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Abstract. Sharpening (a particular case of) a result of Szemerédi and Vu [4] and
extending earlier results of Sárközy [3] and ourselves [2], we find, subject to some
technical restrictions, a sharp threshold for the number of integer sets needed for
their sumset to contain a block of consecutive integers, whose length is comparable
with the lengths of the set summands.

A corollary of our main result is as follows. Let k, l > 1 and n > 3 be integers,
and suppose that A1, . . . , Ak ⊆ [0, l] are integer sets of size at least n, none of
which is contained in an arithmetic progression with difference greater than 1. If
k > 2 d(l − 1)/(n− 2)e, then the sumset A1 + · · ·+ Ak contains a block of at least
k(n− 1) + 1 consecutive integers.

1. Background and summary of results

The sumset of the subsets A1, . . . , Ak of an additively written group is defined by

A1 + · · ·+ Ak := {a1 + · · ·+ ak : a1 ∈ A1, . . . , ak ∈ Ak};

if A1 = · · · = Ak = A, this is commonly abbreviated as kA. In the present paper we

will be concerned exclusively with the group of integers, in which case a well-known

phenomenon occurs: if all sets Ai are dense, and their number k is large, then the

sumset A1 + · · ·+Ak contains long arithmetic progressions. There are numerous ways

to specialize this statement by indicating the exact meaning of “dense”, “large”, and

“long”, but in our present context the following result of Sárközy is the origin of

things.

Theorem 1 (Sárközy [3, Theorem 1]). Let l > n > 2 be integers and write κ :=

d(l + 1)/(n− 1)e. Then, for every integer set A ⊆ [1, l] with |A| = n, there exist pos-

itive integers d 6 κ− 1 and k < 118κ such that the sumset kA contains l consecutive

multiples of d.
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In [2] we established a sharp version of this result, replacing the factor 118 with

2 (which is the best possible value, as conjectured by Sárközy) and indeed, going

somewhat further.

Theorem 2 (Lev [2, Theorem 1]). Let n > 3 and l > n − 1 be integers, and write

κ := b(l − 1)/(n− 2)c. Then for every integer set A ⊆ [0, l] with 0, l ∈ A, gcd(A) =

1, and |A| = n, and every integer k > 2κ, we have

[κ(2l − 2− (κ+ 1)(n− 2)), kl − κ(2l − 2− (κ+ 1)(n− 2))] ⊆ kA.

The complicated-looking interval appearing in the statement of Theorem 2 is best

possible and, in general, cannot be extended even by 1 in either direction. As the

interested reader will easily check, this interval (strictly) includes [κl, (k − κ)l] as a

subinterval; consequently, if k > 2κ+ 1, then its length exceeds l. At the same time,

if k 6 2κ, then the sumset kA may fail to contain a block of consecutive integers of

length l; see the example after the statement of Theorem 4 below. Thus, 2κ+1 is the

smallest value of k such that, with A as in Theorem 2, the sumset kA is guaranteed

to contain a block of consecutive integers of length l.

At first sight, Theorem 2 is weaker than Theorem 1 in imposing the extra assump-

tions 0, l ∈ A and gcd(A) = 1. It is explained in [2], however, that these assumptions

are merely of normalization nature, and a refinement of Theorem 1, with the bound

118κ replaced by 2κ+ 2 (and some other improvements), is deduced from Theorem 2

in a relatively straightforward way.

We notice that Theorem 2 yields a sharp result about the function f(n, k, l), in-

troduced in [4]. This function is defined for positive integers k and l > n > 2 to be

the largest number f such that for every n-element integer set A ⊆ [1, l], the sum-

set kA contains an arithmetic progression of length f . (The length of an arithmetic

progression is the number of its terms, less 1). As indicated in [4], “many estimates

for f(n, k, l) have been discovered by Bourgain, Freiman, Halberstam, Green, Ruzsa,

and Sárközy”. It is worth noting in this connection that Theorem 2 establishes the

exact value of this function for k large; namely, it is easy to deduce from Theorem 2

(and keeping in mind the trivial example A = [1, n]) that

f(n, k, l) = k(n− 1); k > 2 b(l − 2)/(n− 2)c+ 2.

This, to our knowledge, remains the only situation where the value of f(n, k, l) is

known precisely.

An obvious shortcoming of Theorem 2 is that it applies only to identical set sum-

mands. Potentially distinct summand were dealt with by Szemerédi and Vu in [4]. A

particular case of their result, to be compared with Theorems 1 and 2, is as follows.
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Theorem 3 (Szemerédi-Vu [4, a particular case of Corollary 5.2]). There exist positive

absolute constants C and c with the following property. Suppose that k, l > 1 and

n > 2 are integers, and A1, . . . , Ak ⊆ [0, l] are integer sets, having at least n elements

each. If k > Cl/n, then the sumset A1 + · · ·+Ak contains an arithmetic progression

of length at least ckn.

Though the proof of Theorem 3, presented in [4], is constructive, the constants C

and c are not computed explicitly. Indeed, the argument leads to excessively large

values of these constants, which may present a problem in some applications.

The goal of this note is to merge the best of the two worlds, extending Theorem 2

onto distinct set summands, or, equivalently, proving a sharp analogue if Theorem 3,

with Cl/n and ckn replaced with best possible expressions. A result of this sort (up

to a technical restriction, addressed below) is an almost immediate corollary from the

following theorem, proven in Section 2.

Theorem 4. Let l > 1 and n > 3 be integers, and write κ := d(l − 1)/(n− 2)e − 1.

Suppose that A1, . . . , A2κ+1 ⊆ [0, l] are integer sets, having at least n elements each,

such that none of them are contained in an arithmetic progression with difference

greater than 1. Then the sumset A1 + · · · + A2κ+1 contains a block of consecutive

integers of length 2(κ+ 1)(n− 1)− l > l.

Observe, that Theorem 4 guarantees the existence of a block of consecutive integers

of length l in A1 + · · ·+Ak for k = 2κ+ 1, which is a sharp threshold: for k = 2κ this

sumset may fail to contain such a block, as witnessed, say, by the system of identical

sets

A1 = · · · = A2κ = [0,m] ∪ [l −m, l]
with m ∈ [1, l/2) integer and n = 2m+ 2. Indeed, in this case we have

A1 + · · ·+ A2κ =
2κ⋃
j=0

[j(l −m), j(l −m) + 2κm],

the length of each individual segment being 2κm = κ(n − 2) < l, and the segments

not abutting, provided {(l − 1)/(n− 2)} > 1/2.

Unfortunately, we were unable to eliminate the assumption that none of the sets

Aj are contained in an arithmetic progression with difference greater than 1. This

reminiscent of the condition gcd(A) = 1 from Theorem 2 will be discussed in Section 3.

The reader may compare the following corollary of Theorem 4 against Theorem 3.
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Corollary 1. Suppose that k, l > 1 and n > 3 are integers, and A1, . . . , Ak ⊆ [0, l]

are integer sets, having at least n elements each, such that none of them are contained

in an arithmetic progression with difference greater than 1. If k > 2 d(l − 1)/(n− 2)e,
then the sumset A1+· · ·+Ak contains a block of consecutive integers of length k(n−1).

Proof. Reducing the value of l and renumbering the sets, if necessary, we can assume

that 0, l ∈ Ak. Write κ := d(l − 1)/(n− 2)e−1. By Theorem 4, the sumset A1+ · · ·+
A2κ+1 contains a block of consecutive integers of length at least 2(κ+1)(n−1)− l > l.

Adding one by one the sets A2κ+2, . . . , Ak−1 to this sumset, we increase the length of

the block by at least n− 1 each time, and adding Ak at the last step we increase the

length by l. Consequently, A1 + · · ·+ Ak contains a block of length at least

(2(κ+ 1)(n− 1)− l) + (k − 2κ− 2)(n− 1) + l = k(n− 1).

�

2. Proof of Theorem 4

For a finite, non-empty integer set A, let `(A) denote the difference of the largest

and the smallest elements of A.

Our approach is fairly close to that employed in [2], with the following result in its

heart.

Theorem 5 (Lev [1, Theorem 1]). Let k > 2 be an integer, and suppose that

A1, . . . , Ak are finite, non-empty integer sets. If `(Aj) 6 `(Ak) for j = 1, . . . , k − 1

and Ak is not contained in an arithmetic progression with difference greater than 1,

then

|A1 + · · ·+ Ak| > |A1 + · · ·+ Ak−1|+ min{`(Ak), n1 + · · ·+ nk − k + 1},

where

nj =

{
|Aj| if `(Aj) < `(Ak)

|Aj| − 1 if `(Aj) = `(Ak)
; j = 1, . . . , k.

Up to some subtlety which we suppress for the moment, the strategy pursued

below is to apply Theorem 5 to show that if k is large enough (which in practice

means k > 2κ + O(1)), then the densities of the sumsets A1 + · · · + Abk/2c and

Abk/2c+1 + · · ·+ Ak exceed 1/2; hence, the box principle leads to the conclusion that

the sumset of the two, which is A1 + · · · + Ak, contains a long block of consecutive

integers. We start with the second, technically simpler, component.
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Lemma 1. Let L1 and L2 be positive integers and suppose that S1 ⊆ [0, L1] and

S2 ⊆ [0, L2] are integer sets. If max{L1, L2} 6 |S1|+ |S2| − 2, then

[L1 + L2 − (|S1|+ |S2| − 2), |S1|+ |S2| − 2] ⊆ S1 + S2.

Proof. Given an integer g ∈ [0, L1 + L2], the number of representations g = s1 + s2
with arbitrary s1 ∈ [0, L1] and s2 ∈ [0, L2] is

|(g − [0, L1]) ∩ [0, L2]| = |[g − L1, g] ∩ [0, L2]|
= min{g, L2} −max{g − L1, 0}+ 1

= min{g, L2}+ min{g, L1} − g + 1.

In order for g ∈ S1+S2 to hold, it suffices that this number of representations exceeds

the total number of “gaps” in S1 and S2; that is,

min{g, L2}+ min{g, L1} − g + 1 > L1 + L2 + 2− |S1| − |S2|.

This, however, follows immediately for every g in the interval [L1 +L2− (|S1|+ |S2|−
2), |S1|+ |S2| − 2], by considering the location of g relative to L1 and L2. �

We now turn to the more technical part of the argument, consisting in inductive

application of Theorem 5.

Proposition 1. Let k, l > 1, and n > 3 be integers, and suppose that A1, . . . , Ak
are integer sets with |Ai| > n and `(Ai) 6 l for i = 1, . . . , k, such that none of these

sets are contained in an arithmetic progression with difference greater than 1. Write

S = A1 + · · ·+ Ak.

(i) If k > (l − 1)/(n− 2)− 1, then |S| > 1
2

(`(S) + (k + 1)(n− 1)− l + 2);

(ii) if k > (l − 1)/(n− 2), then |S| > 1
2

(`(S) + k(n− 1) + 2).

Observe, that under assumption (i) we have (k + 1)(n − 1) − l + 2 > 0, so that

|S| > `(S)/2 in this case. Similarly, under assumption (ii) we have k(n− 1) + 2 > l,

and hence in this case the stronger estimate |S| > (`(S) + l)/2 holds.

Proof of Proposition 1. Write lj = `(Aj). Without loss of generality, we can assume

that l1 6 · · · 6 lk. By Theorem 5 and in view of `(S) = l1 + · · ·+ lk, we have

|S| − 1

2
`(S) >

k∑
j=1

(
min{lj − 1, j(n− 2)}+ 1

)
+ 1− 1

2
(l1 + · · ·+ lk)

=
k∑
j=1

min

{
lj − 1

2
, j(n− 2)− lj − 1

2

}
+
k

2
+ 1. (1)
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Starting with assertion (ii), assume that k > (l − 1)/(n − 2). Color all integers

j ∈ [1, k] red or blue, according to whether lj−1 > j(n−2) or lj−1 < j(n−2). Notice

that the integer 1 is then colored red, hence the interval [1, k] can be partitioned into

a union of adjacent subintervals J1 ∪ · · · ∪ JK so that each subinterval consists of a

block of consecutive red integers followed by a block of consecutive blue integers, with

all blocks non-empty — except that the rightmost subinterval JK may consist of a

“red block” only. Accordingly, we write the sum over j ∈ [1, k] in the right-hand side

of (1) as σ1 + · · · + σK , where for each ν ∈ [1, K] by σν we denote the sum over all

j ∈ Jν .
Fixing ν ∈ [1, K], write Jν = [s, t] and define q to be the largest red-colored number

of the interval [s, t − 1]. This does not define q properly if ν = K and s = t = k;

postponing the treatment of this exceptional case, suppose for the moment that q

is well defined. Thus either q + 1 is blue, whence lq+1 − 1 < (q + 1)(n − 2), or

ν = K, t = k, and q = k − 1, whence

lq+1 − 1 = lk − 1 6 l − 1 6 k(n− 2) = (q + 1)(n− 2).

Observe, that

lq+1 − 1 6 (q + 1)(n− 2) (2)

holds in either case, and it follows that

σν =

q∑
j=s

(
j(n− 2)− lj − 1

2

)
+

t∑
j=q+1

lj − 1

2

>
n− 2

2
(q2 + q − s2 + s)− lq − 1

2
(q + 1− s) +

lq − 1

2
(t− q)

=
n− 2

2
(q2 + q − s2 + s) +

lq − 1

2
(s+ t− 1− 2q).

We now distinguish two cases: q 6 (s+ t− 1)/2 and q > (s+ t− 1)/2. In the former

case we have

σν >
n− 2

2
(q2 + q − s2 + s+ q(s+ t− 1− 2q))

=
n− 2

2
(q(s+ t− q)− s2 + s)

=
n− 2

2
(st+ (q − s)(t− q)− s2 + s)

>
n− 2

2
(st− s2 + s)

=
n− 2

2
s|Jν |.
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In the latter case, taking into account that lq − 1 6 lq+1 − 1 6 (q + 1)(n− 2) by (2),

we obtain the same estimate:

σν >
n− 2

2
(q2 + q − s2 + s+ (q + 1)(s+ t− 1− 2q))

=
n− 2

2
(q(s+ t− 2− q)− s2 + 2s− 1 + t)

>
n− 2

2
((t− 1)(s− 1)− s2 + 2s− 1 + t)

=
n− 2

2
(st− s2 + s)

=
n− 2

2
s|Jν |.

Addressing finally the situation where ν = K and s = t = k, we observe that in this

case

σν = k(n− 2)− lk − 1

2

> k(n− 2)− l − 1

2

>
k(n− 2)

2

=
n− 2

2
s|Jν |,

as above. Thus,

σ1 + · · ·+ σK >
n− 2

2

(
|J1|+ · · ·+ |JK |

)
= k

n− 2

2
,

and substituting this into (1) we obtain assertion (ii).

To prove assertion (i), instead of k > (l−1)/(n−2) assume now the weaker bound

k > (l − 1)/(n − 2) − 1. Set lk+1 = lk, so that lk+1 − 1 6 l − 1 6 (k + 1)(n − 2).

From (1) we get

|S| − 1

2
`(S) >

k+1∑
j=1

min

{
lj − 1

2
, j(n− 2)− lj − 1

2

}
− lk+1 − 1

2
+
k

2
+ 1.

Since k + 1 > (l− 1)/(n− 2), the sum over j can be estimated as above, and it is at

least (k + 1)(n− 2)/2. Assertion (i) now follows in view of

(k + 1)(n− 2)

2
− lk+1 − 1

2
+
k

2
+ 1

>
1

2

(
(k + 1)(n− 2)− (l − 1) + k + 2

)
=

1

2

(
(k + 1)(n− 1)− l + 2

)
.

�
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Proposition 1 took us most of the way to the proof of Theorem 4.

Proof of Theorem 4. Assume that the sets A1, . . . , A2κ+1 are so numbered that, letting

lj = `(Aj) for j ∈ [1, 2κ+ 1], we have l1 > l2 > · · · > l2κ+1. We are going to partition

our sets into two groups to apply Lemma 1 to the sumsets S1 and S2 of these groups,

and this is to be done rather carefully as effective application of the lemma requires

that S1 and S2 be of nearly equal length.

Accordingly, we let S1 := A1 + A3 + · · · + A2κ−1 (including all sets Aj with odd

indices j < 2κ) and S2 := (A2 +A4 + · · ·+A2κ) +A2κ+1 (all sets Aj with even indices

j 6 2κ and A2κ+1). By Proposition 1 we have

|S1| >
1

2
(`(S1) + (κ+ 1)(n− 1)− l + 2) (3)

and

|S2| >
1

2
(`(S2) + (κ+ 1)(n− 1) + 2). (4)

Furthermore, from

`(S1)− `(S2) = (l1 − l2) + · · ·+ (l2κ−1 − l2κ)− l2κ+1 ∈ [−l, l],

using (3) and (4) we get

max{`(S1), `(S2)} 6
1

2
(`(S1) + `(S2) + l)

6 |S1|+ |S2|+ l − (κ+ 1)(n− 1)− 2 6 |S1|+ |S2| − 2.

Applying Lemma 1 and using again (3) and (4), we conclude that A1 + · · · + Ak =

S1 + S2 contains a block of consecutive integers of length at least

2(|S1|+ |S2| − 2)− (`(S1) + `(S2)) > 2(κ+ 1)(n− 1)− l,

as required. �

3. Concluding remarks and open problems

The major challenge arising in connection with the main results of this paper (which

are Theorem 4 and Corollary 1) is to get rid of the assumption that none of the sets

involved are contained in an arithmetic progression with difference greater than 1.

One can expect that a vital ingredient of such an improvement would be a suitable

generalization of Theorem 5. Indeed, we were able to generalize Theorem 5 in what

seems to be the right direction.
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Theorem 5′. Let k > 2 be an integer, and let A1, . . . , Ak be finite, non-empty integer

sets. Suppose that l ∈ Ak − Ak is a positive integer, and define d to be the largest

integer such that Ak is contained in an arithmetic progression with difference d. Then

|A1 + · · ·+ Ak| > |A1 + · · ·+ Ak−1|+ min{hl/d, n1 + · · ·+ nk − k + 1},

where h is the number of residue classes modulo d, represented in A1 + · · · + Ak−1,

and nj (j = 1, . . . , k) is the number of residue classes modulo l, represented in Aj.

Clearly, Theorem 5′ implies Theorem 5 and, furthermore, shows that the assump-

tion of Theorem 4 that none of the sets Aj are contained in an arithmetic progression

with difference greater than 1 can be slightly relaxed. Specifically, it suffices to re-

quest that the Aj can be so ordered that `(Aj) increase, and for every k ∈ [1, 2κ]

the sumset A1 + · · ·+ Ak represents all residue classes modulo gcd(Ak+1 − Ak+1). It

seems, however, that Theorem 5′ by itself fails short to extend Theorem 4 the desired

way, dropping the modular restriction altogether, and in the absence of applications

we do not present here the proof of the former theorem.

Another interesting direction is to refine Theorem 4 as to the length of the block,

contained in the sumset A1 + · · · + A2κ+1. While we observed that 2κ + 1 is the

smallest number of summands which ensures a block of length l, it is quite possible

that the existence of a longer block can be guaranteed. In this connection we mention

the following conjecture from [2], referring to the equal summands situation.

Conjecture 1. Let k, l > 1 and n > 3 be integers, and write κ := b(l − 1)/(n− 2)c.
Suppose that A ⊆ [0, l] is an integer set with 0, l ∈ A, gcd(A) = 1, and |A| = n. If

k > 2κ+1, then kA contains a block of consecutive integers of length (k−κ)l+k((κ+

1)(n− 2) + 2− l).

In fact, Conjecture 1 is established in [2] in the case where k > 3κ, but the case

2κ+ 1 6 k < 3κ, to our knowledge, remains open.
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