ON THE SIZE OF DISSOCIATED BASES
VSEVOLOD F. LEV AND RAPHAEL YUSTER

ABSTRACT. We prove that the sizes of the maximal dissociated subsets of a given
finite subset of an abelian group differ by a logarithmic factor at most. On the
other hand, we show that the set {0,1}™ C Z" possesses a dissociated subset of size
Q(nlogn); since the standard basis of Z™ is a maximal dissociated subset of {0,1}"
of size n, the result just mentioned is essentially sharp.

Recall, that subset sums of a subset A of an abelian group are group elements of
the form ), 5 b, where B C A; thus, a finite set A has at most 211 distinct subset
sums.

A famous open conjecture of Erdés, first stated about 80 years ago (see [B96] for
a relatively recent related result and brief survey), is that if all subset sums of an
integer set A C [1,n] are pairwise distinct, then |A| < log,n + O(1) as n — oo; here
log, denotes the base-2 logarithm. Similarly, one can investigate the largest possible
size of subsets of other “natural” sets in abelian groups, possessing the property in
question; say,

What is the largest possible size of a set A C {0,1}* C Z™ with all
subset sums pairwise distinct?

In modern terms, a subset of an abelian group, all of whose subset sums are pairwise
distinct, is called dissociated. Such sets proved to be extremely useful due to the fact
that if A is a maximal dissociated subset of a given set A, then every element of A
is representable (generally speaking, in a non-unique way) as a linear combination
of the elements of A with the coefficients in {—1,0,1}. Hence, maximal dissociated
subsets of a given set can be considered as its “linear bases over the set {—1,0,1}”.
This interpretation naturally makes one wonder whether, and to what extent, the size
of a maximal dissociated subset of a given set is determined by this set. That is,

Is it true that all maximal dissociated subsets of a given finite set in
an abelian group are of about the same size?

In this note we answer the two above-stated questions as follows.
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Theorem 1. For a positive integer n, the set {0,1}" (consisting of those vectors in
Z™ with all coordinates being equal to 0 or 1) possesses a dissociated subset of size
(14 o0(1))nlogyn/log,9 (asn — o0).

Theorem 2. If A and M are mazimal dissociated subsets of a finite subset A ¢ {0}

of an abelian group, then
| M|

log, (2| M| + 1)

< |A| < | M| (10g2(2M) + log, log, (2| M) + 2).

We remark that if a subset A of an abelian group satisfies A C {0}, then A has
just one dissociated subset; namely, the empty set.

Since the set of all n-dimensional vectors with exactly one coordinate equal to 1
and the other n — 1 coordinates equal to 0 is a maximal dissociated subset of the
set {0,1}", comparing Theorems 1 and 2 we conclude that the latter is sharp in
the sense that the logarithmic factors cannot be dropped or replaced with a slower
growing function, and the former is sharp in the sense that nlogn is the true order
of magnitude of the size of the largest dissociated subset of the set {0,1}". At the
same time, the bound of Theorem 2 is easy to improve in the special case where the
underlying group has bounded exponent.

Theorem 3. Let A be finite subset of an abelian group G of exponent e := exp(G).
If r denotes the rank of the subgroup (A), generated by A, then for any mazimal
dissociated subset A C A we have

r < |A| < rlog,e.
We now turn to the proofs.

Proof of Theorem 1. We will show that if n > (2log, 3 + o(1))m/ log, m, with a suit-
able choice of the implicit function, then the set {0,1}" possesses an m-element dis-
sociated subset. For this we prove that there exists a set D C {0,1}" with |D| =n
such that for every non-zero vector s € S := {—1,0,1}" there is an element of D,
not orthogonal to s. Once this is done, we consider the n X m matrix whose rows are
the elements of D; the columns of this matrix form then an m-element dissociated
subset of {0,1}", as required.

We construct D by choosing at random and independently of each other n vectors
from the set {0,1}™, with equal probability for each vector to be chosen. We will
show that for every fixed non-zero vector s € S, the probability that all vectors from
D are orthogonal to s is very small, and indeed, the sum of these probabilities over
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all s € S\ {0} is less than 1. By the union bound, this implies that with positive
probability, every vector s € S\ {0} is not orthogonal to some vector from D.

We say that a vector from S is of type (m™,m™) if it has m™ coordinates equal to
+1, and m~ coordinates equal to —1 (so that m —m™ — m™ of its coordinates are
equal to 0). Suppose that s is a non-zero vector from S of type (m*, m™). Clearly,
a vector d € {0,1}"™ is orthogonal to s if and only if there exists j > 0 such that d
has exactly j non-zero coordinates in the (+1)-locations of s, and exactly j non-zero
coordinates in the (—1)-locations of s. Hence, the probability for a randomly chosen
d € {0,1}™ to be orthogonal to s is

min{m*,m~
1 {2 ) <m+) (m—) 1 (m+ + m—) ) 1
omT+m- =0 J J 2mt+m” mt V15(m+ +m=)

It follows that the probability for all elements of our randomly chosen set D to be

simultaneously orthogonal to s is smaller than (1.5(m* +m™))/2,
Since the number of elements of S of a given type (m*,m™) is (m +f':m_) (mt;ff),
to conclude the proof it suffices to estimate the sum

m m* +m” N C\\en)2
S (L ) s o
1<mt4+m—<m

showing that its value does not exceed 1.
To this end we rewrite this sum as

m t m
m t m
—n/2 _ t —n/2
S (Mo 5 (1) =55 (7) 2
t=1 mT=0 t=1
and split it into two parts, according to whether ¢t < T or t > T, where T :=

m/(log, m)?. Let ¥, denote the first part and 3, the second part. Assuming that m
is large enough and

n > 2log, 3 lom (1+¢(m))

o m
with a function ¢ sufficiently slowly decaying to 0 (where the exact meaning of “suf-
ficiently” will be clear from the analysis of the sum Y5 below), we have

T
¥ < @) 271572 < <9Tm) 1.5"2 = (3log, m)*'1.57 2,

whence
m

2
log, 31 < —m2 log,(3log, m) — log, 3log, 1.5 ] (I1+¢(m)) < —1,

(logy m) 08y M
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and therefore ¥; < 1/2. Furthermore,

m

¥, < T-"n/2 Z (T) ot 21“1—71/237717

t=1
implying

log, ¥ < mlogy 3 — (log, m — 2log, log, m) log, 3 m
log, m

(14 o(m)) w(m)>

(14 ¢(m))

21og, 1
:mloggg(w

< —1.

0gy M

Thus, ¥s < 1/2; along with the estimate ¥; < 1/2 obtained above, this completes
the proof. 0

Proof of Theorem 2. Suppose that A, M C A are maximal dissociated subsets of A.
By maximality of A, every element of A, and consequently every element of M, is
a linear combination of the elements of A with the coefficients in {—1,0,1}. Hence,
every subset sum of M is a linear combination of the elements of A with the coefficients
in {—|M|,—|M| +1,...,|M|}. Since there are 21! subset sums of M, all distinct
from each other, and (2|M| + 1)/l linear combinations of the elements of A with the
coefficients in {—|M|,—|M|+1,...,|M|}, we have

2 < 2|M]+ 1)1,

and the lower bound follows.
Notice, that by symmetry we have

2 < (2|A| 4 )M,
whence
[A] < |M|logy(2[A] +1). (%)
Observing that the upper bound is immediate if M is a singleton (in which case
A C {—g,0, g}, where g is the element of M, and therefore every maximal dissociated
subset of A is a singleton, too), we assume |M| > 2 below.
Since every element of A is a linear combination of the elements of M with the

coefficients in {—1,0, 1}, and since A contains neither 0, nor two elements adding up
to 0, we have |A| < (3™ —1)/2. Consequently, 2|A| +1 < 3™ and using () we get

Al < [M[*log, 3.

Hence,
2|A| +1 < |M|*log, 9+ 1 < 4|M|?,
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and substituting this back into (*) we obtain
|A] < 2|M|logy (2| M]).
As a next iteration, we conclude that
2|A| + 1 < 5|M|log,(2|M]),
and therefore, by (%),
Al < |M](logy(2|M]) + log, logy (2]M]) + log,y(5/2)).

OJ

Proof of Theorem 3. The lower bound follows from the fact that A generates (A),

the upper bound from the fact that all 2* pairwise distinct subset sums of A are
contained in (A), whereas |[(A)| < e". O

We close our note with an open problem.

For a positive integer n, let L, denote the largest size of a dissociated
subset of the set {0,1}" C Z". What are the limits

L, , L,
liminf ———— and limsup ———— 7
n—oo nlog,n n—oo Nlogyn
Notice, that by Theorems 1 and 2 we have

L L,
1/log, 9 < lim inf ——— < limsup ——— < 1.
n—oo nlogsn n—oo Nlogyn
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