F̂p

such that |Â(χ)| ≥ η|A|, where η ∈ [0, 1] satisfies 1
2 (1 + η) ≥ 1

3K, then A is contained in 
an arithmetic progression with at most |A ±A| − |A| + 1 terms.

Finally, we state and prove a lemma which bounds the number of Schur triples con-
tained in a subset of Fp.

Lemma 3. Let p be a prime. For any set D ⊂ Fp with |D| odd and |D| ≤ (2p + 1)/3, we 
have

∑
x,y∈D

D(x− y) ≤ 3
4 |D|2 + 1

4 .

Proof. Let n := (|D| − 1)/2. The sum in the left-hand side counts triples (x, y, z) ∈ D3

with x − y − z = 0. By [L01, Theorem 1], the number of such triples can only increase 
if D is replaced with the interval [−n, n] ⊆ Fp. Therefore, the sum in question does not 
exceed

|{(x, y, z) ∈ [−n, n]3 : x− y − z = 0}|

= |{(x, y) ∈ [−n, n]2 : y − x ∈ [−n, n]}|

=
∑

x∈[−n,n]

|[x− n, x + n] ∩ [−n, n]|

= (2n + 1) + 2
n∑

x=1
|[x− n, n]|

= (2n + 1) + 2
n∑

x=1
(2n + 1 − x)

= 3
4 (2n + 1)2 + 1

4;

here all intervals are subsets of Fp, and the assumption 2n +1 = |D| ≤ (2p +1)/3 ensures 
that [x − n, x + n] ∩ [−n, n] = [x − n, n] whenever x ∈ [1, n]. �
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3. Proofs of Theorems 3 and 4

For a subset A ⊆ Fp with |A − A| = K|A|, as an immediate application of the 
Cauchy-Schwarz inequality we have E(A) ≥ K−1|A|3. We start with a lemma improving 
this trivial bound; this lemma will be used in the proof of Theorem 3.

Lemma 4. Let p be a prime, and suppose that A ⊂ Fp is a nonempty subaset satisfying 
|A −A| = K|A| < p/2. Then

E(A) ≥
(

1
K

+ 1
3K(K + 2) (1 − |A|−2)

)
|A|3.

Proof. Write D := A −A and λ := |A|2/|D|, and let

F (x) := |Ax| − λD(x), x ∈ Fp

and

σk :=
∑
x∈Fp

F k(x),

where k is a positive integer. We have

σ1 =
∑
x∈Fp

F (x) = 0,

σ2 =
∑
x∈Fp

F 2(x) = E(A) − 2λ|A|2 + λ2|D| = E(A) − |A|4
|D| , (1)

and

σ3 =
∑
x∈Fp

F 3(x)

= E3(A) − 3λE(A) + 3λ2|A|2 − λ3|D|

= E3(A) − 3λ
(

E(A) − |A|4
|D|

)
− |A|6

|D|2

= E3(A) − 3 |A|2
|D| σ2 −

|A|6
|D|2 . (2)

Also, from F (x) ≤ |A| − λ = |A| − |A|2/|D| = (1 − |A|/|D|)|A| we get

σ3 ≤
(
1 − |A|

|D|
)
|A|σ2. (3)

From (1)–(3),
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E3(A) = σ3 + 3 |A|2
|D| σ2 + |A|6

|D|2 ≤
(
1 + 2 |A|

|D|
)
|A|σ2 + |A|6

|D|2

=
(
1 + 2 |A|

|D|
)(

E(A) − |A|4
|D|

)
|A| + |A|6

|D|2 . (4)

We now use the basic properties of higher energies from [SS13] to estimate E3(A) from 
below. To this end, we observe that∑

x,y∈Fp

|A ∩ (A + x) ∩ (A + y)| =
∑

x,y∈Fp

|{a ∈ A : a− x, a− y ∈ A}|

=
∑
a∈A

|{(x, y) ∈ F2
p : a− x, a− y ∈ A}|

=
∑
a∈A

|A|2

= |A|3.

In a similar way, considering pairs (a, b) ∈ A2 with a − x, a − y, b − x, b − y ∈ A, we get∑
x,y∈Fp

|A ∩ (A + x) ∩ (A + y)|2 = E3(A).

Furthermore, the number of non-zero summands in these sums is the number of pairs 
(x, y) such that there exist a, b, c ∈ A with x = a − b and y = a − c; that is, the number 
of pairs representable in the form (a − b, a − c), where a, b, c ∈ A. Consequently, using 
the Cauchy–Schwarz inequality we obtain

|A|6 =
( ∑

x,y∈Fp

|A ∩ (A + x) ∩ (A + y)|
)2

≤
∑

x,y∈Fp

|A ∩ (A + x) ∩ (A + y)|2 · |{(b− a, c− a) : a, b, c ∈ A}|

≤ E3(A)
∑

x,y∈D

D(x− y).

Applying Lemma 3, we conclude that

E3(A) ·
(3

4 |D|2 + 1
4

)
≥ |A|6.

Since E3(A) ≤ |A|4, this leads to

E3(A) ≥ 4
3
|A|6
|D|2 − 1

3
|A|4
|D|2 .

From this inequality and (4),
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4
3
|A|6
|D|2 − 1

3
|A|4
|D|2 ≤

(
1 + 2 |A|

|D|
)(

E(A) − |A|4
|D|

)
|A| + |A|6

|D|2 ,

and a short computation gives

E(A) ≥ |A|4
|D| + 1

3
|A|5 − |A|3

(|D| + 2|A)|D|

=
( 1
K

+ 1
3K(K + 2) − 1

3K(K + 2)|A|2
)
|A|3. �

We are now ready to prove Theorems 3 and 4.

Proof of Theorem 3. Using the Cauchy-Davenport and Vosper theorems, it is easy to 
verify the assertion for |A| ≤ 4; we therefore assume throughout that |A| ≥ 5. We set 
D := A −A and K := |D|/|A|; thus, K < 2.6.

Let η be defined by max{|Â(χ)| : χ ∈ F̂p \ {1}} = η|A|, and let α := |A|/p be the 
density of A. In view of

E(A) = p−1
∑
χ∈F̂p

|Â(χ)|4 ≤ α|A|3 + η2|A|3, (5)

from Lemma 4 we obtain

η2 ≥ 1
K

+ 1
3K(K + 2) − 1

3K(K + 2)|A|2 − α. (6)

With some extra effort, we now prove a slightly better bound, in the spirit of [SS13]
where a short proof of a Katz-Koester energy result [KK10] is presented.

Consider the sum

∑
x∈D

|Ax||A−Ax|. (7)

The term corresponding to x = 0 is |A||D|, while for every element x ∈ D \ {0} we have 
|A −Ax| ≥ |A| + |Ax| − 1 by the Cauchy-Davenport theorem. Therefore

∑
x∈D

|Ax||A−Ax| ≥ |A||D| +
∑

x∈D\{0}
|Ax|(|A| + |Ax| − 1)

= |A||D| + (|A|2 − |A|)|A| + (E(A) − |A|2) − (|D| − 1)

> |A|3 + E(A) + (K − 2)|A|2 −K|A|. (8)

Combining this estimate with the estimate of Lemma 4 and the Katz-Koester obser-
vation |A −Ax| ≤ |Dx|, we get
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p−1|A|2|D|2+p−1η2|A|2(p− |D|)|D|

≥ p−1
∑
χ∈F̂p

|Â(χ)|2|D̂(χ)|2

=
∑
x∈Fp

|Ax||Dx|

=
∑
x∈D

|Ax||Dx|

> |A|3 + E(A) + (K − 2)|A|2 −K|A|

≥
(

1 + 1
K

+ 1
3K(K + 2) − 1

3K(K + 2)|A|2 + K − 2
|A| − K

|A|2
)

|A|3.

Asymptotically, in the regime where |A| grows, but αK2 = o(1), this yields

η2 ≥ 1
K

+ 1
K2 + 1

3K2(K + 2) + o(1)

(which is worth comparing against (6)).
To obtain an explicit version of this estimate suitable for our present purposes, we let 

η0 := 2
3 · 2.6 − 1 and notice that if η < η0, then the last computation gives

αK2 + K(1 − αK)η2
0 ≥ 1 + 1

K
+ 1

3K(K + 2) − 1
3K(K + 2)|A|2 + K − 2

|A| − K

|A|2 ;

equivalently,

(1 − η2
0)αK2 +

(
η2
0 − 1

|A|
)
K + 2

|A| ≥ 1 + 1
K

+ 1
3K(K + 2) − 1

3K(K + 2)|A|2 − K

|A|2 .

Since the left-hand side is an increasing function of K, while the right-hand side is de-
creasing, the inequality remains valid with K substituted by 2.6; making the substitution, 
dividing through by (1 − η2

0)K2, and computing numerically, we obtain

α > 0.0045 + 0.1920
|A| − 0.8410

|A|2 > 0.0045,

contrary to the assumptions. Thus, η ≥ η0, and an application of Corollary 1 completes 
the proof. �

The proof of Theorem 4 is in fact a simplified version of that of Theorem 3, due to the 
fact that some components of the proof specific for the differences cannot be reproduced 
for the sums, and are thus omitted. As a result, the argument is somewhat shorter, but 
the eventual estimate is slightly less precise.
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Proof of Theorem 4. As in the proof of Theorem 3, we write D := A −A and α := |A|/p, 
and define η by max{|Â(χ)| : χ ∈ F̂p \ {1}} = η|A|. We also let S := A + A and 
K := |S|/|A|.

Instead of Lemma 4, our starting point is the estimate E(A) ≥ |A|4/|S| following by 
interpreting E(A) as a number of quadruples (a1, a2, a3, a4) ∈ A4 with a1 + a2 = a3 + a4
and concluding that E(A) =

∑
s∈S r2(s), where r(s) is the number of representations of 

the element s ∈ S as a sum of two elements of A. Instead of (7), we now consider the 
sum 

∑
x∈D |Ax||A + Ax| for which, applying the Cauchy-Davenport theorem, we get

∑
x∈D

|Ax||A + Ax| ≥
∑
x∈D

|Ax|(|A| + |Ax| − 1) − |A|(2|A| − 1) + |A||S|

= |A|3 + E(A) + |A||S| − 3|A|2 + |A|,

cf. (8). Using, on the other hand, the estimate |A + Ax| ≤ |Sx|, we obtain

p−1|A|2|S|2+p−1η2|A|2(p− |S|)|S|

≥ p−1
∑
χ∈F̂p

|Â(χ)|2|Ŝ(χ)|2

=
∑
x∈D

|Ax||Sx|

≥
∑
x∈D

|Ax||A + Ax|

≥ |A|3 + E(A) + |A||S| − 3|A|2 + |A|

≥
(

1 + 1
K

− 3 −K

|A|

)
|A|3.

As a result,

η2 ≥ 1
K(1 − αK)

(
1 + 1

K
− 3 −K

|A| − αK2
)
.

Let η0 := 2
3 · 2.59 − 1. If we had η < η0, this would imply

K(1 − αK)η2
0 > 1 + 1

K
− 3 −K

|A| − αK2;

that is,

(1 − η2
0)αK2 +

(
η2
0 − 1

|A|
)
K + 3

|A| > 1 + 1
K

.

Since the left-hand side is an increasing function of K, while the right-hand side is 
decreasing, in view of K < 2.59 we would conclude that the last inequality stays true 
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if K gets substituted by 2.59; substituting, normalizing, and computing numerically, we 
obtain

α + 0.1296
|A| > 0.0058,

contradicting the assumptions α < 0.0045 and |A| > 100.
Thus, η ≥ η0, and we invoke Corollary 1 to complete the proof. �

Acknowledgment

We are grateful to the referee for a careful reading of the manuscript and the remarks.

Appendix A. Arbitrary groups

The standard argument shows that for a subset A of an arbitrary finite abelian group 
G, keeping the notation K for the doubling coefficient |A + A|/|A|, and η|A| for the 
largest absolute value of a non-trivial Fourier coefficient of the indicator function of A, 
one has

η ≥ 1√
K

√
1 − γ

1 − α
,

where α := |A|/|G| and γ := |A +A|/|G| are the densities of A and A +A, respectively.
The same estimate holds true for the difference set A − A. In any case, assuming 

γ = o(1), we get

η ≥ 1 + o(1)√
K

. (9)

In the case of difference sets we have the following slight improvement which basically 
replaces the term o(1) in (9) with a positive constant.

Theorem 6. Let A be a non-empty subset of a finite abelian group G of density α =
|A|/|G|. If |A −A| = K|A|, then

η ≥
(

1 +
√

5
2

)1/2 1 + O(K3α)√
K + 1

,

where η is defined by max{|Â(χ)| : χ ∈ Ĝ \ {1}} = η|A|.

Proof. From (4) and (5) (which are valid in any finite abelian group, not necessarily of 
prime order),

E3(A) ≤
(
1 + 2 )(

η2 − 1 + α
)
|A|4 + |A|4

. (10)

K K K2
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On the other hand, letting D := A −A, by Hölder’s inequality,

|A|2 =
∑
x∈D

|Ax| ≤ |D|1/3
(∑

x

|Ax|3/2
)2/3

= |D|1/3(E3/2(A))2/3;

that is,

E3/2(A) ≥ K−1/2|A|5/2.

Combining this with the estimate

|A|2 E2
3/2(A) ≤ E3(A)E(A,D)

established in [S13, Corollary 4.3], and then with (10) and

E(A,D) = p−1
∑
χ

|Â(χ)|2|D̂(χ)|2 ≤ αK2|A|3 + η2K(1 − αK)|A|3,

we obtain

K−1|A|7 ≤ E3(A)E(A,D) ≤
((

1 + 2
K

)(
η2 − 1

K
+ α

)
|A|4 + |A|4

K2

)
·
(
αK2|A|3 + η2K(1 − αK)|A|3

)
.

This gives

1 ≤
(
(K + 2)(η2K − 1) + 1

)
· η2 + O(K3α),

and after rearranging the terms,

η4K(K + 2) − (K + 1)η2 − (1 + O(K3α)) ≥ 0.

It follows that (
(K + 1)η2 − 1

2

)2
≥ 5

4 + O(K3α) = 5
4 (1 + O(K3α)),

whence

(K + 1)η2 ≥ 1
2 +

√
5
4 (1 + O(K3α)) = 1 +

√
5

2 (1 + O(K3α)),

resulting in

η ≥
(

1 +
√

5
)1/2 1√ (1 + O(K3α)). �
2 K + 1
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If something is known about subgroups of the group G (as, for instance, in the case 
where G = Fp), then Fournier–type results [Fou77] can be applied (see [S11, Lemma 7.2]
for a modern exposition), allowing one to estimate E3(A) from below nontrivially, and 
hence improving Theorem 6 in this situation.
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