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Abstract. We prove that the sizes of the maximal dissociated subsets of a given
finite subset of an abelian group differ by a logarithmic factor at most. On the
other hand, we show that the set {0, 1}n ⊆ Zn possesses a dissociated subset of size
Ω(n log n); since the standard basis of Zn is a maximal dissociated subset of {0, 1}n
of size n, the result just mentioned is essentially sharp.

Recall, that subset sums of a subset Λ of an abelian group are group elements of

the form
∑

b∈B b, where B ⊆ Λ; thus, a finite set Λ has at most 2|Λ| distinct subset

sums.

A famous open conjecture of Erdős, first stated about 80 years ago (see [B96] for

a relatively recent related result and brief survey), is that if all subset sums of an

integer set Λ ⊆ [1, n] are pairwise distinct, then |Λ| ≤ log2 n + O(1) as n→∞; here

log2 denotes the base-2 logarithm. Similarly, one can investigate the largest possible

size of subsets of other “natural” sets in abelian groups, possessing the property in

question; say,

What is the largest possible size of a set Λ ⊆ {0, 1}n ⊆ Zn with all

subset sums pairwise distinct?

In modern terms, a subset of an abelian group, all of whose subset sums are pairwise

distinct, is called dissociated. Such sets proved to be extremely useful due to the fact

that if Λ is a maximal dissociated subset of a given set A, then every element of A

is representable (generally speaking, in a non-unique way) as a linear combination

of the elements of Λ with the coefficients in {−1, 0, 1}. Hence, maximal dissociated

subsets of a given set can be considered as its “linear bases over the set {−1, 0, 1}”.

This interpretation naturally makes one wonder whether, and to what extent, the size

of a maximal dissociated subset of a given set is determined by this set. That is,

Is it true that all maximal dissociated subsets of a given finite set in

an abelian group are of about the same size?

In this note we answer the two above-stated questions as follows.
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Theorem 1. For a positive integer n, the set {0, 1}n (consisting of those vectors in

Zn with all coordinates being equal to 0 or 1) possesses a dissociated subset of size

(1 + o(1))n log2 n/ log2 9 (as n→∞).

Theorem 2. If Λ and M are maximal dissociated subsets of a finite subset A * {0}
of an abelian group, then

|M |
log2(2|M |+ 1)

≤ |Λ| < |M |
(

log2(2M) + log2 log2(2|M |) + 2
)
.

We remark that if a subset A of an abelian group satisfies A ⊆ {0}, then A has

just one dissociated subset; namely, the empty set.

Since the set of all n-dimensional vectors with exactly one coordinate equal to 1

and the other n − 1 coordinates equal to 0 is a maximal dissociated subset of the

set {0, 1}n, comparing Theorems 1 and 2 we conclude that the latter is sharp in

the sense that the logarithmic factors cannot be dropped or replaced with a slower

growing function, and the former is sharp in the sense that n log n is the true order

of magnitude of the size of the largest dissociated subset of the set {0, 1}n. At the

same time, the bound of Theorem 2 is easy to improve in the special case where the

underlying group has bounded exponent.

Theorem 3. Let A be finite subset of an abelian group G of exponent e := exp(G).

If r denotes the rank of the subgroup 〈A〉, generated by A, then for any maximal

dissociated subset Λ ⊆ A we have

r ≤ |Λ| ≤ r log2 e.

We now turn to the proofs.

Proof of Theorem 1. We will show that if n > (2 log2 3 + o(1))m/ log2 m, with a suit-

able choice of the implicit function, then the set {0, 1}n possesses an m-element dis-

sociated subset. For this we prove that there exists a set D ⊆ {0, 1}m with |D| = n

such that for every non-zero vector s ∈ S := {−1, 0, 1}m there is an element of D,

not orthogonal to s. Once this is done, we consider the n×m matrix whose rows are

the elements of D; the columns of this matrix form then an m-element dissociated

subset of {0, 1}n, as required.

We construct D by choosing at random and independently of each other n vectors

from the set {0, 1}m, with equal probability for each vector to be chosen. We will

show that for every fixed non-zero vector s ∈ S, the probability that all vectors from

D are orthogonal to s is very small, and indeed, the sum of these probabilities over
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all s ∈ S \ {0} is less than 1. By the union bound, this implies that with positive

probability, every vector s ∈ S \ {0} is not orthogonal to some vector from D.

We say that a vector from S is of type (m+,m−) if it has m+ coordinates equal to

+1, and m− coordinates equal to −1 (so that m −m+ −m− of its coordinates are

equal to 0). Suppose that s is a non-zero vector from S of type (m+,m−). Clearly,

a vector d ∈ {0, 1}m is orthogonal to s if and only if there exists j ≥ 0 such that d

has exactly j non-zero coordinates in the (+1)-locations of s, and exactly j non-zero

coordinates in the (−1)-locations of s. Hence, the probability for a randomly chosen

d ∈ {0, 1}m to be orthogonal to s is

1

2m++m−

min{m+,m−}∑
j=0

(
m+

j

)(
m−

j

)
=

1

2m++m−

(
m+ + m−

m+

)
<

1√
1.5(m+ + m−)

.

It follows that the probability for all elements of our randomly chosen set D to be

simultaneously orthogonal to s is smaller than (1.5(m+ + m−))−n/2.

Since the number of elements of S of a given type (m+,m−) is
(

m
m++m−

)(
m++m−

m+

)
,

to conclude the proof it suffices to estimate the sum∑
1≤m++m−≤m

(
m

m+ + m−

)(
m+ + m−

m+

)
(1.5(m+ + m−))−n/2

showing that its value does not exceed 1.

To this end we rewrite this sum as
m∑
t=1

(
m

t

)
(1.5t)−n/2

t∑
m+=0

(
t

m+

)
=

m∑
t=1

(
m

t

)
2t (1.5t)−n/2

and split it into two parts, according to whether t < T or t ≥ T , where T :=

m/(log2 m)2. Let Σ1 denote the first part and Σ2 the second part. Assuming that m

is large enough and

n > 2 log2 3
m

log2 m
(1 + ϕ(m))

with a function ϕ sufficiently slowly decaying to 0 (where the exact meaning of “suf-

ficiently” will be clear from the analysis of the sum Σ2 below), we have

Σ1 ≤
(
m

T

)
2T1.5−n/2 <

(
9m

T

)T

1.5−n/2 = (3 log2 m)2T1.5−n/2,

whence

log2 Σ1 <
2m

(log2 m)2
log2(3 log2 m)− log2 3 log2 1.5

m

log2 m
(1 + ϕ(m)) < −1,
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and therefore Σ1 < 1/2. Furthermore,

Σ2 ≤ T−n/2

m∑
t=1

(
m

t

)
2t < T−n/23m,

implying

log2 Σ2 < m log2 3− (log2 m− 2 log2 log2 m) log2 3
m

log2 m
(1 + ϕ(m))

= m log2 3

(
2 log2 log2 m

log2 m
(1 + ϕ(m))− ϕ(m)

)
< −1.

Thus, Σ2 < 1/2; along with the estimate Σ1 < 1/2 obtained above, this completes

the proof. �

Proof of Theorem 2. Suppose that Λ,M ⊆ A are maximal dissociated subsets of A.

By maximality of Λ, every element of A, and consequently every element of M , is

a linear combination of the elements of Λ with the coefficients in {−1, 0, 1}. Hence,

every subset sum of M is a linear combination of the elements of Λ with the coefficients

in {−|M |,−|M | + 1, . . . , |M |}. Since there are 2|M | subset sums of M , all distinct

from each other, and (2|M |+ 1)|Λ| linear combinations of the elements of Λ with the

coefficients in {−|M |,−|M |+ 1, . . . , |M |}, we have

2|M | ≤ (2|M |+ 1)|Λ|,

and the lower bound follows.

Notice, that by symmetry we have

2|Λ| ≤ (2|Λ|+ 1)|M |,

whence

|Λ| ≤ |M | log2(2|Λ|+ 1). (∗)
Observing that the upper bound is immediate if M is a singleton (in which case

A ⊆ {−g, 0, g}, where g is the element of M , and therefore every maximal dissociated

subset of A is a singleton, too), we assume |M | ≥ 2 below.

Since every element of Λ is a linear combination of the elements of M with the

coefficients in {−1, 0, 1}, and since Λ contains neither 0, nor two elements adding up

to 0, we have |Λ| ≤ (3|M |− 1)/2. Consequently, 2|Λ|+ 1 ≤ 3|M |, and using (∗) we get

|Λ| ≤ |M |2 log2 3.

Hence,

2|Λ|+ 1 < |M |2 log2 9 + 1 < 4|M |2,
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and substituting this back into (∗) we obtain

|Λ| < 2|M | log2(2|M |).

As a next iteration, we conclude that

2|Λ|+ 1 < 5|M | log2(2|M |),

and therefore, by (∗),

|Λ| ≤ |M |
(

log2(2|M |) + log2 log2(2|M |) + log2(5/2)
)
.

�

Proof of Theorem 3. The lower bound follows from the fact that Λ generates 〈A〉,
the upper bound from the fact that all 2|Λ| pairwise distinct subset sums of Λ are

contained in 〈A〉, whereas |〈A〉| ≤ er. �

We close our note with an open problem.

For a positive integer n, let Ln denote the largest size of a dissociated

subset of the set {0, 1}n ⊆ Zn. What are the limits

lim inf
n→∞

Ln

n log2 n
and lim sup

n→∞

Ln

n log2 n
?

Notice, that by Theorems 1 and 2 we have

1/ log2 9 ≤ lim inf
n→∞

Ln

n log2 n
≤ lim sup

n→∞

Ln

n log2 n
≤ 1.
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