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1. Introduction

One of the central problems of additive combinatorics is to understand the structure 
of small-doubling sets, or approximate subgroups, which are sets A of group elements 
such that the sumset 2A := {a + b : a, b ∈ A} has size comparable with the size of A.

We use the additive notation throughout since we will be concerned with abelian 
groups only, and particularly with the finite cyclic groups, which we denote Zn; here n
is the order of the group. Our goal is to prove the following result.

Theorem 1.1. Let n be a positive integer. If a set A ⊆ Zn satisfies |2A| < 9
4 |A|, then one 

of the following holds:

(i) There is a subgroup H ≤ Zn such that A is contained in an H-coset and |A| >
C−1|H|, where C = 2 · 105.

(ii) There is a proper subgroup H < Zn and an arithmetic progression P of size |P | > 1
such that |P + H| = |P ||H|, A ⊆ P + H, and

(|P | − 1)|H| ≤ |2A| − |A|.

(iii) There is a proper subgroup H < Zn such that A meets exactly three H-cosets, the 
cosets are not in an arithmetic progression, and

3|H| ≤ |2A| − |A|.

We notice that the coefficient 9
4 in Theorem 1.1 is in fact a threshold in the sense that 

the assumption |2A| < 9
4 |A| cannot be relaxed even to |2A| ≤ 9

4 |A|: for instance, if n is 
large enough, and A = {−1, 0, 1} ∪ {a} with a /∈ {−3, . . . , 3} and 2a /∈ {−2, . . . , 2}, then 
|2A| = 9

4 |A| while A does not have the structure described in Theorem 1.1.
Theorem 1.1 improves the following result by Deshouillers and Freiman.

Theorem 1.2 ([DF03, Theorem 1]). Let n be a positive integer. If a set A ⊆ Zn satisfies 
|2A| < 2.04|A|, then one of the following holds:
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(i) There is a subgroup H ≤ Zn such that A is contained in an H-coset and |A| >
10−9|H|.

(ii) There is a proper subgroup H < Zn and an arithmetic progression P of size |P | > 1
such that A ⊆ P + H and

(|P | − 1)|H| ≤ |2A| − |A|.

(iii) There is a proper subgroup H < Zn such that A meets exactly three H-cosets, the 
cosets are not in an arithmetic progression, and

3|H| ≤ |2A| − |A|.

Moreover, in (ii) and (iii) there is an H-coset containing at least 2
3 |H| elements of A.

We notice that in the cases (ii) and (iii) of both Theorem 1.1 and Theorem 1.2, we have 
|H| ≤ |2A| −|A| < |2A|, which establishes properness of H as an immediate consequence 
of the other assertions.

Similarly, if the equality |P + H| = |P ||H| of Theorem 1.1 (ii) fails to hold, then 
P +H is a coset of a subgroup of size at most (|P | − 1)|H| ≤ |2A| − |A| < 5

4 |A| < C|A|. 
Therefore, |P +H| = |P ||H| can be enforced by simply reclassifying the set A from type 
(ii) to type (i) whenever possible.

In the same vein, the existence of an H-coset containing at least 2
3 |H| (and indeed, 

a somewhat larger proportion) of the elements of A is not difficult to derive assuming 
the other assertions, both for Theorem 1.1 and Theorem 1.2, provided |P | > 2. This is 
immediate in the case (iii) of either of the two theorems; for the case (ii), we delegate 
the exact statement and the proof to Proposition A.1 in the Appendix.

A version of Theorem 1.2 was proved by Balasubramanian and Pandey [BP18, Theo-
rem 2] who have, essentially, improved the coefficient from 2.04 to 2.1 under some extra 
assumptions.

Two other classical results which Theorems 1.1 and 1.2 are worth comparing with 
are Kneser’s theorem and Freiman’s (3n − 3)-theorem; see Sections 4 and 6 for the 
formulations and references. Kneser’s result deals with small-doubling sets in arbitrary 
abelian groups, but requires the doubling coefficient |2A|/|A| to be smaller than 2. The 
(3n − 3)-theorem, on the other hand, allows the doubling coefficient to be as large as 
3 − o(1), but assumes the underlying group to be torsion-free; specifically, it says that if 
A is a finite subset of a torsion-free abelian group such that |2A| ≤ 3|A| − 4, then A is 
contained in an arithmetic progression P with |P | − 1 ≤ |2A| − |A|. Both Kneser’s and 
Freiman’s theorem are employed in our argument.

The proof of Theorem 1.1 is inductive, and for the induction to go through, we actually 
prove the following version of the theorem.

Theorem 1.3. Let n be a positive integer. If a set A ⊆ Zn is not contained in a coset of 
a proper subgroup and satisfies |2A| < min{9 |A|, n}, then one of the following holds:
4
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(i) |2A| − |A| > C−1
0 n where C0 = 1.5 · 105.

(ii) There is a proper subgroup H < Zn and an arithmetic progression P of size |P | > 1
such that |P + H| = |P ||H|, A ⊆ P + H, and

(|P | − 1)|H| ≤ |2A| − |A|.

(iii) There is a proper subgroup H < Zn such that A meets exactly three H-cosets, the 
cosets are not in an arithmetic progression, and

3|H| ≤ |2A| − |A|.

Deduction of Theorem 1.1 from Theorem 1.3. Suppose that A ⊆ Zn satisfies |2A| <
9
4 |A| and, without loss of generality, assume also that 0 ∈ A and |A| ≥ 2. Let L ≤ Zn

be the subgroup generated by A.
If 2A = L, then |A| > 4

9 |2A| = 4
9 |L|; thus, A has the structure of Theorem 1.1 (i). 

Assuming now that 2A �= L, we apply Theorem 1.3 to the set A with L (instead of Zn) 
as the underlying group, and consider two possible cases.

If A ⊂ L satisfies the inequality of Theorem 1.3 (i), then C−1
0 |L| ≤ |2A| − |A| < 5

4 |A|, 
so that |A| > 4

5C0
|L| > 1

C |L|; this is case (i) of Theorem 1.1.
On the other hand, it is clear that Theorem 1.3 (ii) implies Theorem 1.1 (ii), and 

similarly Theorem 1.3 (iii) implies Theorem 1.1 (iii). �
We thus focus on the proof of Theorem 1.3; once it is completed, Theorem 1.1 will 

follow. We will also ignore the equality |P + H| = |P ||H| of Theorem 1.3 (ii): if it is 
violated, then P +H is a coset of a subgroup of size at most (|P | − 1)|H| ≤ |2A| − |A| <
|2A| < n, so that A is contained in a coset of a proper subgroup, contrary to the 
assumptions of the theorem.

As explained above, the coefficient 9/4 of Theorem 1.1 cannot be replaced with a 
larger one. However, it is plausible to expect that the following can be true.

Conjecture 1.4. For any ε > 0 there exist positive constants C1(ε) and C2(ε) such that 
if n is a positive integer, and A ⊆ Zn satisfies |A| < (C1(ε))−1n and |2A| < (3 − ε) |A|, 
then there are a subset P ⊆ Zn with |2P |/|P | ≤ |2A|/|A| and a proper subgroup H < Zn

such that A ⊆ P + H, (|2P | − |P |)|H| ≤ |2A| − |A|, and either |P | ≤ C2(ε), or P is an 
arithmetic progression.

We remark that the inequality |2P |/|P | ≤ |2A|/|A| follows in fact from the other 
assertions:

|A|
(
|2P |
|P | − 1

)
≤ |P ||H|

(
|2P |
|P | − 1

)
= (|2P |−|P |)|H| ≤ |2A|−|A| = |A|

(
|2A|
|A| − 1

)
.

Theorem 1.1 and Conjecture 1.4 show that any set with the small doubling coefficient 
is, essentially, obtained by “lifting” a small-doubling set which is either nicely struc-
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tured (an arithmetic progression), or otherwise belongs to a finite collection of sporadic 
examples.

Our argument follows the general line of reasoning introduced by Freiman in [F61]
and then pursued by other authors; namely, we use character sums to conclude that 
small doubling leads to a biased distribution, and then use the bias as a starting point 
for the combinatorial part of the proof. The improvements come from a refinement in 
the character sums component, in the spirit of [LS20]; from replacing the main auxiliary 
result used in Deshouillers-Freiman [DF03, Theorem 2] with its stronger version [L22, 
Theorem 2], see Section 3; and, finally, from using an intricate combinatorial analysis.

The rest of the paper is structured as follows. In the next section we introduce the 
notation that will be used throughout and considered standard. In Section 3 we prove 
Theorem 1.3 in the special case where the image of the small-doubling set under a suitable 
homomorphism is rectifiable; although this case is of principal importance, the proof 
is, essentially, just a reduction to [L22, Theorem 2]. In Section 4 we present Kneser’s 
theorem and a relaxed version of Kemperman’s theorem. In Section 5 we establish a 
number of properties of the sets with a “very small” doubling coefficients, including the 
asymmetric case. Some other general results on set addition in abelian groups, mostly 
of combinatorial nature, are gathered in Section 6. Section 7 establishes a number of 
results about the minimal counterexample set (which, as we eventually show, does not 
exist). Two more results of this sort, Lemmas 8.1, and 9.1, show that the minimum 
counterexample set, if it exists, meets at least four cosets of any subgroup, with the 
obvious exceptions; these two lemmas are singled out into dedicated Sections 8 and 9. 
Their proofs are quite technical and some readers may prefer to skip the details and 
proceed to Section 10 where the character sum component of the argument is presented. 
The proof is completed in the concluding Section 11.

2. Notation

Let G be an abelian group.

2.1. Groups

By A + B we denote the Minkowski sum of the sets A, B ⊆ G; that is, A + B =
{a + b : a ∈ A, b ∈ B}. We write 2A := A + A.

For a subgroup H ≤ G, the canonical homomorphism G → G/H is denoted ϕH ; thus, 
for instance, if Z is the group of integers, then Zn = ϕnZ(Z). For g1, g2 ∈ G, we may 
occasionally write g1 ≡ g2 (mod H) as an alternative to g1 − g2 ∈ H, g1 +H = g2 +H, 
or ϕH(g1) = ϕH(g2).

The period (or stabilizer) of a subset S ⊆ G is the subgroup π(S) := {g ∈ G : S + g =
S} ≤ G, and S is periodic or aperiodic according to whether π(S) �= {0} or π(S) = {0}.

The index of a subgroup H ≤ G, denoted [G : H], is the size of the quotient group 
G/H; thus, if G is finite, then [G : H] = |G|/|H|.



JID:YJNTH AID:7027 /FLA [m1L; v1.318] P.6 (1-54)
6 V.F. Lev / Journal of Number Theory ••• (••••) •••–•••
We say that a coset g + H is determined by a subset A ⊆ G if the intersection 
A ∩ (g + H) is nonempty. In this case we also say that A meets, or intersects, g + H.

The coset g + H is proper if the subgroup H is proper.
An involution of G is an element g ∈ G of order 2. Importantly, a cyclic group has at 

most one involution.
A finite subset A of an abelian group will be called a very-small-doubling set (VSDS 

for short) if |2A| < 3
2 |A|; equivalently, if A is contained in a finite coset with density 

exceeding 2/3, see Section 5.

2.2. Progressions

For an integer N ≥ 1, the N -term arithmetic progression in G with difference d ∈ G

and initial term g ∈ G is the set P = {g, g+d, . . . , g+(N−1)d}; thus, for instance, single-
tons and cosets of finite nonzero subgroups are considered arithmetic progressions, while 
the empty set is not. A progression is primitive if its difference generates G. Singletons 
are not considered primitive.

For real u ≤ v, by [u, v] we denote both the set of all integers z satisfying u ≤ z ≤ v, 
and the image of this set under the canonical homomorphism ϕnZ from the group of 
integers to the cyclic group under consideration.

2.3. Local isomorphism and rectification

We say that a subset S ⊆ G is rectifiable if it is locally isomorphic (or Freiman-
isomorphic) to a set of integers; that is, if there is a mapping λ : S → Z such that for 
any s1, . . . , s4 ∈ S, we have s1 + s2 = s3 + s4 if and only if λ(s1) +λ(s2) = λ(s3) +λ(s4). 
Taking s1 = s3, we see that λ is bijective; hence, |λ(S)| = |S|. It is equally easy to see 
that |2λ(S)| = |2S|.

If d ∈ G is an element of order N ≥ 2, then any arithmetic progression with difference 
d, and with at most (N + 1)/2 terms, is rectifiable. Indeed, this is the only kind of 
rectifiable sets that actually appear below.

2.4. Regularity

For an integer k ≥ 2, we say that a set A ⊆ Zn is k-regular if it has the structure 
of Theorem 1.3 (ii) with a k-element progression P , and that A is singular if it has the 
structure of Theorem 1.3 (iii). Thus, Theorem 1.3 essentially says that any small-doubling 
set A ⊆ Zn which is not densely contained in a coset is either regular or singular.

3. Theorem 1.3 for rectifiable sets

One of the key ingredients of our argument is the following refinement of [DF03, 
Theorem 2].
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Theorem 3.1 ([L22, Theorem 2]). Suppose that F is a finite group, and that A is a 
finite subset of the group G := Z × F . Let s be the number of elements of the image 
of A under the projection G → Z along F . If |2A| < 3(1 − 1/s)|A|, then there exist an 
arithmetic progression P ⊆ G of size |P | ≥ 3 and a subgroup H ≤ {0} × F such that 
|P + H| = |P ||H|, A ⊆ P + H, and (|P | − 1)|H| ≤ |2A| − |A|.

The equality |P + H| = |P ||H| (which is somewhat implicit in [L22]) is, in fact, an 
easy consequence of the other assertions, as it follows by considering the difference of P . 
The difference cannot be contained in the subgroup {0} × F , since in this case P , and 
therefore also P +H and A ⊆ P +H, would be contained in a coset of {0} ×F , leading 
to s = 1 and thus contradicting the assumption |2A| < 3

(
1 − 1

s

)
|A|. Thus, the difference 

is of infinite order, and therefore the difference of any two distinct elements of P is of 
infinite order, too, and does not belong to the finite subgroup H.

The following result establishes Theorem 1.3 in the special case where the image of A
under a suitable homomorphism is sufficiently large and rectifiable.

Proposition 3.2. Suppose that n is a positive integer, L ≤ Zn is a subgroup, and A ⊆ Zn

is a subset with ϕL(A) rectifiable. If |2A| < 3(1 − 1/s)|A|, where s = |ϕL(A)|, then there 
exist an arithmetic progression P ⊆ Zn of size |P | > 1 and a proper subgroup H < Zn

such that A ⊆ P + H, |P + H| = |P ||H|, and (|P | − 1)|H| ≤ |2A| − |A|.

We close this section with the deduction of Proposition 3.2 from Theorem 3.1.

Proof of Proposition 3.2. Since ϕL(A) is rectifiable, there is a local isomorphism, say λ, 
from ϕL(A) to Z, and then the mapping ψ : A → Z ×Zn defined by

ψ(a) := (λ ◦ ϕL(a), a), a ∈ A

is a local isomorphism between A and its image in Z ×Zn. Consequently, the set ψ(A) ⊆
Z × Zn satisfies |ψ(A)| = |A| and |2ψ(A)| = |2A|. As a result,

|2ψ(A)|
|ψ(A)| = |2A|

|A| < 3
(
1 − 1

s

)
.

On the other hand, the size of the projection of the set ψ(A) ⊆ Z × Zn onto the first 
component of the direct product is |λ ◦ ϕL(A)| = |ϕL(A)| = s. Thus, we can apply 
Theorem 3.1 to the set ψ(A) to find an arithmetic progression Q ⊆ Z × Zn of size 
|Q| ≥ 3 and a subgroup K ≤ {0} × Zn such that

ψ(A) ⊆ Q + K (3.1)

and

(|Q| − 1)|K| ≤ |2ψ(A)| − |ψ(A)| = |2A| − |A|; (3.2)
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moreover, the elements of Q reside in pairwise distinct K-cosets, and K is proper in 
{0} × Zn since otherwise we would have |K| = n and then

2n ≤ (|Q| − 1)|K| ≤ |2A| − |A| < 2|A| ≤ 2n.

Denoting by ω the projection of Z × Zn onto the second coordinate, we let H :=
ω(K) ≤ Zn and P := ω(Q) ⊆ Zn. From (3.1) and (3.2), and in view of |P | ≤ |Q| and 
|H| = |K|, we readily conclude that A ⊆ P +H and (|P | −1)|H| ≤ |2A| −|A|. It remains 
to show that the elements of P lie in pairwise distinct H-cosets, and that |P | > 1.

To address the former point, we write Q = {g, g+d, . . . , g+(N−1)d} where N := |Q| ≥
3. For 0 ≤ i < j ≤ N−1, the elements ω(g+id), ω(g+jd) ∈ P are in the same H-coset if 
and only if (i −j)ω(d) ∈ H; that is, if and only if i ≡ j (mod ord(ω(d))), where ord(ω(d))
is the order of ω(d) in Zn/H. Moreover, in this case ω(g + id) + H = ω(g + jd) + H. 
Thus, if ord(ω(d)) ≥ N , then all elements of P reside in distinct H-cosets, while if 
ord(ω(d)) < N , then the sum P + H will not be affected if we replace P with its sub-
progression ω({g + id : 0 ≤ i < ord(ω(d))}).

Finally, we show that |P | > 1. To this end we notice that if |P | = 1, then A is 
contained in an H-coset; as a result,

(|Q| − 1)|K| ≥ 2|K| = 2|H| ≥ 2|A| > |2A| − |A|

contradicting (3.2). �
We remark that the quantity |ϕL(A)| is the number of L-cosets determined by A. The 

situation where this quantity is too small for Theorem 3.1 to be applicable is much more 
difficult to deal with.

4. Kneser’s and Kemperman’s theorems

Recall that the period of a subset A of an abelian group G is the subgroup π(A) :=
{g ∈ G : A + g = A} ≤ G, and that A is periodic if π(A) is nonzero.

The following fundamental result due to Kneser is heavily used in our argument.

Theorem 4.1 (Kneser [K53,K55]; see also [M65]). Let A and B be finite, non-empty 
subsets of an abelian group G such that

|A + B| ≤ |A| + |B| − 1.

Then, writing H := π(A + B), we have

|A + B| = |A + H| + |B + H| − |H|.
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Since, in the above notation, |A + H| ≥ |A| and |B + H| ≥ |B|, Theorem 4.1 shows 
that |A + B| ≥ |A| + |B| − |π(A + B)| holds for any finite, nonempty subsets A and B
of an abelian group.

Corollary 4.2. Let A and B be finite, non-empty subsets of an abelian group G. If

|A + B| < |A| + |B| − 1,

then A + B is periodic.

Theorem 4.1 along with the corollary just stated will be referred to as Kneser’s theo-
rem.

Kemperman’s structure theorem [K60] deals with the equality case of Kneser’s the-
orem. Following Kemperman, we say that a pair (A, B) of finite subsets of an abelian 
group G is elementary if at least one of the following conditions holds:

(i) min{|A|, |B|} = 1;
(ii) A and B are arithmetic progressions sharing a common difference d ∈ G, the order 

of which in G is at least |A| + |B| − 1;
(iii) A = g1 + (H1 ∪ {0}) and B = g2 − (H2 ∪ {0}), where g1, g2 ∈ G and H1, H2 are 

non-empty subsets of a subgroup H ≤ G such that H = H1∪H2∪{0} is a partition 
of H. Moreover, g1 + g2 is the only element of A + B with a unique representation 
as a + b with a ∈ A and b ∈ B;

(iv) A = g1+H1 and B = g2−H2, where g1, g2 ∈ G and H1, H2 are non-empty, aperiodic 
subsets of a subgroup H ≤ G such that H = H1 ∪H2 is a partition of H. Moreover, 
every element of A + B has at least two representations as a + b with a ∈ A and 
b ∈ B.

The following theorem proved in [L06] is a simplified and relaxed version of the main 
result of [K60].

Theorem 4.3 ([L06, Theorem 1]). Let A and B be finite, non-empty subsets of a nontrivial 
abelian group G, satisfying |A + B| ≤ |A| + |B| − 1. Suppose that either A + B �= G, or 
there is a group element with a unique representation as a + b with a ∈ A and b ∈ B. 
Then there exists a finite, proper subgroup H < G such that

(i) |C + H| − |C| ≤ |H| − 1 with C substituted by any of the sets A, B, and A + B;
(ii) (ϕH(A), ϕH(B)) is an elementary pair in the quotient group G/H = ϕH(G).

5. The very-small-doubling property

We say that a finite set A in an abelian group is a very-small-doubling set (abbre-
viated below as VSDS) if |2A| < 3 |A|. Thus, for instance, any coset, and in particular 
2
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any singleton, is a VSDS, while a two-element set is a VSDS if and only if it is a 
coset.

The following two lemmas are easy corollaries from Kneser’s theorem. Their (much 
subtler) noncommutative versions are due to Freiman [F73] and Olson [O84, Theorem 1], 
respectively.

Lemma 5.1. A finite set A in an abelian group is a VSDS if and only if there is a 
subgroup H such that A is contained in an H-coset and |A| > 2

3 |H|. Moreover, in this 
case A −A = H, and 2A is an H-coset.

Lemma 5.2. If A and B are finite subsets of an abelian group, then either |A + B| ≥
|A| + 1

2 |B|, or B is contained in a coset of the period H := π(A + B).

Corollary 5.3. Suppose that A and B are finite subsets of an abelian group such that 
|A + B| < |A| + 1

2 |B|. Let H := π(A + B). If |A| ≤ |B|, then |B| > 2
3 |H|, as a result of 

which B −B = H, 2B is an H-coset, and B is a VSDS.

Proof. By Lemma 5.2, B is contained in an H-coset. On the other hand,

|H| ≤ |A + B| < |A| + 1
2 |B| ≤ 3

2 |B|

and the rest follows from Lemma 5.1. �
Lemma 5.4. Suppose that A and B are finite, nonempty subsets of an abelian group, and 
let H := π(A + B). If |A + B| < 2 min{|B|, 34 |A|}, then |A| > 2

3 |H| and |B| > 1
2 |H|; 

moreover, each of the sets A and B is contained in an H-coset and, indeed, A +B is an 
H-coset.

Although Lemma 5.4 is essentially contained, for instance, in [BP18, Propositions 2 
and 3] and [DF03, Proposition 2.1], we present a complete proof.

Proof. Since 2 min{|B|, 34 |A|} ≤ |B| + 3
4 |A| < |A| + |B|, by Kneser’s theorem,

|A + H| + |B + H| − |H| = |A + B| < 2|B| (5.1)

and also

|A + H| + |B + H| − |H| = |A + B| < 3
2 |A|. (5.2)

This readily gives |B| > 1
2 |H| and |A| > 2

3 |H|.
Let α := |A + H|/|H| and β := |B + H|/|H|. From (5.1) we get α + β − 1 < 2β; 

hence α < β + 1 and therefore α ≤ β. Similarly, (5.2) gives α + β − 1 < 3
2α, leading 

to β ≤ (α + 1)/2. Consequently, α ≤ β ≤ (α + 1)/2, whence α = β = 1. This means 
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that each of A and B is contained in an H-coset, and then A + B is an H-coset by the 
definition of H. �
Corollary 5.5. Suppose that A and B are finite, nonempty subsets of an abelian group. 
If A is not a VSDS, then |A + B| ≥ 2 min{|B|, 34 |A|}.

6. More lemmas

In this section we present a number of auxiliary results used in the proof of Theo-
rem 1.3. Some of the results are classical or well-known, some are original.

Lemma 6.1. Suppose that K is a subgroup, and that A and B are finite subsets of an 
abelian group such that A is contained in a single K-coset and |A| ≥ 1

2 |K|.

(i) If |B| > |K| − |A|, then |A + B| ≥ |K|.
(ii) If |B| > 2(|K| −|A|), then either B is also contained in a single K-coset, or |A +B| ≥

|A| + |K|.

Proof. Write B = B1 ∪ · · · ∪Bk where |B1| ≥ · · · ≥ |Bk| > 0, the union is disjoint, and 
each Bi is contained in a single K-coset, with the cosets pairwise distinct.

(i) If k = 1, then |A + B| = |K| by the pigeonhole principle; if k ≥ 2, then |A + B| ≥
k|A| ≥ 2|A| ≥ |K|.

(ii) If k = 2, then |B1| ≥ 1
2 |B| > |K| − |A| whence |A + B| = |A + B1| + |A + B2| ≥

|K| + |A|; if k ≥ 3, then |A + B| ≥ 3|A| ≥ |K| + |A|. �
Freiman’s classical result known as “the (3n − 3)-theorem” can be stated as follows.

Theorem 6.2 (Freiman [F61]). Suppose that A is a finite, nonempty set of integers, and 
l ≥ 1 is an integer. If A is not contained in an l-term arithmetic progression, then 
|2A| ≥ min{l, 2|A| − 3} + |A|.

For a modern exposition of Theorem 6.2 and related results see, for instance, [G13, 
Chapter 7], [N96, Theorem 1.13], or [TV06, Theorem 5.11].

We need yet another well-known result of Freiman.

Lemma 6.3 (Freiman [F62b]). Suppose that Z is a finite subset of the unit circle in the 
complex plane. If ∣∣∣∑

z∈Z

z
∣∣∣ = η|Z|, η ∈ [0, 1],

then there is an open arc of the circle of the angle measure π containing at least 12(1 +η)|Z|
elements of Z.
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The following basic lemma shows that rectifiable sets cannot have a strong correlation 
with finite cosets.

Lemma 6.4. If A is a rectifiable subset of an abelian group G, then for any finite subgroup 
K ≤ G and any element g ∈ G we have |A ∩ (g + K)| ≤ 1

2 (|K| + 1).

Proof. Let A0 := (A − g) ∩ K. If |A0| > 1
2 (|K| + 1) then, by the pigeonhole principle, 

2A0 = K and moreover, any element of K has at least two representations as a sum of 
two elements of A0. At the same time, for any finite integer set B with |B| ≥ 2, there are 
at least two elements of 2B possessing a unique representation as a sum of two elements 
of B. Thus, A0 is not rectifiable; hence, neither is A. �
Lemma 6.5. Suppose that A and B are finite subsets of an abelian group G such that 
|A +B| ≤ |A| + |B| −1, |A| + |B| ≤ |G| −1, and min{|A|, |B|} ≥ 2. If B is rectifiable, not 
an arithmetic progression, and not contained in a proper coset, then there is a nonzero, 
finite, proper subgroup H < G such that B meets exactly two H-cosets, and has exactly 
|H|+1

2 elements in each of them.

Proof. In view of |A + B| ≤ |A| + |B| − 1 < |A| + |B| < |G|, we can apply Theo-
rem 4.3 to find a finite, proper subgroup H < G such that |B + H| ≤ |B| + |H| − 1 and 
(ϕH(A), ϕH(B)) is an elementary pair in the quotient group G/H. Denoting by k the 
number of H-cosets determined by B, we have |B+H| = k|H| and then, by Lemma 6.4,

k|H| = |B + H| ≤ |B| + |H| − 1 ≤ |H| + 1
2 k + |H| − 1,

which simplifies to

(k − 2)(|H| − 1) ≤ 0.

Thus, either k ≤ 2, or H = {0}. In the latter case (A, B) is an elementary pair in G; 
however, this option is ruled out by the assumptions of the lemma. We cannot have 
k = 1 either as B is not contained in a proper coset. Thus, k = 2, and then B meets two 
H-cosets and has exactly |H|+1

2 elements in each of them. �
Lemma 6.6. Suppose that A = {α1, α2, α3} is a subset of an abelian group such that all 
sums αi + αj with 1 ≤ i ≤ j ≤ 3 are pairwise distinct (as a result of which α1, α2, α3
are pairwise distinct). If there are indices i, j, k, l ∈ {1, 2, 3} and a group element β /∈ A
such that β = αi + αj − α1 = αk + αl − α2, then either A is contained in a four-term 
arithmetic progression, or {α1, α2, β} is a coset of a 3-element subgroup.

Proof. From αi + αj − α1 /∈ A we get i, j ∈ {2, 3}, and from αk + αl − α2 /∈ A we get 
k, l ∈ {1, 3}. If {i, j} shares a common element with {k, l}, then assuming for definiteness 
that this element is i = k we get αj −α1 = αl −α2 and consequently αj +α2 = αl +α1, 
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which is impossible in view of j �= 1. Thus, {i, j} is disjoint from {k, l}, and without loss 
of generality, we can assume that k = l /∈ {i, j}.

If i �= j, then {i, j} = {2, 3}, k = l = 1, and β = α2 + α3 − α1 = 2α1 − α2, implying 
α3 + 2α2 = 3α1. Thus, α3 = α1 + 2(α1 − α2) and α2 = α1 − (α1 − α2), showing that A
is contained in a 4-term progression.

Finally, if i = j, then either i = 3 and k = l = 1, or i = 2 and k = l = 3, or i = 2
and k = l = 1. In the first case we have 2α3 −α1 = 2α1 −α2 leading to α2 + 2α3 = 3α1, 
in the second case we similarly have α1 + 2α3 = 3α2; up to a renumbering, these cases 
were considered above. In the third case where i = 2 and k = l = 1, we get 3α1 = 3α2
and β = 2α2 − α1; that is, δ := α2 − α1 has order 3, and we have α2 = α1 + δ and 
β = α1 + 2δ. �
7. Partial results and the minimal counterexample

In this section, assuming that Theorem 1.3 is wrong, we study the properties of the 
minimal counterexample set.

Lemma 7.1. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with n
smallest possible, then |2A + L| − |2A| > |A + L| − |A| holds for any nonzero subgroup 
L < Zn satisfying 2A + L �= Zn.

Proof. Suppose that A ⊆ Zn is not contained in a proper coset and satisfies |2A| <
min{9

4 |A|, n} (as a result of which n ≥ 3), but none of the conclusions of the theorem 
hold true.

Suppose also, for a contradiction, that L ≤ Zn is a nonzero subgroup with |2A +L| −
|2A| ≤ |A + L| − |A| and 2A + L �= Zn. Notice that the last condition implies that L is 
proper.

Write A := ϕL(A). If we had |A| = 1, then A would be contained in a single L-coset; 
thus, |A| ≥ 2. On the other hand, 2A + L �= Zn shows that 2A �= Zn/L. We also have

|2A + L| ≤ |A + L| + |2A| − |A| < |A + L| + 5
4 |A| ≤ 9

4 |A + L|,

whence

|2A| = |2A + L|
|L| <

9
4
|A + L|
|L| = 9

4 |A|.

The minimality of n shows now that the set A ⊆ Zn/L is not a counterexample to 
Theorem 1.3. This means that there is a proper subgroup H < Zn/L such that one of 
the following holds:

(i) |2A| − |A| > C−1
0 |Zn/L|.
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(ii) There is an arithmetic progression P ⊆ Zn/L of size |P| > 1 with A ⊆ P + H and

(|P| − 1)|H| ≤ |2A| − |A|.

(iii) A meets exactly three H-cosets which are not in an arithmetic progression, and

3|H| ≤ |2A| − |A|.

Let H := ϕ−1
L (H) ≤ Zn; notice that H �= Zn/L implies H �= Zn.

In the case (i), we have

|2A| − |A| ≥ |2A + L| − |A + L| = (|2A| − |A|)|L| > C−1
0 n.

In the case (ii), we define c̃, d̃ ∈ Zn/L to be the initial term and the difference of P. 
Choosing c, d ∈ Zn with ϕL(c) = c̃ and ϕL(d) = d̃, and letting P := {c, c + d, . . . , c +
(|P| − 1)d}, we get a progression P ⊆ Zn with |P | = |P| > 1 and ϕ−1

L (P) = P + L. 
From A ⊆ P + H we derive then that A ⊆ P + H, and from (|P| − 1)|H| ≤ |2A| − |A|
we obtain

(|P | − 1)|H| = (|P| − 1)|H||L| ≤ (|2A| − |A|)|L| = |2A + L| − |A + L| ≤ |2A| − |A|.

Finally, in the case (iii) it is immediately seen that A is contained in a union of three 
H-cosets which are not in an arithmetic progression. Also,

3|H| = 3|H||L| ≤ (|2A| − |A|)|L| = |2A + L| − |A + L| ≤ |2A| − |A|.

In any case, A has the structure described in the theorem; hence, is not a counterex-
ample. �
Lemma 7.2. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with n
smallest possible, then 2A is aperiodic.

Proof. Let L := π(2A). Observing that 2A + L = 2A �= Zn, we apply Lemma 7.1. The 
inequality of the lemma is clearly violated, showing that L is the zero subgroup. �
Lemma 7.3. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with 
n smallest possible, then |A + L| ≥ |A| + |L| holds for any nonzero, proper subgroup 
L < Zn.

Proof. Since A ⊆ Zn satisfies the assumptions of Theorem 1.3, it is not contained in a 
proper coset, and 2 ≤ |2A| < min{9

4 |A|, n}. Suppose for a contradiction that, in addition, 
we also have

|A + L| < |A| + |L| (7.1)
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with L < Zn nonzero and proper. Since |2A| < n implies |A| ≤ 1
2 n by the pigeonhole 

principle, and since the properness of L implies |L| ≤ 1
2 n, as a consequence of (7.1) we 

have |A +L| < n. Thus, there is an L-coset disjoint from A, and since A is not contained 
in a proper coset, we conclude that, indeed, |L| ≤ 1

3 n. Reusing (7.1), we now get

|A + L| < 5
6 n. (7.2)

Consider the coset decomposition

A = (a0 + L0) ∪ (a1 + L1) ∪ · · · ∪ (ak + Lk),

where L0, L1, . . . , Lk ⊆ L are nonempty, a0, a1, . . . , ak ∈ A, and ai �≡ aj (mod L) for all 
i, j ∈ [0, k], i �= j. Renumbering, we further assume that 0 < |L0| ≤ |L1| ≤ · · · ≤ |Lk|. 
From

(|L| − |L0|) + (|L| − |L1|) + · · · + (|L| − |Lk|) = |A + L| − |A| < |L|

we derive that |Li| + |Lj | > |L|, and therefore (ai +Li) + (aj +Lj) = ai + aj +L for all 
i, j ∈ [0, k], with the only possible exception of i = j = 0. As a result,

|2A + L| − |2A| = |L| − |2L0| ≤ |L| − |L0| ≤ |A + L| − |A|, (7.3)

and applying Lemma 7.1, we conclude that 2A +L = Zn. Substituting this equality back 
to (7.3) and using (7.2), we obtain

|2A| − |A| ≥ n− |A + L| > 1
6 n.

Therefore A satisfies the condition of Theorem 1.3 (i), a contradiction. �
Lemma 7.4. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with n
smallest possible, then for any subset B ⊆ Zn with |A| ≥ |B| ≥ 2 we have |A + B| ≥
|A| + |B|.

Proof. Suppose that |A| ≥ |B| ≥ 2 and |A + B| < |A| + |B|. Observing that these 
assumptions along with |A| ≤ 1

2 n (following from 2A �= Zn) give |A + B| < n, we 
apply Theorem 4.3 to conclude that there is a finite, proper subgroup L < Zn such 
that |A + L| ≤ |A| + |L| − 1 and (ϕL(A), ϕL(B)) is an elementary pair in the quotient 
group Zn/L. By Lemma 7.3, we have L = {0}; thus, (A, B) is an elementary pair in the 
original group Zn. Inspecting the list of elementary pairs from Section 4, we see that 
(A, B) is neither type (i) nor type (ii). (If A were an arithmetic progression, it would 
be regular.) Thus, (A, B) is elementary of type (iii) or (iv). In each of these cases, there 
is a subgroup H ≤ Zn such that each of A and B is contained in an H-coset, and 
|A| + |B| ≥ |H|. Since A is not contained in a proper coset, we actually have H = Zn, 
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and then 2|A| ≥ |A| + |B| ≥ n whence |A| ≥ 1
2 n. Combined with the observation at the 

beginning of the proof, this gives |A| = 1
2 n.

On the other hand, since 2A is aperiodic (Lemma 7.2), by Kneser’s theorem we have 
|2A| ≥ 2|A| −1. Therefore |2A| −|A| ≥ |A| −1 = 1

2 n −1 ≥ C−1
0 n, the last estimate follow-

ing from n = 2|A| ≥ 4. This shows that A satisfies the inequality of Theorem 1.3 (i). �
Lemma 7.5. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with n
smallest possible, then for any pair of nonempty subsets A′, A′′ ⊆ A with A′ ∪ A′′ = A, 
we have |A′ + A′′| ≥ |A′| + |A′′| − 1.

Proof. Assuming |A′+A′′| < |A′| +|A′′| −1, let L := π(A′+A′′). Notice that L is nonzero 
by Kneser’s theorem, and that L is proper as otherwise we would have 2A ⊇ A′+A′′ = Zn

contradicting the assumptions of Theorem 1.3.
Let g1, . . . , gk be representatives of the L-cosets determined by A. We have

|A + L| − |A| =
k∑

i=1
(|L| − |(gi + L) ∩A|)

≤
∑

1≤i≤k
(gi+L)∩A′ �=∅

(|L| − |(gi + L) ∩A|) +
∑

1≤i≤k
(gi+L)∩A′′ �=∅

(|L| − |(gi + L) ∩A|)

≤
∑

1≤i≤k
(gi+L)∩A′ �=∅

(|L| − |(gi + L) ∩A′|) +
∑

1≤i≤k
(gi+L)∩A′′ �=∅

(|L| − |(gi + L) ∩A′′|)

= (|A′ + L| − |A′|) + (|A′′ + L| − |A′′|).

By Kneser’s theorem and the assumption |A′ +A′′| < |A′| + |A′′| −1, the right-hand side 
is

|A′ + A′′| + |L| − |A′| − |A′′| < |L|.

Thus, |A + L| − |A| < |L|, contradicting Lemma 7.3. �
Lemma 7.6. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with n
smallest possible, then 4 ≤ |A| ≤ C−1

0 n and 8 ≤ |2A| ≤ 2C−1
0 n.

Proof. Applying Lemma 7.4 with B = A we get |2A| ≥ 2|A|, resulting in

2 ≤ |A| ≤ |2A| − |A| ≤ C−1
0 n

and, consequently, in

|2A| ≤ |A| + C−1
0 n ≤ 2C−1

0 n.
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It remains to show that |A| ≥ 4 and, therefore, |2A| ≥ 8.
We thus have to treat the cases where |A| = 2 and |A| = 3. If |A| = 2, then |2A| ≤ 3, 

contradicting Lemma 7.4 (applied with B = A). If |A| = 3, then |2A| ≥ 6 by Lemma 7.4
and therefore A is not an arithmetic progression. Moreover, taking H = {0} we have 
3|H| ≤ |2A| − |A|; thus, A is singular, a contradiction. �

A well-known inequality (sometimes called the first Ruzsa triangle inequality, see [N96, 
Lemma 7.4] or [TV06, Lemma 2.6]) asserts that if A is a finite subset of an abelian group, 
then |A −A||A| ≤ |2A|2. We need the following slight refinement of this inequality.

Lemma 7.7. If A is a finite subset of an abelian group, then

|A−A||A| ≤ |2A|2 − |2A| + |A|.

Proof. For a group element d, let r(d) denote the number of representations d = s1 − s2
with s1, s2 ∈ 2A. The key observation is that every representation d = a1 − a2 with 
a1, a2 ∈ A gives rise to |A| representations d = (a1 + a) − (a2 + a) with a ∈ A and, 
thus, with a1 + a, a2 + a ∈ 2A. Consequently, if d ∈ A − A, then r(d) ≥ |A|; from this 
inequality, and considering the contributions of the summands corresponding to d = 0,

|2A|2 =
∑

d∈2A−2A

r(d) =
∑

d∈2A−2A
d�=0

r(d) + |2A|

≥
∑

d∈A−A
d�=0

|A| + |2A| = (|A−A| − 1)|A| + |2A|. �

The last lemma of this section is a technical but important fragment of the proof of 
Lemma 10.1 in Section 10. We present it separately to avoid overloading the argument 
in Section 10 with technical details.

Lemma 7.8. Suppose that Theorem 1.3 is wrong, and that A ⊆ Zn is a counterexample 
with n smallest possible. Denote by N the number of elements d ∈ A − A possessing a 
unique representation as d = a′ − a′′ with a′, a′′ ∈ A. Then, letting τ := |2A|/|A|, we 
have

1
τ

+ 1
τ2 + τ − 2

τ |A| − N

τ |A|3 >
52
81 . (7.4)

We remark that the constant 52
81 is the value of the sum 1/τ + 1/τ2 at τ = 9/4; 

therefore, the assertion would follow immediately if we could show that N < (τ −2)|A|2. 
Unfortunately, this inequality does not hold in general.

Proof of Lemma 7.8. Consider the graph Γ with A as a vertex set, where the vertices 
a, b ∈ A are adjacent if and only if a −b has a unique representation as a difference of two 
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elements of A. Notice that the edges of Γ are in a one-to-two correspondence with the 
uniquely representable elements; therefore N is even and the number of edges is N/2. 
By r(d) we denote the number of representations of an element d ∈ A −A as d = a′−a′′

with a′, a′′ ∈ A.
Let P be the set of all directed paths in Γ of length 2; that is, the set of all ordered 

triples (a, b, c) ∈ A ×A ×A with b adjacent to both a and c and a �= c. We have

|2A| ≥ |(A + a) ∪ (A + b) ∪ (A + c)| ≥ 3|A| − 2 − r(a− c),

whence r(a − c) ≥ (3 − τ)|A| − 2; in other words, denoting by M the set of all nonzero 
elements with at least m := (3 − τ)|A| − 2 representations in A −A, we have a − c ∈ M . 
Notice that |A| ≥ 4 by Lemma 7.6; along with the assumption |2A| < 9

4 |A| this gives 
m = 3|A| − |2A| − 2 > 3

4 |A| − 2 ≥ 1 as a result of which m ≥ 2.
With every path (a, b, c) ∈ P we associate the set of all ordered pairs (x, y) ∈ A × A

with x −y = a −c; thus, there are at least m pairs associated with every path. This totals 
to at least Km pairs, where K is the number of paths. Notice that pairs corresponding 
to different paths can coincide, but for every fixed element d ∈ M , there are at most 
|A| pairs (x, y) with x − y = d. Therefore, |M | ≥ Km/|A|. Since, by the well-known 
“cherry-counting argument”,

K = 2
∑
a∈A

(
deg(a)

2

)
=

∑
a∈A

deg(a)(deg(a) − 1)

≥ 1
|A|

(∑
a∈A

deg(a)
)2

−
∑
a∈A

deg(a) = N2

|A| −N,

we have

|M | ≥
(

N2

|A|2 − N

|A|

)
m.

In view of m ≥ 2, we thus have at least 
(

N2

|A|2 − N
|A|

)
m + 1 nonuniquely representable 

elements (including 0), along with N uniquely representable elements. This leads to 

|A −A| ≥
(

N2

|A|2 − N
|A|

)
m + 1 + N and then, by Lemma 7.7

|2A|2 − |2A| + |A| ≥ |A−A||A| ≥
(
N2

|A| −N

)
((3 − τ)|A| − 2) + N |A| + |A|,

τ2 |A|2 − τ |A| −
(
3 − τ − 2

|A|
)
N2 − ((τ − 2)|A| + 2)N ≥ 0. (7.5)

By Lemma 7.4 and the assumptions, we have 2 ≤ τ < 9
4 . In this range the left-hand side 

is an increasing function of τ for any fixed |A| and N , and a decreasing function of N
for any fixed |A| and τ . Moreover, substituting τ = 9 and N = 3|A| into the left-hand 
4
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side of (7.5) we get the value 39
16 |A|(4 − |A|) ≤ 0. It follows that N < 3|A|. This means 

that it suffices to prove (7.4) with N replaced by 3|A|.
Accordingly, we let

f(a, t) := 1
t

+ 1
t2

+ t− 2
ta

− 3a
ta3 ,

aiming to show that f(|A|, τ) > 52
81 whenever 2 ≤ τ < 9

4 and |A| ≥ 4. Indeed, observing 
that f(a, t) is a decreasing function of t in the range 2 ≤ t < 9

4 , a ≥ 4, we obtain

f(|A|, τ) > f
(
|A|, 9

4

)
= 52

81 + 1
9|A| −

4
3|A|2 ≥ 52

81 , |A| ≥ 12.

To treat the remaining cases where 4 ≤ |A| ≤ 11, we use the fact that the actual value 
of the doubling coefficient τ = |2A|/|A| can be noticeably smaller than 9/4. Specifically, 
a brute force computation shows that for all pairs (a, s) of integers satisfying 4 ≤ a ≤ 11
and a ≤ s < 9

4 a we have f(a, t) > 52
81 , where t := s/a, the only exception being the 

pair (a, s) = (5, 11). In this last case we essentially repeat the argument above with 
|A| = 5, |2A| = 11, and τ = 11/5 taking special care to avoid loss of accuracy. Namely, 
substituting |A| = 5 and τ = 11/5 into the left-hand side of (7.4), we see that it suffices to 
show that N ≤ 10. Since N is even, assume for a contradiction that N ≥ 12; consequently,

m = 3|A| − |2A| − 2 = 2

and

K ≥ N2

|A| −N ≥ 144
5 − 12 = 84

5

whence, in fact, K ≥ 17. Furthermore, since A is aperiodic by Lemma 7.2, for any 
nonzero element d ∈ A −A we have r(d) ≤ |A| − 1 = 4; hence,

|M | ≥ Km

|A| − 1 = 1
2 K ≥ 17

2 ;

thus, |M | ≥ 9. Finally, |A − A| ≥ |M | + 1 + N ≥ 22, which is impossible in view of 
|A −A| ≤ |A|(|A| − 1) + 1 = 21. �
8. The case where A meets at most two cosets

The goal of this section is to prove the following result.

Lemma 8.1. Suppose that Theorem 1.3 is wrong, and that A ⊆ Zn is a counterexample 
with n smallest possible. Then A meets at least three cosets of any subgroup F < Zn of 
index |Zn/F | ≥ 3.
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Proof. Suppose for a contradiction that A meets at most two F -cosets. Since A is not 
contained in a proper coset, this means that, in fact, A meets exactly two F -cosets; say, 
A = A1∪A2 with Ai ⊆ gi+F (i ∈ {1, 2}) and g1 �≡ g2 (mod F ). Notice that ϕF (g2−g1)
generates Zn/F as otherwise A would be contained in a proper coset; consequently, 2A
meets exactly three F -cosets and

|2A| = |2A1| + |A1 + A2| + |2A2| = |A + A2| + |2A1| = |A + A1| + |2A2|;

moreover, 2A1, A1 + A2, and 2A2 reside in pairwise distinct F -cosets.
Without loss of generality, we assume |A1| ≥ |A2|.

Claim 8.1. A1 is a VSDS.

Proof. Suppose first that |A2| ≥ 2. In this case |A +A2| ≥ |A| + |A2| by Lemma 7.4, and 
we conclude that

|2A1| = |2A| − |A + A2| ≤ |2A| − |A| − |A2| = |2A| − 2|A| + |A1|.

Consequently,

|2A1| <
1
4 |A| + |A1| ≤

3
2 |A1|.

Now suppose that |A2| = 1 and, for a contradiction, that |2A1| ≥ 3
2 |A1|. We have in 

this case |A1| ≥ 3 by Lemma 7.6, and also

9
4 |A| > |2A| = |A + A2| + |2A1| = |A| + |2A1| (8.1)

implying

3
2 |A1| ≤ |2A1| <

5
4 |A| = 5

4 |A1| +
5
4 . (8.2)

As a result, |A1| ≤ 4. In fact, we cannot have |A1| = 3 as |2A1| ≥ 3
2 |A1| would then 

imply |2A1| ≥ 5, whence 5
4 |A| > |2A1| ≥ 5 leading to |A| ≥ 5 > |A1| + |A2|.

Thus, |A1| = 4 and then |2A1| = 6 = 2|A1| − 2 by (8.2). Let H := π(2A1), and 
k := |A1 + H|/|H|. By Kneser’s theorem, H is nonzero and 6 = |2A1| = (2k − 1)|H|. It 
follows that either k = 1 and |H| = 6, or k = 2 and |H| = 2. In the former case A is 
contained in a union of two H-cosets and, by (8.1),

|2A| − |A| = |2A1| = 6 = |H|;

therefore, A is 2-regular. In the latter case A1 is a union of two H-cosets; therefore A is 
contained in a union of three H-cosets and, by (8.1),
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|2A| − |A| = |2A1| = 6 = 3|H|,

showing that A is either 3-regular, or singular. �
We therefore have |2A1| < 3

2 |A1|; consequently, by Lemma 5.1, the set A1 is contained 
in a coset of a subgroup L < Zn with |A1| > 2

3 |L| and L = A1−A1. Since A1 is contained 
in an F -coset, we have L ≤ F ; consequently, A1+L is disjoint from A2+L and moreover, 
the L-cosets determined by 2A1, A1 + A2, and 2A2 are distinct from each other.

Write A2 = B1 ∪ · · · ∪Bk where the sets Bi are nonempty, each of them is contained 
in an L-coset, and the k cosets are pairwise distinct. Since |A1 +A2| = |A1 +B1| + · · ·+
|A1 + Bk| ≥ k|A1|, we have

9
4 |A| > |2A| = |2A1| + |A1 + A2| + |2A2| ≥ (k + 1)|A1| + |A2| ≥

(1
2k + 1

)
|A|,

whence k ≤ 2.
If k = 1 then A = A1 ∪B1. By Lemma 7.5,

|2A| = |2A1| + |A1 + B1| + |2B1| ≥ |L| + (|A| − 1) + |B1|,

implying |2A| − |A| ≥ |L|; therefore A is 2-regular.
Thus, k = 2. Without loss of generality, we assume that |B1| ≥ |B2|.
As remarked above, the L-cosets determined by the sets 2A1, A1 +A2 = (A1 +B1) ∪

(A1 +B2), and 2A2 = 2B1∪ (B1 +B2) ∪2B2 are pairwise distinct. It is also immediately 
seen that the coset of A1 + B1 is distinct from that of A1 + B2, and that the coset of 
B1 + B2 is distinct from both the coset of 2B1 and that of 2B2. Consequently, in the 
decomposition

2A = 2A1 ∪ (A1 + B1) ∪ (A1 + B2) ∪ 2B1 ∪ (B1 + B2) ∪ 2B2 (8.3)

all six sets in the right-hand side reside in pairwise distinct L-cosets, with the possible 
exception of the sets 2B1 and 2B2.

If at least one of A1 and B1 is not a coset of a subgroup of Zn, then |2A1| + |2B1| ≥
|A1| + |B1| + 1; therefore, in view of the disjointness and by Lemma 7.5,

|2A| ≥ |2A1| + |2B1| + |A1 + B1| + |B2 + (A1 ∪B1)|
≥ (|A1| + |B1| + 1) + |A1| + (|A| − 1)

≥ 3
2 |A1| +

1
2 (|A1| + |B1| + |B2|) + |A| (8.4)

= 3
2 |A1| +

3
2 |A|

≥ 9
4 |A|,
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a contradiction.
Thus, both A1 and B1 are cosets. Moreover, recalling that A1 is contained in an L-

coset and |A1| ≥ 2
3 |L|, we conclude that A1 is an L-coset. Let K ≤ L be the subgroup 

such that B1 is a K-coset.
If K �= {0}, then we notice that the first five sets in the right-hand side of (8.3) are 

K-periodic, and since 2A is aperiodic by Lemma 7.2, the set 2B2 is not contained in the 
union of these five sets. Therefore, as a slight modification of (8.4),

|2A| ≥ |2A1| + |2B1| + |A1 + B1| + |B2 + (A1 ∪B1)| + 1

≥ (|A1| + |B1|) + |A1| + (|A| − 1) + 1

≥ 3
2 |A1| +

1
2 (|A1| + |B1| + |B2|) + |A|

≥ 9
4 |A|,

a contradiction.
We conclude that A1 is an L-coset and |B1| = 1, as a result of which also |B2| = 1.
If 2B1 �= 2B2 then |2(B1 ∪B2)| = 3 and in view of Lemma 7.6 we get

|2A| = |2A1| + |A1 + (B1 ∪B2)| + |2(B1 ∪B2)|
= 3|L| + 3

= 3|A| − 3

≥ 9
4 |A|,

a contradiction.
Therefore 2B1 = 2B2 and |2A| = 3|L| + 2 = |A| + 2|L|.
Write B1 = {b1} and B2 = {b2}. Since B1 and B2 are in distinct L-cosets, we have 

b2 − b1 /∈ L. However, 2B1 = 2B2 shows that b2 − b1 is the unique involution of Zn. 
Therefore, L does not contain the involution, and we conclude that |L| > 2.

If |L| = 3 then A is a union of an L-coset and a coset of the two-element subgroup. 
As a result, A is contained in a union of two cosets of the six-element subgroup H lying 
above L, while |2A| − |A| = 2|L| = |H|; thus, A is 2-regular.

Finally, if |L| ≥ 4, then |2A| = 3|L| + 2 ≥ 9
4 (|L| + 2) = 9

4 |A|, a contradiction. �
9. The case where A meets exactly three cosets

In this section we prove the following result.

Lemma 9.1. Suppose that Theorem 1.3 is wrong, and that A ⊆ Zn is a counterexample 
with n smallest possible. If L < Zn is a proper subgroup such that ϕL(A) is rectifiable, 
then |ϕL(A)| ≥ 4; that is, A meets at least four L-cosets.
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As mentioned in the Introduction, the proof is rather technical and some readers may 
prefer to skip it and proceed to the next section.

Proof. Aiming at a contradiction, we assume that |ϕL(A)| ≤ 3 and then, indeed, 
|ϕL(A)| = 3 by Lemma 8.1. Let A = A1 ∪ A2 ∪ A3 be the L-coset decomposition of A. 
Since the set ϕL(A) = {ϕL(A1), ϕL(A2), ϕL(A3)} is rectifiable, it is either an arithmetic 
progression, or a Sidon set meaning that the sums ϕL(Ai) + ϕL(Aj) with 1 ≤ i ≤ j ≤ 3
are pairwise distinct. Accordingly, the sets

A1 + A2, A2 + A3, A3 + A1, 2A1, 2A2, 2A3

sets determine six pairwise distinct L-cosets except that, after a suitable renumbering, 
the cosets determined by 2A2 and A1 + A3 may coincide.

Suppose first that all the six sets listed are pairwise disjoint. By Lemma 7.4, for each 
i ∈ [1, 3] we have

|A| + |Ai| ≤ |A + Ai| = |A1 + Ai| + |A2 + Ai| + |A3 + Ai|

except if |Ai| = 1 in which case the left-hand side must be replaced with |A| + |Ai| − 1. 
Since |A| ≥ 4 in view of Lemma 7.6, there is at least one index i with |Ai| > 1. Therefore, 
taking the sum over all i ∈ [1, 3] we obtain

4|A| − 2 ≤ 2|2A| − (|2A1| + |2A2| + |2A3|) ≤ 2|2A| − |A|.

Thus |2A| ≥ 5
2 |A| − 1 and, consequently, 9

4 |A| > 5
2 |A| − 1; as a result, |A| < 4, contra-

dicting Lemma 7.6.
We therefore assume for the rest of the proof that A1 + A3 is not disjoint from 2A2; 

hence, 2A meets exactly five L-cosets. Notice that in this case, for any subgroup H
such that each of A1, A2, and A3 is contained in an H-coset, the three cosets are in an 
arithmetic progression.

We have

|2A| = |A1 + A2| + |A2 + A3| + |2A1| + |2A3| + |(A1 + A3) ∪ (2A2)|;

our goal is to show that either

|2A| ≥ 9
4 |A|,

or there is a subgroup H such that each of A1, A2, A3 is contained in an H-coset, and

|2A| ≥ |A| + 2|H|
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(in which case A is 3-regular). Once any of these estimates gets established, we have 
reached a contradiction and the proof is over. We thus assume that the estimates in 
question do not hold. We also make the following assumptions:

(i) |A| ≥ 4 (by Lemma 7.6);
(ii) |A + Ai| ≥ |A| + |Ai| − 1 for any i ∈ {1, 2, 3}; moreover, if |Ai| > 1, then the term 

−1 in the right-hand side can be dropped (by Lemma 7.4);
(iii) |Ai +Aj | + |Aj +Ak| ≥ |A| −1 for any permutation (i, j, k) of the index set {1, 2, 3}

(by Lemma 7.5 and in view of (Ai + Aj) ∪ (Aj + Ak) = Aj + (Ai ∪Ak)).

These assumptions will be used throughout the proof without any further explanations 
or references.

Claim 9.1. We have

|2A1| + |2A2| + |2A3| <
5
4 |A| + 1.

Consequently, at least one of A1, A2, and A3 is a VSDS.

Proof. The first assertion follows from

9
4 |A| > |2A| ≥ (|A1 + A2| + |A2 + A3|) + (|2A1| + |2A2| + |2A3|)

≥ |A| − 1 + (|2A1| + |2A2| + |2A3|),

the second is an immediate corollary of the definition of a VSDS and Lemma 7.6. �
Claim 9.2. Among the sets A1, A2, and A3, at most one is a singleton; thus, |A| ≥ 5.

Proof. Suppose first that |A1| = |A2| = 1. Then |A| = |A3| + 2 and if A3 is not a coset, 
then

|2A| ≥ |A1 + A3| + |A2 + A3| + |2A3| + |2A1| + |A1 + A2|

= 2|A3| + |2A3| + 2 ≥ 3|A3| + 3 = 3|A| − 3 ≥ 9
4 |A|,

as wanted. If, on the other hand, A3 is a coset, then arguing the same way we get 
|2A| ≥ 3|A| − 4; that is, |2A| − |A| ≥ 2|A| − 4 = 2|A3| showing that A is 3-regular.

Similarly, if |A1| = |A3| = 1, then |A| = |A2| + 2 and either

|2A| ≥ |A1 + A2| + |2A2| + |A2 + A3| + |2A1| + |2A3|

= 2|A2| + |2A2| + 2 ≥ 3|A2| + 3 = 3|A| − 3 ≥ 9
4 |A|,
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or A2 is a coset, |2A| ≥ 3|A| −4, and then A is 3-regular in view of |2A| −|A| ≥ 2|A| −4 =
2|A2|. �
Claim 9.3. If A2 is not a VSDS, then both A1 and A3 are VSDS.

Proof. Recalling Claim 9.1, suppose for a contradiction that, say, A3 is the only VSDS 
among A1, A2, A3; thus, |2A1| ≥ 3

2 |A1| and |2A2| ≥ 3
2 |A2|; furthermore, there is a 

subgroup H such that A3 is contained in an H-coset and |A3| > 2
3 |H|. As a result,

|2A| ≥ (|A1 + A2| + |A2 + A3|) + |2A1| + |2A2| + |2A3|

≥ |A| − 1 + 3
2 |A1| +

3
2 |A2| + |H|

= 5
2 |A| − 3

2 |A3| + |H| − 1

≥ 5
2 |A| − 1

2 |H| − 1. (9.1)

On the other hand, if A2 is not contained in an H-coset, then |A2 + A3| ≥ 2|A3|
resulting in

|2A| ≥ |A1 + A2| + |A2 + A3| + |2A1| + |2A2| + |2A3|

≥ 1
2(|A1| + |A2|) + 2|A3| +

3
2 |A1| +

3
2 |A2| + |H|

= 2|A| + |H|. (9.2)

From (9.1) and (9.2) we get⌈
9
4 |A|

⌉
− 1 ≥ |2A|

≥ 2
3

(5
2 |A| − 1

2 |H| − 1
)

+ 1
3 (2|A| + |H|)

= 7
3 |A| − 2

3 .

However, the resulting inequality⌈
9
4 |A|

⌉
− 1 ≥ 7

3 |A| − 2
3

is possible only for |A| = 5. Recalling that A3 is a VSDS while A1 and A2 are not, 
we conclude that in this case |A1| = |A2| = 2 and |A3| = 1. This further results in 
|2A1| = |2A2| = 3 and |A1 + A2| ≥ 3 (for the last estimate notice that |A1 + A2| = 2
would mean that A1 is contained in a coset of the period of A2 and vice versa, and 
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then both A1 and A2 would be cosets of the two-element subgroup, and hence VSDS). 
Consequently,

|2A| ≥ |A1 + A2| + |A2 + A3| + |2A1| + |2A2| + |2A3| ≥ 3 + 2 + 3 + 3 + 1 = 12 >
9
4 |A|,

a contradiction showing that A2 is contained in an H-coset.
We now show that A1 is contained in an H-coset, too. Assuming it is not, we have

|A1 + A2| ≥ max{|A1|, 2|A2|} ≥ 3
8 |A1| +

5
4 |A2|

and, similarly,

|A3 + A1| ≥ max{|A1|, 2|A3|} ≥ 3
8 |A1| +

5
4 |A3|.

Furthermore, |2A1| ≥ 3
2 |A1| (as we assume that A1 is not a VSDS), and trivially, |2A3| ≥

|A3| and |A2 + A3| ≥ |A2|. Therefore,

9
4 |A| > |A1 + A2| + |A3 + A1| + |A2 + A3| + |2A1| + |2A3|

≥
(3

4 |A1| +
5
4 |A2| +

5
4 |A3|

)
+ |A2| +

3
2 |A1| + |A3|

= 9
4 (|A1| + |A2| + |A3|),

a contradiction.
We have thus shown that each of A1, A2, and A3 is contained in an H-coset. Fur-

thermore, |A2| ≤ 2
3 |H| < |A3|; hence, by Lemma 5.2, either |A2 + A3| ≥ |A2| + 1

2 |A3|, 
or A3 is contained in a coset of the period π(A2 + A3). In the latter case we have 
H = A3 − A3 ⊆ π(A2 + A3); since, on the other hand, A2 + A3 is contained in an 
H-coset, we actually have |A2 + A3| = |H|. Therefore,

|2A| ≥ (|A1 + A2| + |A3 + A1|) + |A2 + A3| + |2A1| + |2A3|

≥ (|A| − 1) + 2|H| + |2A1|

≥ |A| + 2|H|

so that A is 3-regular.
Assuming thus that |A2 + A3| ≥ |A2| + 1

2 |A3|, in view of

|2A3| = |H| ≥ max
{
|A3|,

3
2 |A2|

}
≥ 3

4 |A3| +
3
8 |A2| (9.3)

we get
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|2A| ≥ (|A1 + A2| + |A3 + A1|) + |A2 + A3| + |2A1| + |2A3|

≥ |A| − 1 +
(
|A2| +

1
2 |A3|

)
+ 3

2 |A1| +
(3

4 |A3| +
3
8 |A2|

)
= 9

4 |A| − 1 + 1
4 |A1| +

1
8 |A2|.

Since neither of A1 and A2 are VSDS, we have |A1|, |A2| ≥ 2. Therefore

1
4 |A1| +

1
8 |A2| >

3
4

leading to a contradiction, with the only exception of the case where |A1| = |A2| = 2 and, 
moreover, (9.3) holds with equalities. In this exceptional case we have |H| = 3

2 |A2| = 3, 
so that A1 and A2 are two-element subsets of the three-element subgroup H. Hence, by 
the pigeonhole principle, all sums Ai +Aj with i, j ∈ [1, 3] are H-cosets; therefore 2A is 
periodic, contradicting Lemma 7.2. �

We now consider two cases, according to whether A2 is or is not a VSDS.

Case 1: A2 is a VSDS.
Suppose that A2 is a VSDS, and let H := A2 −A2.

Claim 9.4. We have |A1 + H| + |A3 + H| ≥ 3|H|.

Proof. Suppose for a contradiction that each of A1 and A3 is contained in a single H-
coset. Since |2A2| = |H|, using the trivial estimates |2Ai| ≥ |Ai| and |A2 + Ai| ≥ |A2|, 
where i ∈ {1, 3}, we get

9
4 |A| > |2A| = |2A1| + |2A3| + |A1 + A2| + |A2 + A3| + |2A2| ≥ |A| + |A2| + |H| (9.4)

and we conclude that

5
4 |A| > |A2| + |H|. (9.5)

If |A1| + |A2| ≤ |H| and |A3| + |A2| ≤ |H|, then taking the sum we get

2|H| ≥ |A| + |A2|. (9.6)

Combining (9.5) and (9.6),

|A2| <
5
4 |A| − |H| ≤ 3

2 |H| − 5
4 |A2|

whence |A2| < 2
3 |H|, a contradiction showing that either |A1| + |A2| > |H|, or |A3| +

|A2| > |H| holds true. Assuming the latter for definiteness, by the pigeonhole principle 
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we have |A2 + A3| = |H|, and then from (9.4) we obtain |2A| ≥ |A| + 2|H|; hence, A is 
3-regular. �
Claim 9.5. We have |A2| < 1

4 |A|.

Proof. Assuming that, say, A1 meets at least two H-cosets (cf. Claim 9.4), we have 
|A1 + A2| ≥ 2|A2| and then

9
4 |A| > |2A| ≥ |A3 + A| + |2A1| + |A1 + A2|

≥ (|A| + |A3| − 1) + |A1| + 2|A2| = 2|A| + |A2| − 1.

To complete the proof, we show that the term −1 in the right-hand side can be dropped. 
It is easy to see that otherwise the following conditions are meat simultaneously: |A3| = 1, 
there is a subgroup K such that A1 is a K-coset, |A1 +A2| = 2|A2|, and 2A2 ⊆ A1 +A3. 
The first and the last conditions show that A1 contains an H-coset; hence, K ≥ H. 
Therefore A1+A2 is a K-coset, and the condition |A1+A2| = 2|A2| shows that |K| = 2|H|
and that A2 is an H-coset. It follows that |A| = |K| + |H| + 1, |A2| = |H|, and

|2A| = |A3 + A| + |A2 + A1| + |2A1| = |A| + 2|K|;

therefore A is 3-regular. �
To complete the treatment of the present case where A2 is a VSDS, we prove the 

following claim which is in clear contradiction with the previous one.

Claim 9.6. We have |A2| ≥ 1
4 |A|.

Proof. Let δ := |2A2 \ (A1 + A3)| and

δi :=
{
|2Ai| − |Ai| if |Ai| > 1
−1 if |Ai| = 1

, i ∈ {1, 3}.

The quantity δi shows whether Ai is a singleton (δi = −1), a coset of a nonzero subgroup 
(δi = 0), or neither (δi > 0).

By Lemma 7.4, we have |A + Ai| + |2Ai| ≥ |A| + 2|Ai| + δi, i ∈ {1, 3}. Consequently, 
taking the sum of

|2A| ≥ |A1 + A| + |A3 + A| − |A1 + A3| + δ

and

|2A| ≥ |A2 + (A1 ∪A3)| + |A3 + A1| + |2A1| + |2A3| + δ
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we get

9
2 |A| − 1

2 ≥ 2|2A|

≥ (|A1 + A| + |2A1|) + (|A3 + A| + |2A3|) + |A2 + (A1 ∪A3)| + 2δ

≥ 2|A| + 2|A1| + 2|A3| + (|A| − 1) + δ1 + δ3 + 2δ

= 5|A| − 2|A2| + δ1 + δ3 + 2δ − 1

whence

|A2| ≥
1
4 |A| + 1

2 (δ1 + δ3) + δ − 1
4 .

Since δ1+δ3 ≥ −1 by Claim 9.2, we assume for the rest of the proof that δ1+δ3 ∈ {−1, 0}, 
that δ = 0 (that is, 2A2 ⊆ A1 +A3), and (switching A1 and A3, if needed) that δ1 ≤ δ3; 
that is, either δ1 = −1 and δ3 ∈ {0, 1}, or δ1 = δ3 = 0. Moreover, by Claim 9.4, in each 
of these cases we can assume that A3 meets at least two H-cosets. (If A3 meets just one 
H-coset, then A1 meets at least two; hence δ1 ≥ 0, leading to δ1 = δ3 = 0, and we switch 
A1 and A3 without violating any of the assumptions.)

Suppose first that δ1 = −1 and δ3 = 0; thus, |A1| = 1 and A3 is a coset of a nonzero 
subgroup, say K. Since 2A2 ⊆ A1 +A3, and since 2A2 is an H-coset, while A1 +A3 is a 
K-coset, we have H ≤ K. A simple counting shows now that |A| = |A2| + |K| + 1 while 
|2A| = 3|K| + |A2| + 1; therefore, |2A| − |A| = 2|K| and A is 3-regular.

Next, we consider the case where δ1 = −1 and δ3 = 1; that is, A1 is a singleton, 
and A3 is not a coset. By Claim 9.2, we have |H| ≥ |A2| ≥ 2. Furthermore, in view of 
2A2 ⊆ A1 + A3, the set A3 contains an H-coset; moreover, the containment is proper 
since A3 meets at least two H-cosets. As a result,

|A2 + A3| ≥ max{|A2| + 1, |A3|} ≥ 1
2 (|A2| + 1 + |A3|) = 1

2 |A|

and, consequently,

9
4 |A| > |2A| = |A1 + A| + |A2 + A3| + |2A3| ≥ |A| + 1

2 |A| + (|A3| + 1) = 5
2 |A| − |A2|

which gives the desired estimate |A2| ≥ 1
4 |A|.

Finally, we consider the case where δ1 = δ3 = 0; that is, A1 is a coset of a nonzero 
subgroup H1, and A3 is a coset of a nonzero subgroup H3. Since 2A is aperiodic, and 
2A2 ⊆ A1 + A3, we have H1 ∩H3 = {0}. Furthermore, |A| = |H1| + |A2| + |H3| and

|2A| = |2A1| + |2A3| + |A1 + A3| + |A1 + A2| + |A2 + A3|
≥ |H1| + |H3| + |H1||H3| + |H1| + |H3|
= (|H1| − 2)(|H3| − 2) + 4|H1| + 4|H3| − 4
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≥ 4|A| − 4|A2| − 4.

If we had |A2| ≤ 1
4 |A| − 1

4 , this would further lead to

9
4 |A| > |2A| ≥ 3|A| − 3

contradicting Claim 9.2. �
Case 2: A2 is not a VSDS.

Suppose that A2 is not a VSDS. By Claim 9.3, in this case both A1 and A3 are VSDS. 
Assuming for definiteness that |A3| ≥ |A1|, consider the subgroup H := A3 −A3.

Claim 9.7. A2 is contained in a single H-coset.

Proof. Assuming the opposite, we have |A2 + A3| ≥ 2|A3| and, by Corollary 5.5,

|A1 + A2| ≥ max
{
|A1|, |A2|,min{2|A1|,

3
2 |A2|}

}
.

Consequently,

9
4 |A| > |2A|

≥ |2A1| + |2A3| + |A1 + A2| + |A2 + A3| + |2A2|

≥ |A1| + |A3| + max{|A1|, |A2|,min{2|A1|,
3
2 |A2|}} + 2|A3| +

3
2 |A2|

leading to

max{|A1|, |A2|,min{2|A1|,
3
2 |A2|}} <

5
4 |A1| +

3
4 |A2| −

3
4 |A3| ≤

1
2 |A1| +

3
4 |A2|.

However, the resulting estimate is easily shown to be wrong by analyzing the four cases 
where |A1| ≤ 1

2 |A2|, 1
2 |A2| ≤ |A1| ≤ 3

4 |A2|, 3
4 |A2| ≤ |A1| ≤ 3

2 |A2|, and |A1| ≥ 3
2 |A2|. 

(Less rigorous, but more convincing is to let t := |A1|/|A2|, rewrite the inequality in 
question as max{1, t, min{2t, 32}} < 1

2 t +
3
4 , and plot both sides as functions of t). �

Next, we show that the set A1 is contained in a single H-coset, too.

Claim 9.8. A1 is contained in a single H-coset.

Proof. Assuming the opposite, the sum A1 +A3 meets at least two H-cosets, and has at 
least |A3| elements in every H-coset that it meets. Consequently, |(2A2) ∪ (A1 + A3)| ≥
|2A2| + |A3| ≥ 3 |A2| + |A3|. Therefore
2
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9
4 |A| > |2A|

≥ (|A1 + A2| + |A2 + A3|) + |2A1| + |2A3| + |(2A2) ∪ (A1 + A3)|

≥ (|A| − 1) + |A1| + |A3| +
(

3
2 |A2| + |A3|

)
≥ 5

2 |A| − 1

contradicting Lemma 7.6. �
We have thus shown that each of A1, A2, and A3 is contained in an H-coset. We also 

recall that, by our present assumptions, A1 and A3 are VSDS, while A2 is not, and that 
A3 −A3 = H and |A1| ≤ |A3|; as a result, |A2| ≤ 2

3 |H| < |A3|.

Case 2.1: max{|A1|, |A2|} ≥ 1
2 |A3|. If |A2| ≥ 1

2 |A3|, then in view of |A3| > 2
3 |H| we 

have |A2| + |A3| > |H|. Therefore A2 + A3 is an H-coset and

|2A| ≥ |A1 + A2| + |A2 + A3| + |A3 + A1| + |2A1| + |2A3|

≥ |A2| + |H| + |A3| + |A1| + |H|

= |A| + 2|H|

so that A is 3-regular.
Similarly, if |A1| ≥ 1

2 |A3|, then |A1| + |A3| > |H|. Therefore A1 + A3 is an H-coset 
and then

|2A| ≥ (|A1 + A2| + |A2 + A3|) + |A3 + A1| + |2A1| + |2A3|

≥ (|A| − 1) + |H| + 1 + |H|

= |A| + 2|H|

shows that A is 3-regular.

Case 2.2: max{|A1|, |A2|} < 1
2 |A3|. We have

9
4 |A| − 1

4 ≥ |2A|

≥ (|A1 + A2| + |A2 + A3|) + |A1 + A3| + |2A1| + |2A3|

≥ (|A| − 1) + |A3| + |A1| + |A3|

≥ |A1| +
5
4 |A3| +

3
4

(
1
3 |A1| +

5
3 |A2| + 1

)
+ |A| − 1

= 9
4 |A| − 1

4 .
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This shows that |2A1| = |A1| and |2A3| = |A3|; that is, both A1 and A3 are cosets. 
Since A3 − A3 = H and A1 is contained in an H-coset, we conclude that A3 is an 
H-coset and that there is a subgroup K ≤ H such that A1 is a K-coset. In this case 
|A| = |K| + |A2| + |H| and from

|2A1| = |K|, |A + A3| = 3|H|, |A2 + A1| ≥ |A2|,

we get |2A| ≥ 3|H| + |K| + |A2|; hence, |2A| − |A| ≥ 2|H| and A is 3-regular. �
10. Character sums and partial rectification

This section combines a character-sum argument and combinatorial reasoning. Its 
central component is a lemma which, loosely speaking, shows that over 90% of a coun-
terexample set must be well-structured. The lemma is a version of [DF03, Proposition 4.2]
incorporating a critically important trick from [LS20]. Historically, quoting from [DF03], 
“the underlying idea comes from [F61] (. . . ) where the case of prime modulus n was 
dealt with”.

Recall that an arithmetic progression in a cyclic group is primitive if its difference 
generates the group.

Lemma 10.1. Suppose that Theorem 1.3 is wrong. If A ⊆ Zn is a counterexample with n
smallest possible, then there exist a subgroup H < Zn of index m := n/|H| ≥ 37, and a 
primitive arithmetic progression P ⊆ Zn with |P | ≤ (m +1)/2, such that |(P +H) ∩A| >
0.9|A|.

Proof. We assume that |2A| < min{9
4 |A|, n} (since A satisfies the assumptions of Theo-

rem 1.3), that |2A| −|A| ≤ C−1
0 n (since A fails to satisfy the conclusion of the theorem), 

and that |A + B| ≥ |A| + |B| holds for any subset B ⊆ Zn with 2 ≤ |B| ≤ |A| (in 
view of Lemma 7.4); in particular, τ := |2A|/|A| ≥ 2. Also, |2A| ≥ 2|A| ≥ 8 and 
n ≥ C0|A| ≥ 4C0 by Lemma 7.6.

For a finite subset B and an element x of an abelian group, we let B(x) := B∩(B+x); 
therefore, |B(x)| is the number of representations of x as a difference of two elements of 
B, and in particular |B(x)| = 0 if x /∈ B −B. We have∑

x∈B−B

|B(x)| = |B|2

and

B(x) + B ⊆ (2B)(x); (10.1)

the latter relation, sometimes called the Katz-Koester observation, can be proved as 
follows:
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B(x) + B = (B ∩ (B + x)) + B ⊆ (2B) ∩ ((2B) + x) = (2B)(x).

We also have ∑
x∈B−B

|B(x)|2 = E(B),

where E(B) (standardly called the energy of B) is the number of quadruples (b1, . . . , b4) ∈
B4 with b1 + b2 = b3 + b4. We recall the basic estimate

E(B) ≥ |B|4
|2B| (10.2)

following easily from the Cauchy-Schwartz inequality.
Let S := 2A and τ := |S|/|A|. Denoting by Â the counting-measure Fourier transform 

of the indicator function of the set A, and similarly for the set S, we have

1
n

∑
χ∈Ẑn

|Â(χ)|2|Ŝ(χ)|2 =
∑

x∈A−A

|A(x)||S(x)| ≥
∑

x∈A−A

|A(x)||A + A(x)|; (10.3)

here the equality follows, for instance, by a direct computation, both sums involved 
counting the number of solutions to a1−a2 = s1−s2 with a1, a2 ∈ A and s1, s2 ∈ S, and 
the inequality follows from (10.1). Let D be the set of all those x ∈ Zn with |A(x)| = 1, 
and let N := |D|. By Lemma 7.4 we have |A + A(x)| ≥ |A| + |A(x)| unless x ∈ D. 
Consequently, denoting the sum in the left-hand side of (10.3) by σ,

σ ≥
∑

x∈A−A

|A(x)||A + A(x)|

≥
∑

x∈A−A
x�=0

|A(x)|(|A| + |A(x)|) −
∑
x∈D

|A(x)|2 + |A||S|

=
∑

x∈A−A

|A(x)|(|A| + |A(x)|) −N + |A||S| − 2|A|2

= |A|3 + E(A) + (τ − 2)|A|2 −N

where the terms |A||S| and −2|A|2 arise from the summand corresponding to x = 0. In 
view of (10.2) and Lemma 7.8, we conclude that

σ ≥ |A|3 + |A|3
τ

+ (τ − 2)|A|2 −N >
52
81τ |A|3. (10.4)

We split the sum in the left-hand side into two parts,

σ0 = 1
n

∑
χ∈Ẑn

|Â(χ)|2|Ŝ(χ)|2
| kerχ|≥n/36
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and

σ1 = 1
n

∑
χ∈Ẑn

| kerχ|<n/36

|Â(χ)|2|Ŝ(χ)|2

(the bound n/36 is needed for the combinatorial part of the argument, presented in the 
next section, to go through). Let ϕ denote Euler’s totient function. For any divisor d | n, 
there are exactly ϕ(d) characters χ ∈ Ẑn with | kerχ| = n/d. Therefore

σ0 ≤ 1
n
|A|2

∑
χ∈Ẑn

| kerχ|≥n/36

|Ŝ(χ)|2 ≤ 1
n

Φ|A|2|S|2 = 1
n

Φτ2|A|4, (10.5)

where

Φ =
∑

1≤d≤36
d|n

ϕ(d) ≤
36∑
d=1

ϕ(d) = 396.

Recalling that (τ − 1)|A| = |2A| − |A| ≤ C−1
0 n, we therefore have

σ0 ≤ 396τ2

(τ − 1)C0
|A|3. (10.6)

Turning to the sum σ1, we let

η := max
χ∈Ẑn

| kerχ|<n/36

|Â(χ)|/|A|

(thus, η < 1) and use the first inequality in (10.5) and Parseval’s identity to get

σ1 ≤ 1
n
η2|A|2

∑
χ∈Ẑn

| kerχ|<n/36

|Ŝ(χ)|2

= 1
n
η2|A|2

( ∑
χ∈Ẑn

|Ŝ(χ)|2 −
∑
χ∈Ẑn

| kerχ|≥n/36

|Ŝ(χ)|2
)

≤ η2(|A|2|S| − σ0).

Therefore, by (10.6),
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σ0 + σ1 ≤ η2|A|2|S| + (1 − η2)σ0

≤
(
η2 + (1 − η2) · 396τ

(τ − 1)C0

)
τ |A|3.

Combining this estimate with (10.4) we obtain

η2 + (1 − η2) · 396τ
(τ − 1)C0

>
52
81 ,

and since

396τ
(τ − 1)C0

<
2 · 396

1.5 · 105 < 0.0053

we conclude that

η2 + 0.0053(1 − η2) > 52
81 ;

as a result, η > 0.8.
Thus, there exists a character χ ∈ Ẑn such that | kerχ| < n/36 and

|Â(χ)| > 0.8|A|.

Letting H := kerχ and m := n/|H| (so that m ≥ 37, H = mZn, and Zn/H ∼= Zm), 
there is a zero-kernel character ζ ∈ Ẑn/H such that χ = ζ ◦ϕH , where ϕH : Zn → Zn/H

is the canonical homomorphism. In terms of this character ζ, the last estimate can be 
rewritten as ∣∣∣∑

a∈A

ζ(ϕH(a))
∣∣∣ > 0.8|A|.

The summands in the left-hand side are complex roots of unity of degree m, and by 
Lemma 6.3, there exists a subset A′ ⊆ A of size |A′| > 1

2 (1 + 0.8)|A| = 0.9|A|, and an 
open arc C of the unit circle, of angle measure π, such that ζ(ϕH(a)) ∈ C for all a ∈ A′. 
The arc C contains at most �(m + 1)/2� roots of unity of degree m, which are in a 
geometric progression. As a result, the set ϕH(A′) is contained in a primitive arithmetic 
progression Q ⊆ Zn/H of size |Q| ≤ (m + 1)/2; hence,

A′ ⊆ ϕ−1
H (Q). (10.7)

Fix c, d ∈ Zn such that c +H and d +H are the initial term and the difference of the 
progression Q, respectively, and d generates Zn; the latter condition is possible to satisfy 
since d + H generates Zn/H. Letting P := {c, c + d, . . . , c + (|Q| − 1)d} ⊆ Zn, we have 
ϕH(P ) = Q, whence ϕ−1

H (Q) = P + H. This completes the proof in view of (10.7). �
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11. Proof of Theorem 1.3

Suppose that the theorem is wrong. Let n be the smallest positive integer for which 
the assertion fails, and let A ⊆ Zn be a counterexample set satisfying the assumptions, 
but not the conclusion of the theorem. As a result, A is not contained in a proper 
coset, 4 ≤ |A| ≤ C−1

0 n and 8 ≤ |2A| ≤ 2C−1
0 n by Lemma 7.6, and 2A is aperiodic by 

Lemma 7.2.
Applying Lemma 10.1, we find a subgroup L < Zn of index m := n/|L| ≥ 37, 

and a primitive arithmetic progression Q0 ⊆ Zn with |Q0| ≤ (m + 1)/2 such that 
the set A′ := (Q0 + L) ∩ A has size |A′| > 0.9|A|. The condition |Q0| ≤ (m + 1)/2
along with the primitivity of Q0 ensures that ϕL(Q0) is rectifiable. Thus, ϕL(A′) is 
contained in a rectifiable subset of Zn/L; hence, is itself rectifiable. Let A′′ := A \ A′. 
We observe that the L-cosets determined by A′ are distinct from those determined by 
A′′: (A′ + L) ∩ (A′′ + L) = ∅. Also,

|2A′| ≤ |2A| < 9
4 |A| < 5

2 |A′|. (11.1)

It suffices to prove that ϕL(A) is rectifiable, as in this case |ϕL(A)| ≥ 4 by Lemma 9.1, 
and applying Proposition 3.2 we conclude that A is not a counterexample.

Claim 11.1. The set A′′ is nonempty.

Proof. If A′′ = ∅, then A = A′; as a result, ϕL(A) = ϕL(A′) is rectifiable. �
In view of |A′′| < 0.1|A|, as an immediate corollary of Claim 11.1 we have

|A′′| < 1
9 |A′| and |A| ≥ 11. (11.2)

Claim 11.2. The set A′ is not contained in a proper coset.

Proof. Suppose that A′ is contained in a proper coset, and let g + F , with g ∈ Zn and 
F < Zn, be the smallest coset containing A′. If a1, . . . , ak list representatives of the F -
cosets intersecting A′′, other than the coset g + F (which can possibly contain elements 
of A′′) then 2A′, a1 + A′, . . . , ak + A′ reside in pairwise distinct F -cosets and, therefore, 
are disjoint. As a result

(k + 1)|A′| ≤ |2A′| + |a1 + A′| + · · · + |ak + A′| ≤ |2A| < 9
4 |A| < 5

2 |A
′|,

showing that k ≤ 1. Indeed, k = 1 as if we had k = 0, then A were contained in g + F , 
which is a proper coset.
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Reversing the last computation,

5
2 |A′| > 9

4 |A| > |2A| ≥ |2A′| + |a1 + A′|

whence |2A′| < 3
2 |A′|. Therefore A′ is a VSDS; moreover, by Lemma 5.1 and the minimal-

ity of F , we have A′−A′ = F , |2A′| = |F |, and |A′| > 2
3 |F |. Now from |F | < 3

2 |A′| < 3
2 |A|

and Lemma 7.6 we see that |F | < 1
3 n. On the other hand, A ⊆ (g + F ) ∪ (a1 + F ), con-

tradicting Lemma 8.1. �
Recall that we have defined m := n/|L|.

Claim 11.3. For any subgroup K ≤ L, the set ϕK(A′) is not contained in an arithmetic 
progression with 

⌈
m
6
⌉

or fewer terms.

Proof. If, for some a, d ∈ Zn and k ≥ 1 we have

ϕK(A′) ⊆ {ϕK(a) + iϕK(d) : i ∈ [0, k − 1]},

then

ϕL(A′) ⊆ {ϕL(a) + iϕL(d) : i ∈ [0, k − 1]}.

Therefore, it suffices to prove the assertion in the special case where K = L.
By Lemma 5.1 and Claim 11.2, the set A′ is not a VSDS; hence

|2A′| ≥ 3
2 |A

′|. (11.3)

If A contained an element a /∈ 2A′ −A′, then a +A′ would be disjoint from 2A′, and 
from (11.3) we would get

|2A| ≥ |a + A′| + |2A′| ≥ 5
2 |A′| > 9

4 |A|,

contradicting the assumptions. Thus,

A ⊆ 2A′ −A′. (11.4)

Suppose now that ϕL(A′) is contained in an arithmetic progression with k ≤
⌈
m
6
⌉

terms. Then, by (11.4), the set ϕL(A) is contained in a progression with 3k − 2 ≤ m+1
2

terms. Since A is not contained in a proper coset, the difference of this progression 
generates Zn/L. It follows that ϕL(A) is rectifiable. �

By Lemma 9.1, if ϕL(A) is rectifiable, then |ϕL(A)| ≥ 4. We now show that the 
conclusion |ϕL(A)| ≥ 4 holds true regardless of the rectifiability of ϕL(A).
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Claim 11.4. The set A determines at least four distinct L-cosets; that is, |ϕL(A)| ≥ 4.

Proof. With Lemma 8.1 in mind, suppose for a contradiction that A determines exactly 
three L-cosets. By Claims 11.1 and 11.2, the set A′ meets exactly two of these three 
cosets. Hence, |ϕL(A′)| = 2; therefore, ϕL(A′) is a (two-term) progression, contradicting 
Claim 11.3. �

Write s := |ϕL(A′)|, and let A′ = A1 ∪ · · · ∪ As where each of the sets A1, . . . , As is 
contained in an L-coset, the cosets are pairwise disjoint, and |A1| ≥ · · · ≥ |As| > 0. By 
Claims 11.2 and 11.3, we have s ≥ 3, and we proceed to consider separately the cases 
where s = 3, s = 4, s = 5, and s ≥ 6. (The “typical” scenario is addressed in the last 
case, which also is much less technical to treat; for this reason, the reader may consider 
skipping directly to this case.)

Case 1: s = 3.
By Claim 11.3, and in view of |ϕL(A′)| = 3 ≤

⌈
m
6
⌉
, the set ϕL(A′) is not an arithmetic 

progression; hence, in the representation

2A′ = 2A1 ∪ 2A2 ∪ 2A3 ∪ (A1 + A2) ∪ (A2 + A3) ∪ (A3 + A1)

the union is disjoint and indeed, all sets in the right-hand side reside in distinct L-cosets. 
(We cannot have ϕL(2Ai) = ϕL(2Aj) with i �= j since this would imply 2ϕL(Ai) =
2ϕL(Aj), contradicting rectifiability of ϕL(A′).) Thus, recalling (11.1),

5
2(|A1| + |A2| + |A3|) = 5

2 |A′| > |2A′|

= |2A1| + |2A2| + |2A3| + |A1 + A2| + |A2 + A3| + |A3 + A1|. (11.5)

Claim 11.5. The set A1 is a VSDS; moreover, letting K := A1 −A1, we have K ≤ L.

Proof. Assume for a contradiction that A1 is not a VSDS, and suppose first that A2 is 
not a VSDS either. Then |2A1| ≥ 3

2 |A1|, |2A2| ≥ 3
2 |A2|, and |A1 +A2| ≥ |A2| + 1

2 |A1| by 
Corollary 5.3. Combining these estimates with (11.5) and the basic bound |Ai + Aj | ≥
|Ai| (1 ≤ i ≤ j ≤ 3), we conclude that

5
2(|A1| + |A2| + |A3|) >

3
2 |A1| +

3
2 |A2| + |A3| + |A2| +

1
2 |A1| + |A2| + |A1|

= 3|A1| +
7
2 |A2| + |A3|

leading to 3|A3| > |A1| + 2|A2|, a contradiction.
Thus, A2 is a VSDS. Let K ′ := A2−A2, and let k denote the number of the K ′-cosets 

determined by A1; since |A1| ≥ |A2| > 2 |K ′| and A1 is not contained in a K ′-coset 
3
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with density exceeding 2/3, we have k ≥ 2. Also, |2A1| ≥ 3
2 |A1| and |A1 + A2| ≥ k|A2|. 

Thus, (11.5) gives

5
2(|A1| + |A2| + |A3|) >

3
2 |A1| + |A2| + |A3| + k|A2| + |A2| + |A1|

whence

3|A3| > (2k − 1)|A2| ≥ 3|A2|,

a contradiction showing that A1 is a VSDS. Finally, we notice that K = A1−A1 implies 
K ≤ L (as A1 is contained in an L-coset). �

Let K denote the subgroup of Claim 11.5; thus, A1 is contained in a K-coset and 
|A1| > 2

3 |K|.

Claim 11.6. Each of the sets A1, A2, A3 is contained in a K-coset.

Proof. If neither A2 nor A3 is contained in an K-coset, then |A2 + A1| ≥ 2|A1| and 
|A3 + A1| ≥ 2|A1| whence, by (11.5)

5
2(|A1| + |A2| + |A3|) > |A1| + |A2| + |A3| + 2|A1| + |A2| + 2|A1|

resulting in

5|A1| < |A2| + 3|A3|,

which contradicts the assumption |A1| ≥ |A2| ≥ |A3|.
If A2 is not contained in an K-coset, while A3 is, then |A1+A2| ≥ 2|A1| and |A2+A3| ≥

2|A3|, and then

5
2(|A1| + |A2| + |A3|) > |A1| + |A2| + |A3| + 2|A1| + 2|A3| + |A1|,

3|A1| + |A3| < 3|A2|,

a contradiction to |A1| ≥ |A2|.
Finally, if A2 is contained in an K-coset, while A3 is not, then |A1 +A3| ≥ 2|A1| and 

|A2 + A3| ≥ 2|A2|; as a result,

5
2(|A1| + |A2| + |A3|) > |A1| + |A2| + |A3| + |A1| + 2|A2| + 2|A1|,

3|A1| + |A2| < 3|A3|,

a contradiction to |A1| ≥ |A3|.
The assertion follows. �
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Let A′′ = B1∪· · ·∪Bt be the K-coset decomposition of A′′; that is, each of B1, . . . , Bt

is contained in a K-coset, and the cosets are pairwise disjoint. Write A′ := ϕK(A′), 
A′′ := ϕK(A′′), and A := ϕK(A); thus, |A′| = 3, |A′′| = t, and |A| = 3 + t.

We have

9
4 |A| > |2A| ≥ |A + A1| ≥ (3 + t)|A1| ≥

3 + t

3 |A′| > 3 + t

3 · 0.9|A|

whence t ≤ 4. We now improve this estimate as follows.

Claim 11.7. We have t ≤ 2.

Proof. Let H := π(A + A′). If |A + A′| < |A| + 1
2 |A′|, then by Lemma 5.2, the set 

A′ is contained in an H-coset. Consequently, A′ is contained in a coset of the subgroup 
ϕ−1
K (H). Hence, by Claim 11.2, we have ϕ−1

K (H) = Zn; that is, H = Zn/K, meaning that 
A +A′ = Zn/K. Therefore, |A +A′| = n/|K| ≥ n/|L| ≥ 37 > (3 + t) + 3

2 = |A| + 1
2 |A′|, 

a contradiction.
We therefore conclude that |A + A′| ≥ |A| + 1

2 |A′| and then indeed, rounding to an 
integer, |A +A′| ≥ 5 + t. It follows that the set A +A′ consists of the |A| = 3 + t subsets 
2A1, A1 + A2, A1 + A3, A1 + B1, . . . , A1 + Bt, and at least two more subsets of size at 
least |A3| each, all these subsets being pairwise disjoint. As a result,

|A + A′| ≥ (t + 3)|A1| + 2|A3|. (11.6)

On the other hand,

|A + A′| ≤ |2A| < 9
4 |A| < 5

2 |A′| = 5
2 (|A1| + |A2| + |A3|).

Comparing this estimate with (11.6), we get

(t + 3)|A1| + 2|A3| <
5
2 (|A1| + |A2| + |A3|),

(2t + 1)|A1| < 5|A2| + |A3|,

whence t ∈ {1, 2}, as claimed. �
If |(A′ + A′′) \ 2A′| ≥ 2, then |(A′ + A′′) \ (2A′)| ≥ 2|A3|, leading to

5
2 (|A1| + |A2| + |A3|) = 5

2 |A′| > 9
4 |A| > |2A| ≥ |2A′| + 2|A3|. (11.7)

On the other hand, from (11.5) and the trivial estimate |Ai +Aj | ≥ |Ai| (1 ≤ i ≤ j ≤ 3),

|2A′| ≥ 3|A1| + 2|A2| + |A3|.
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From this estimate and (11.7) we get

5
2 (|A1| + |A2| + |A3|) > 3|A1| + 2|A2| + 3|A3|,

|A1| + |A3| < |A2|

which is obviously wrong.
Thus, |(A′ + A′′) \ 2A′| ≤ 1. Consequently, for any β ∈ A′′ there are (at least) 

two elements α ∈ A′ with β + α ∈ 2A′. Applying Lemma 6.6 and taking into account 
that A′ is not contained in a four-term progression by Claim 11.3, we conclude that if 
α1, α2 ∈ A′ are elements with β + α1, β + α2 ∈ 2A′, then {α1, α2, β} is a coset of the 
three-element subgroup of Zn/K. If t = 1, then this shows that A is contained in a union 
of two cosets of a subgroup of size at most 3|K|, contradicting Lemma 8.1. If t = 2, then 
writing A′′ = {β1, β2}, and applying Lemma 6.6, there are elements α, α1, α2 ∈ A′ with 
α �= α1, α �= α2 such that both {α, α1, β1} and {α, α2, β2} are cosets of the three-element 
subgroup of Zn/K. Sharing the same common element α, these cosets must be identical, 
which is impossible since, for instance, β1 /∈ {α, α2, β2}.

Case 2: s = 4.
By Claim 11.3, the set ϕL(A′) is not contained in an arithmetic progression with five 

or fewer terms; as a result, by Theorem 6.2 (as applied to the set of integers locally 
isomorphic to ϕL(A′), with l = 5), we have

|2ϕL(A′)| ≥ 9; (11.8)

that is, 2A′ meets at least nine L-cosets. Of these cosets, four are the cosets determined 
by the sums A1 +A1, . . . , A1 +A4, and at least five more are determined by some other 
sums of the form Ai +Aj , with 2 ≤ i ≤ j ≤ 4. Using the trivial estimate |Ai +Aj | ≥ |Ai|
for these sums, and observing that in the resulting estimate the summand |A4| can 
appear at most once, and |A3| at most twice, we get

5
2 |A′| > |2A′| ≥ |A1 + A1| + · · · + |A1 + A4| + 2|A2| + 2|A3| + |A4|. (11.9)

Claim 11.8. A1 is a VSDS.

Proof. Assuming for the contradiction that A1 is not a VSDS, by Corollary 5.3 we have 
|A1 + A2| ≥ |A2| + 1

2 |A1|. Substituting to (11.9), we obtain

5
2 |A′| > 3

2 |A1| +
(
|A2| +

1
2 |A1|

)
+ 2|A1| + 2|A2| + 2|A3| + |A4|

= 4|A1| + 3|A2| + 2|A3| + |A4|.

This simplifies to the obviously wrong inequality
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3|A1| + |A2| < |A3| + 3|A4|,

a contradiction proving the claim. �
Let K := A1 −A1; thus, K is a subgroup of L, and A1 is contained in a K-coset with 

|A1| > 2
3 |K|; also, |2A1| = |K|. Notice that K is nonzero (else |A1| = 1 and then |A′| = 4

contradicting (11.2)).
From (11.9), and in view of |2A1| = |K|, we have

5
2 |A′| > |K| + 3|A1| + 2|A2| + 2|A3| + |A4|,

|A2| + |A3| + 3|A4| > |A1| + 2|K|,

resulting in |A1| + 3|A4| > 2|K|. Hence,

|A1| + |A4| = 1
2 (|A1| + 3|A4|) + 1

2 (|A1| − |A4|) > |K|,

and then indeed |A1| + |Ai| > |K| for all i ∈ [1, 4], leading, by Lemma 6.1, to

|A1 + Ai| ≥ |K|. (11.10)

Substituting this estimate back to (11.9), we now get

5
2 |A′| > 4|K| + 2|A2| + 2|A3| + |A4|,

5|A1| + |A2| + |A3| + 3|A4| > 8|K|, (11.11)

which leads to

7|A1| + 3|A4| > 8|K|,

|A1| +
1
2 |Ai| ≥ |A1| +

1
2 |A4| > |K|, (11.12)

for all i ∈ {2, 3, 4}.

Claim 11.9. Each of the sets A1, A2, A3, A4 is contained in a single K-coset.

Proof. If, for some i ∈ {2, 3, 4}, the set Ai determines two or more K-cosets, then in view 
of (11.12), by Lemma 6.1 (ii) we have |A1 + Ai| ≥ |A1| + |K|. Using (11.9) and (11.10), 
we then get

5
2 |A′| > 4|K| + |A1| + 2|A2| + 2|A3| + |A4|,

3|A1| + |A2| + |A3| + 3|A4| > 8|K|,
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which is wrong since |A1| ≤ |K|. �
Notice that from (11.11)

8|K| < 5|A1| + |A2| + |A3| + 3|A4| ≤ 6|K| + 2(|A3| + |A4|).

It follows that |Ai| + |Aj | > |K|, and therefore Ai + Aj is a K-coset for all i, j ∈ [1, 4]
with the possible exception of i = j = 4. Consequently, from (11.8) we obtain

5
2 |A′| > |2A′| ≥ 8|K| + |A4|. (11.13)

Let A′ := ϕK(A′), A′′ := ϕK(A′′), and A := ϕK(A). Thus |A′| = 4, and from (11.8)
we have

|2A′| = |2ϕK(A′)| = |ϕK(2A′)| ≥ |ϕL(2A′)| = |2ϕL(A′)| = 9.

Indeed, if we had |2A′| ≥ 10, then instead of (11.13) we would be able to get the estimate

5
2 |A′| > |2A′| ≥ 9|K| + |A4|,

which is wrong in view of |A′| ≤ 3|K| + |A4|. Thus |2A′| = 9. Observing that A′

determines 
(4
2
)

+ 4 = 10 sums α1 + α2 with α1, α2 ∈ A′, we conclude that exactly 
two of these sums coincide, while the rest are distinct from each other and from the two 
coinciding sums.

Write t := |A′′| and A′′ = B1 ∪ · · · ∪ Bt where each of B1, . . . , Bt is contained in a 
K-coset, and the cosets are pairwise distinct; notice that |A| = 4 + t.

If A′ + A′′ � 2A′, then there are i ∈ [1, 4] and j ∈ [1, t] such that the sum Ai + Bj is 
disjoint from 2A′; consequently, from (11.13)

5
2 |A′| > 9

4 |A| > |2A| ≥ |2A′| + |Ai + Bj | ≥ (8|K| + |A4|) + |A4|,

5|A′| > 16|K| + 4|A4|,
5|A1| + 5|A2| + 5|A3| + |A4| > 16|K| ≥ 16|A1|,

a contradiction.
Therefore, A′ + A′′ ⊆ 2A′ implying

2A = 2A′ ∪ 2A′′. (11.14)

In addition, from A′ + A′′ ⊆ 2A′ we derive that A + A′ ⊆ 2A′, and since the inverse 
inclusion holds trivially, we have, indeed, A + A′ = 2A′. Thus,

|A′| = 4, |A′′| = t, |A| = 4 + t, |A + A′| = |2A′| = 9. (11.15)
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From A1 + A1, . . . , A1 + A4, A1 + B1, . . . , A1 + Bt ⊆ 2A we get

9
4 |A| > |2A| ≥ (t + 4)|A1| ≥

t + 4
4 |A′| > 0.9 t + 4

4 |A|

which yields t ≤ 5. We can improve this bound as follows.

Claim 11.10. We have t ≤ 3.

Proof. Let H := π(A + A′). If |A + A′| < |A| + 1
2 |A′|, then by Lemma 5.2, the set 

A′ is contained in an H-coset. Consequently, A′ is contained in a coset of the subgroup 
ϕ−1
K (H). Hence, by Claim 11.2, we have ϕ−1

K (H) = Zn; that is, H = Zn/K, meaning 
that A + A′ = Zn/K. Therefore, |A + A′| = n/|K| ≥ n/|L| ≥ 37 > 6 + t = |A| + 1

2 |A′|, 
a contradiction.

Thus, |A + A′| ≥ |A| + 1
2 |A′| = t + 6 showing that the set A + A′ consists of the 

|A| = 4 + t subsets 2A1, A1 + A2, A1 + A3, A1 + A4, A1 + B1, . . . , A1 + Bt, and at least 
two more subsets of size at least |A4| each (with all these subsets pairwise disjoint). As 
a result,

|A + A′| ≥ (t + 4)|A1| + 2|A4|.

On the other hand,

|A + A′| ≤ |2A| < 9
4 |A| < 5

2 |A′| = 5
2 (|A1| + |A2| + |A3| + |A4|).

Comparing the last two estimates, we get

(2t + 3)|A1| < 5|A2| + 5|A3| + |A4|

whence t ≤ 3. �
Case 2.1: t = 1. In this case we have A = A′ ∪ A′′ where A′ = A1 ∪ A2 ∪ A3 ∪ A4 with 
A1, . . . , A4 residing in pairwise distinct K-cosets, and where A′′ resides in yet another 
K-coset. Moreover, in view of (11.15), and recalling that Ai + Aj is a K-coset for all 
i, j ∈ [1, 4] with the possible exception of i = j = 4, the set 2A′ is a disjoint union of 
eight K-cosets, and one more set which is either a K-coset, or the set 2A4 (contained in 
a K-coset). Also, from (11.14), there are at most two K-cosets intersecting 2A, but not 
entirely contained in 2A: namely, the cosets determined by 2A4 and by 2A′′. It follows 
that |2A +K| −|2A| ≤ (|K| −|2A4|) +(|K| −|2A′′|). Also, |A +K| −|A| = 5|K| −|A|. On 
the other hand, we observe that K is nonzero (as otherwise we would have |A| = |A| = 5
contradicting (11.2)), and that 2A + K �= Zn (otherwise n

|K| = |2A| ≤ |2A′| + 1 = 10
while, on the other hand, n

|K| ≥ n
|L| ≥ 37). Consequently, we can apply Lemma 7.1 to 

get
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(|K| − |2A4|) + (|K| − |2A′′|) > 5|K| − |A|,
|A| > 3|K| + |2A4| + |2A′′|

which is wrong in view of

|A| = |A1| + |A2| + |A3| + |A4| + |A′′| ≤ 3|K| + |A4| + |A′′|.

Case 2.2: t ∈ {2, 3}. In this case |A′| = 4, |A′′| = t, |A| = 4 + t, and |A + A′| = |2A′| =
9 = |A| + |A′| − (t − 1). Furthermore, |A| + |A′| = t + 8 ≤ 11 < |Zn/L| ≤ |Zn/K|, 
|A| ≥ |A′| ≥ 2, and A′ is rectifiable (as a result of the rectifiability of ϕL(A′)), not 
an arithmetic progression (by Claim 11.3), and not contained in a proper coset (as a 
consequence of Claim 11.2). Thus, the assumptions of Lemma 6.5 are satisfied. Applying 
the lemma, we conclude that there is a nonzero, proper subgroup H < Zn/K such that 
A′ meets two H-cosets and has exactly (|H| + 1)/2 elements in each of them. Since 
|A′| = 4, we have |H| = 3; thus, we can write A′ = {α1, α1 + δ, α2, α2 + δ} where δ is 
an element of the group Zn/K of order 3 (so that H = {0, δ, 2δ}), and α1, α2 ∈ Zn/K

belong to distinct H-cosets.
As a result of (11.14), we have A′′ ⊆ (2A′ − α1) ∩ (2A′ − α2), where the two sets in 

the right-hand side are

2A′ − α1 = {α1, α2, 2α2 − α1} + H

and

2A′ − α2 = {α1, α2, 2α1 − α2} + H.

The elements 2α1 − α2 and 2α2 − α1 lie in distinct H-cosets, since otherwise we would 
have 3(α1 − α2) ∈ H and then A′ would be contained in a coset of a nine-element 
subgroup, contradicting Claim 11.2 in view of |Zn/K| ≥ n/|L| > 9. Therefore, A′′ ⊆
{α1, α2} +H, and it follows that A ⊆ (α1 +H) ∪ (α2 +H). Consequently, A is contained 
in the union of two cosets of the subgroup ϕ−1

K (H). Since this subgroup has size at most 
|K||H| = 3|K| ≤ 3|L| < n/2, we can invoke Lemma 8.1 to complete the proof.

Case 3: s = 5.
By Claim 11.3, the set ϕL(A′) is not contained in an arithmetic progression with 

seven or fewer terms; as a result, by Theorem 6.2 (as applied to the set of integers 
locally isomorphic to ϕL(A′), with l = 7), we have

|2ϕL(A′)| ≥ 12; (11.16)

that is, 2A′ meets at least twelve L-cosets. Of these cosets, five are the cosets determined 
by the sums A1 +A1, . . . , A1 +A5, and at least seven more are determined by some other 
sums of the form Ai +Aj , with 2 ≤ i ≤ j ≤ 5. Using the trivial estimate |Ai +Aj | ≥ |Ai|
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for these sums, and observing that in the resulting inequality the summand |A5| can 
appear at most once, |A4| at most twice, and |A3| at most three times, we get

5
2
|A′| > |2A′| ≥ |A1 + A1| + · · · + |A1 + A5| + |A2| + 3|A3| + 2|A4| + |A5|

≥ 5|A1| + |A2| + 3|A3| + 2|A4| + |A5| (11.17)

= 2|A′| + 3|A1| − |A2| + |A3| − |A5|.

It follows that

5|A1| + |A3| < 3|A2| + |A4| + 3|A5|. (11.18)

Claim 11.11. A1 is a VSDS.

Proof. If |2A1| ≥ 3
2 |A1|, then the summand 5|A1| in (11.17) can be replaced with 112 |A1|, 

and then (11.18) can be improved to 6|A1| + |A3| < 3|A2| + |A4| + 3|A5|. However, this 
implies 6|A1| < 3|A2| + 3|A5| which is obviously wrong. �

With Claim 11.11 in mind, let K := A1 − A1; thus, K ≤ L is a subgroup, A1 is 
contained in a K-coset, |A1| > 2

3 |K|, and |2A1| = |K|. Notice that K is nonzero (else 
|A1| = 1 and then |A′| = 5 contradicting (11.2)).

From (11.18) we get

5|A1| < 3|A2| + 3|A5| ≤ 3|A1| + 3|A5|

whence |Ai| ≥ |A5| > 2
3 |A1| for each i ∈ [1, 5]. Therefore |A1| + |Ai| ≥ 5

3 |A1| > |K|, and 
then |A1 + Ai| ≥ |K| by Lemma 6.1. Consequently, we can improve (11.18) to write

5
2 |A′| > |2A′| ≥ 5|K| + |A2| + 3|A3| + 2|A4| + |A5|

= 2|A′| + 5|K| − 2|A1| − |A2| + |A3| − |A5|.

It follows that

|A′| > 10|K| − 4|A1| − 2|A2| + 2|A3| − 2|A5|,
5|A1| + 3|A2| + |A4| + 3|A5| > 10|K| + |A3|,

10|K| < 5|A1| + 3|A2| + 3|A5| ≤ 8|K| + 3|A5|,

implying

|A2| ≥ · · · ≥ |A5| >
2
3 |K|. (11.19)

Therefore



JID:YJNTH AID:7027 /FLA [m1L; v1.318] P.47 (1-54)
V.F. Lev / Journal of Number Theory ••• (••••) •••–••• 47
|Ai| + 2|A1| > 2|K|. (11.20)

Claim 11.12. Each of the sets A1, . . . , A5 is contained in a single K-coset.

Proof. By Lemma 6.1, from (11.20) it follows that if, for some index i ∈ [2, 5], the set 
Ai meets two or more K-cosets, then |A1 + Ai| ≥ |K| + |A1|. Hence, in this case

5
2 |A′| > (5|K| + |A1|) + |A2| + 3|A3| + 2|A4| + |A5|

= 5|K| + 2|A′| − |A1| − |A2| + |A3| − |A5|,

leading to

3|A1| + 3|A2| + |A4| + 3|A5| > 10|K| + |A3|

which is wrong as the sum in the left-hand side is at most 9|K| + |A4|. �
As it follows from Claim 11.12 and (11.19), we have |Ai+Aj | = |K| for all i, j ∈ [1, 5]. 

Hence, 2A′ is K-periodic and

|2A′| ≥ 12|K|

(cf. (11.16)); indeed, equality holds as |A′| ≤ 5|K| implies |2A′| < 5
2 |A′| < 13|K|.

Let A′ := ϕK(A′), A′′ := ϕK(A′′), and A := ϕK(A); thus |A′| = 5 and |2A′| = 12. 
Also, write t := |A′′| and A′′ = B1 ∪ · · · ∪Bt where each of B1, . . . , Bt is contained in a 
K-coset and the cosets are pairwise distinct; notice that |A| = 5 + t.

If A′ + A′′ � 2A′, then there are i ∈ [1, 5] and j ∈ [1, t] such that the sum Ai + Bj is 
disjoint from 2A′; consequently,

5
2 |A′| > |2A| ≥ |2A′| + |Ai + Bj | ≥ 12|K| + |A5|,

5|A′| > 24|K| + 2|A5|,
5|A1| + 5|A2| + 5|A3| + 5|A4| + 3|A5| > 24|K|

which is wrong.
Therefore, A′ + A′′ ⊆ 2A′; as a result, A + A′ ⊆ 2A′, and since the inverse inclusion 

is trivial, we have, indeed, A + A′ = 2A′.
The relation A′+A′′ ⊆ 2A′ also shows that 2A = (2A′) ∪(2A′′). Since 2A is aperiodic 

by Lemma 7.2, while 2A′ is K-periodic as a consequence of (11.19), we conclude that 
there exist i, j ∈ [1, t] such that Bi + Bj is disjoint from 2A′.

From A1 + A1, . . . , A1 + A5, A1 + B1, . . . , A1 + Bt ⊆ 2A we get

9 |A| > |2A| ≥ (t + 5)|A1| ≥
t + 5 |A′| > 0.9 t + 5 |A|
4 5 5
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which yields t ≤ 7. We now prove a sharper estimate.

Claim 11.13. We have t ≤ 4.

Proof. Arguing as in the proof of Claim 11.10, from Lemma 5.2 we obtain

|A + A′| ≥ |A| + 1
2 |A′| = (5 + t) + 5

2 .

Thus, the set A + A′ consists of the |A| = 5 + t subsets 2A1, A1 + A2, A1 + A3, A1 +
A4, A1 + A5, A1 + B1, . . . , A1 + Bt, and at least 

⌈5
2
⌉

= 3 more subsets of size at least 
|A5| each (with all these subsets pairwise disjoint). As a result,

|A + A′| ≥ (t + 5)|A1| + 3|A5|.

On the other hand,

|A + A′| ≤ |2A| < 9
4 |A| < 5

2 |A′| = 5
2 (|A1| + |A2| + |A3| + |A4| + |A5|).

Comparing the last two estimates, we get

(2t + 5)|A1| + |A5| < 5|A2| + 5|A3| + 5|A4|

whence t ≤ 4. �
Case 3.1: t = 1. As explained above, in this case 2B1 is disjoint from 2A′. As a result, 
|2A| ≥ |2A′| + |2B1| ≥ 12|K| + |A′′| and then

9
4 (|A′| + |A′′|) = 9

4 |A| > |2A| ≥ 12|K| + |A′′|, (11.21)

9|A′| + 5|A′′| > 48|K|,

48|K| < 86
9 |A′| ≤ 430

9 |K|

(the inequalities in the last line following from (11.2) and Claim 11.12), which is wrong.

Case 3.2: t = 2. Write βi := ϕK(Bi), i ∈ {1, 2}; thus, A′′ = {β1, β2}. Since 2A′′ � 2A′, 
there is a pair of indices 1 ≤ i ≤ j ≤ 2 such that βi+βj /∈ 2A′. Suppose first that (i, j) is a 
unique pair with this property. In this situation we have |2A +K| −|2A| = |K| −|Bi+Bj |
and |A +K| −|A| = 7|K| −|A|. On the other hand, K is nonzero (as otherwise we would 
have |A| = |A| = 7), and 2A + K �= Zn (otherwise n

|K| = |2A| ≤ |2A′| +
(
t
2
)

+ t = 15
while, on the other hand, n

|K| ≥
n
|L| ≥ 37). Consequently, |K| − |Bi + Bj | > 7|K| − |A|

by Lemma 7.1, which yields

|A| > 6|K| + |Bi + Bj |.
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From this estimate and

|A| = |A′| + |A′′| ≤ 5|K| + |B1| + |B2|

we get |B1| + |B2| > |Bi+Bj | + |K|, which is impossible in view of max{|B1|, |B2|} ≤ |K|
and min{|B1|, |B2|} ≤ |Bi + Bj |.

We therefore conclude that there are at least two pairs (i, j) with 1 ≤ i ≤ j ≤ 2 and 
βi + βj /∈ A′. If, moreover, one can find two such pairs so that the sums βi + βj are 
distinct from each other, then the two corresponding sumsets Bi +Bj jointly contain at 
least |B1| + |B2| = |A′′| elements (which may not be obvious, but is not difficult to see 
either). Consequently,

|2A| ≥ |2A′| + |A′′| ≥ 12|K| + |A′′|

leading to a contradiction as in the case t = 1, cf. (11.21).
We are left with the case where there are at least two pairs of indices 1 ≤ i ≤ j ≤ 2

with βi + βj /∈ 2A′, but the sums βi + βj are equal to each other for all such pairs (i, j). 
Since β1 + β2 is distinct from each of 2β1 and 2β2, we actually have 2β1 = 2β2; that 
is, the two pairs are (1, 1) and (2, 2), while β1 + β2 ∈ 2A′. Acting as above, we get in 
this case |2A + K| − |2A| = |K| − |2B1 ∪ 2B2| and |A + K| − |A| = 7|K| − |A|, whence 
|K| −|2B1∪2B2| > 7|K| −|A| by Lemma 7.1. Therefore |A| > 6|K| + |2B1∪2B2| which, 
along with |A| = |A′| + |A′′| ≤ 5|K| + |B1| + |B2|, gives |B1| + |B2| > |2B1 ∪ 2B2| + |K|. 
This, however, is impossible in view of max{|B1|, |B2|} ≤ min{|K|, |2B1 ∪ 2B2|}.

Case 3.3: t ∈ {3, 4}. In this case |A′| = 5, |A′′| = t, |A| = 5 + t, and |A + A′| = |2A′| =
12 = |A| + |A′| − (t − 2). Furthermore, |A| + |A′| = 10 + t ≤ 14 < 36 < n/|L| ≤ |Zn/K|, 
|A| ≥ |A′| ≥ 2, and A′ is rectifiable (as a result of the rectifiability of ϕL(A′)), not 
an arithmetic progression (by Claim 11.3) and not contained in a proper coset (as a 
consequence of Claim 11.2). Thus, the assumptions of Lemma 6.5 are satisfied. Applying 
the lemma, we conclude that |A′| is even, a contradiction.

Case 4: s ≥ 6. In this case τ ′ := |2A′|/|A′| < 5
2 = 3(1 − 1/s). In view of this estimate, 

and since ϕL(A′) is a rectifiable subset of Zn/L, we can apply Proposition 3.2 to the set 
A′ to find a proper subgroup H ′ < Zn and a progression P ′ ⊆ Zn of size |P ′| > 1 such 
that A′ ⊆ P ′ + H ′, |P ′ + H ′| = |P ′||H ′|, and (|P ′| − 1)|H ′| ≤ |2A′| − |A′|.

By Claim 11.2 and Lemma 5.1, and since 2A′ ⊆ 2A �= Zn, we have

|2A′| ≥ 3
2 |A

′|. (11.22)

If A contained an element a /∈ (2P ′ − P ′) + H ′, then a + A′ ⊆ a + P ′ + H ′ would be 
disjoint from 2A′ ⊆ 2P ′ + H ′, and in view of (11.22) we would get

|2A| ≥ |a + A′| + |2A′| ≥ 5 |A′| > 9 |A|,
2 4
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contradicting the small-doubling assumption. Thus,

A ⊆ 2P ′ − P ′ + H ′. (11.23)

Let d denote the difference of P ′. Since A is contained in a coset of the subgroup 
generated by d and H ′, this subgroup is not proper; that is, the order of ϕH′(d) in the 
quotient group Zn/H

′ is m′ := n/|H ′|.
On the other hand, from Lemma 7.6,

|2P ′ − P ′| ≤ 3|P ′| − 2 = 3(|P ′| − 1) + 1

≤ 3
|H ′| (|2A′| − |A′|) + 1 <

3
|H ′| |2A| + 1

≤ 3
|H ′| · 2C

−1
0 n + 1 = 6C−1

0 m′ + 1 <
m′

2 + 1.

Thus, ϕH′(2P ′−P ′) is an arithmetic progression with the difference generating Zn/H
′, 

and of size not exceeding (|Zn/H
′| +1)/2; hence, a rectifiable set. In view of (11.23), the 

set ϕH′(A) is rectifiable, too. Also, since A meets at least four H ′-cosets by Lemma 9.1,

|2A| < 9
4 |A| ≤ 3

(
1 − 1

|ϕH′(A)|
)
|A|.

Consequently, we can apply Proposition 3.2 to find a proper subgroup H < Zn and 
a progression P ⊆ Zn of size |P | > 1 such that A ⊆ P + H, |P + H| = |P ||H|, 
and (|P | − 1)|H| ≤ |2A| − |A|. Thus A is regular, contrary to the choice of A as a 
counterexample set.

This completes the proof in the case s ≥ 6.
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Appendix A. Rich cosets in small-doubling sets

We show here that if a set A satisfies the assumptions and conclusion (ii) of The-
orem 1.1 (hence, also of Theorem 1.2), then there exists an H-coset such that a large 
proportion of its elements lies in A, except if the whole set A is contained in a coset, or 
in a union of two cosets of a small subgroup; see the discussion following the statement 
of Theorem 1.2 in the Introduction.
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Proposition A.1. Let n be a positive integer. Suppose that A ⊆ Zn is a set satisfying 
τ := |2A|/|A| ≤ 2.257, and that H < Zn is a subgroup, and P ⊆ Zn is an arithmetic 
progression of size |P | ≥ 3 such that A ⊆ P +H and (|P | −1)|H| ≤ |2A| −|A|. If A is not 
contained in a coset of a subgroup of size at most 3|A|, or in a union of two cosets of a 
subgroup of size at most 5

9 |A|, then there exists an H-coset containing at least 4
3τ−1 |H|

elements of A.

Proof. We assume that τ > 1 as otherwise A is a coset.
Suppose for a contradiction that in every H-coset contained in P + H there are 

less than 4
3τ−1 |H| elements of A. Define m1, m2, and M to be the smallest, second 

smallest, and largest among the |P | values {|(z + H) ∩ A| : z ∈ P}, respectively; thus 
m1 ≤ m2 ≤ M < 4

3τ−1 |H| and |A| ≤ |P |M < 4
3τ−1 |P ||H|.

If the number of H-cosets meeting A is less than |P |, then averaging we obtain

M ≥ |A|
|P | − 1 = |2A| − |A|

(τ − 1)(|P | − 1) ≥ |H|
τ − 1 ≥ 4

3τ − 1 |H|.

Therefore, A meets all H-cosets contained in P + H. Hence, 2A meets all H-cosets 
contained in 2P + H; we assume that all these cosets are pairwise distinct as otherwise 
2P+H is a coset of a subgroup of size at most 2(|P | −1)|H| ≤ 2(|2A| −|A|) = 2(τ−1)|A| ≤
3|A|, with A contained in a (possibly, different) coset of this subgroup.

We define the deficiency of a set S ⊆ Zn by D(S) := |(S + H) \ S|. Clearly, we 
have D(A) = |P ||H| − |A| and D(2A) = (2|P | − 1)|H| − |2A|; as a result, the inequality 
(|P | − 1)|H| ≤ |2A| − |A| can be equivalently rewritten as

D(2A) ≤ D(A). (A.1)

On the other hand,

τ = |2A|
|A| = (2|P | − 1)|H| − D(2A)

|P ||H| − D(A)

whence

τD(A) = ((τ − 2)|P | + 1)|H| + D(2A). (A.2)

From (A.2) and (A.1),

(τ − 1)D(A) ≤ ((τ − 2)|P | + 1)|H|. (A.3)

If we had τ < 5
3 then, as an easy corollary from Kneser’s theorem, A would be 

contained in a union of two cosets of a subgroup of size at most 59 |A|, or in a single coset 
of a subgroup of size at most 5 |A|; thus, τ ≥ 5 .
3 3
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The trivial estimate D(A) >
(
1 − 4

3τ−1

)
|P ||H| = 3τ−5

3τ−1 |P ||H| along with (A.2), and 

with the inequality |P | ≥ 3, yield

D(2A) > τ
3τ − 5
3τ − 1 |P ||H| − ((τ − 2)|P | + 1)|H|

≥ 3τ 3τ − 5
3τ − 1 |H| − (3τ − 5)|H|

= 3τ − 5
3τ − 1 |H|

≥ 0.

Therefore 2A +H �= 2A, and it follows that there is an H-coset in 2P +H which is not 
entirely contained in 2A. Suppose that there is exactly one H-coset with this property, 
and write it as z1 + z2 + H where z1, z2 ∈ P . Let I := |(z1 + H) ∩ A|. We have then 

D(2A) ≤ |H| − I and D(A) ≥ |H| − I +
(
1 − 4

3τ−1

)
(|P | − 1)|H|. Substituting into (A.2)

we obtain

τ |H| − τI + τ
(
1 − 4

3τ − 1

)
(|P | − 1)|H| ≤ ((τ − 2)|P | + 1)|H| + (|H| − I),

which simplifies to (
2 − 4τ

3τ − 1

)
(|P | − 1)|H| ≤ (τ − 1)I.

Consequently,

4(τ − 1)
3τ − 1 |H| > (τ − 1)I ≥

(
2 − 4τ

3τ − 1

)
(|P | − 1)|H|

≥ 2
(
2 − 4τ

3τ − 1

)
|H| = 4(τ − 1)

3τ − 1 |H|

which is obviously wrong. Thus, there are at least two H-cosets contained in 2P + H, 
but not entirely contained in 2A. Therefore,

m1 + m2 ≤ |H| (A.4)

by the pigeonhole principle.
We have

D(A) ≥ (|H| −m1) + (|H| −m2) + (|H| −M)(|P | − 2)

= |P |(|H| −M) + (2M −m1 −m2).

Substituting into (A.3) we get
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(τ − 1)|P |(|H| −M) + (τ − 1)(2M −m1 −m2) ≤ ((τ − 2)|P | + 1)|H|,
(|H| − (τ − 1)M)|P | ≤ |H| − (τ − 1)(2M −m1 −m2). (A.5)

Assuming |P | ≥ 4, in view of

|H| − (τ − 1)M >
(
1 − 4(τ − 1)

3τ − 1

)
|H| = 3 − τ

3τ − 1 |H| > 0

we derive that 2M + m1 + m2 ≥ 3
τ−1 |H| and then

m1 + m2 >

(
3

τ − 1 − 2 · 4
3τ − 1

)
|H| = τ + 5

(τ − 1)(3τ − 1) |H| > |H|

(where the last inequality follows from the assumption τ ≤ 2.257), contradicting (A.4).
Thus, |P | = 3 and from (A.5)

M + m1 + m2 ≥ 2
τ − 1 |H|. (A.6)

Let A = A1 ∪ A2 ∪ A3 where each set Ai resides in an H-coset, and the sets are 
numbered so that |A1| = m1, |A2| = m2, and |A3| = M . The set 2A meets five H-cosets, 
of which three are determined by the sums A1 + A3, A2 + A3, and 2A3, and two more 
are determined by two of the three sums 2A1, A1 + A2, 2A2. From the trivial bound 
|Ai + Aj | ≥ max{|Ai|, |Aj |} (i, j ∈ {1, 2, 3}), any two out of the last three cosets jointly 
contain at least |A1| + |A2| = m1 + m2 elements of A; therefore

|2A| ≥ |A1 + A3| + |A2 + A3| + |2A3| + m1 + m2; (A.7)

similarly,

|2A| ≥ |2A2| + |A2 + A3| + |2A3| + m1 + m2. (A.8)

(We notice that 2A2 +H �= 2A3 +H since the H-cosets in 2P +H are pairwise distinct.)
If M + m1 > |H|, then also M + m2 > |H| and 2M > |H| whence |A1 + A3| =

|A2 + A3| = |2A3| = |H|; consequently, by (A.7),

τ |A| = |2A| ≥ 3|H| + m1 + m2 = 3|H| + |A| −M >
9τ − 7
3τ − 1 |H| + |A|. (A.9)

If, on the other hand, M + m1 ≤ |H|, then m2 ≥ 3−τ
τ−1 |H| > 1

2 |H| by (A.6); as a result, 
|2A2| = |A2 + A3| = |2A3| = |H|. Substituting into (A.8), we see that (A.9) holds true 
in this case, too.

Finally, as a consequence of (A.9), we have |A| ≥ 9τ−7
(3τ−1)(τ−1) |H|, and then

m1 + m2 = |A| −M >

(
9τ − 7 − 4

)
|H| = 5τ − 3 |H| > |H|
(3τ − 1)(τ − 1) 3τ − 1 (3τ − 1)(τ − 1)
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contradicting (A.4). �
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