DANIEL KRÁL', ORIOL SERRA, AND LLUÍS VENA:
 "A COMBINATORIAL PROOF OF THE REMOVAL LEMMA FOR GROUPS"

AN EXPOSITION BY VSEVOLOD F. LEV

The triangle removal lemma says, loosely speaking, that a graph of order n with $o\left(n^{3}\right)$ triangles can be made triangle-free by removing $o\left(n^{2}\right)$ edges. It seems that the most common rigorous statement of this lemma is as follows.

Lemma 1' (The Triangle Removal Lemma, Standard Version). For any $\delta>0$ there exists $c>0$ such that if Γ is a graph of order n with at most $c n^{3}$ triangles, then there is a set of at most δn^{2} edges of Γ, removing which destroys all the triangles.

Green [G05] uses the following restatement, which can be shown equivalent; see Appendix.

Lemma $\mathbf{1}^{\prime \prime}$ (The Triangle Removal Lemma, Alternative Version). For any $c>0$ there exists $\delta=\delta(c)>0$ with $\lim _{c \rightarrow 0+} \delta(c)=0$ such that if Γ is a graph of order n with at most cn ${ }^{3}$ triangles, then there is a set of at most δn^{2} edges of Γ, removing which destroys all the triangles.

We refer the reader to [G05] for discussion, attribution, and connections with Szemerédi's regularity lemma, from which the triangle removal lemma easily follows.

One of the central results of [G05] is a kind of regularity lemma for abelian groups, as a corollary of which the following "removal lemma for abelian groups" is obtained.

Theorem 1 (Green [G05, Theorem 1.5]). Let G be a finite abelian group of order $N:=|G|$, and let $k \geq 3$ be an integer. If A_{1}, \ldots, A_{k} are subsets of G such that the equation $x_{1}+\cdots+x_{k}=0$ has o $\left(N^{k-1}\right)$ solutions in the variables $x_{i} \in A_{i}(1 \leq i \leq k)$, then one can remove o (N) elements from each set A_{i} so as to leave sets A_{i}^{\prime} with the property that this equation has no solutions with $x_{i} \in A_{i}^{\prime}(1 \leq i \leq k)$.
(We have presented the intuitive version of the theorem; it can be made precise following the same lines as in Lemmas 1^{\prime} and $1^{\prime \prime}$.)

In [KSV09], Theorem 1 is given a completely different proof, relying on a graphtheoretic extension of the triangle removal lemma. Indeed, since the approach of [KSV09] is purely combinatorial (in contrast with Green's approach, based on Fourier analysis), it yields a more general result, extending onto non-abelian groups.

Theorem 2 (Král'-Serra-Vena [KSV09, Theorem 2]). Let G be a finite group of order $N:=|G|$, and let $k \geq 3$ be an integer. If A_{1}, \ldots, A_{k} are subsets of G such that the equation $x_{1} \cdots x_{k}=1$ has o($\left.N^{k-1}\right)$ solutions in the variables $x_{i} \in A_{i}(1 \leq i \leq k)$, then one can remove $o(N)$ elements from each set A_{i} so as to leave sets A_{i}^{\prime} with the property that this equation has no solutions with $x_{i} \in A_{i}^{\prime}(1 \leq i \leq k)$.

Notice, that the only difference between Theorems 1 and 2 is that in the latter theorem, G is not assumed to be abelian; accordingly, the multiplicative notation is used.

Corollary 1. Let G be a finite group of odd order $N:=|G|$. If the equation $x y=z^{2}$ has $o\left(N^{2}\right)$ solutions in the elements of a subset $A \subseteq G$, then $|A|=o(N)$.

Though in [KSV09] some extensions onto certain systems of equations are also provided 1, here we confine ourselves to reproducing the proof of Theorem 2. The argument applies to the "distinct summands Cayley graph" (cf. [RS78, S04]) the following digraph removal lemma of Alon and Shapira.

Lemma 2 (Alon-Shapira [AS04, Lemma 4.1]). For every $\delta, k>0$ there exists $c>0$ with the following property: if H is a digraph of order k, and Γ is a digraph of order n containing at most $c n^{k}$ copies of H, then there is a set of at most δn^{2} edges of Γ, removing which from Γ renders it H-free.

Proof of Theorem 2. Consider the k-partite digraph Γ on k disjoint copies of the group G in which every arc joins an element from the i th copy with an element from the $(i+1)$ th copy, for some $i \in[0, k-1]$, and the arc is present if and only if the ratio of the two elements belong to A_{i}. Formally, we re-index the subsets A_{i} with the elements of $\mathbb{Z} / k \mathbb{Z}$, and define Γ to be the digraph with the vertex set $G \times(\mathbb{Z} / k \mathbb{Z})$ and the arc set

$$
\begin{equation*}
\left\{\left((g, i),\left(g a_{i}, i+1\right)\right): g \in G, i \in \mathbb{Z} / k \mathbb{Z}, a_{i} \in A_{i} .\right\} \tag{*}
\end{equation*}
$$

We assign the label $\left[i, a_{i}\right]$ to the arc in $(*)$. Thus, for each $i \in \mathbb{Z} / k \mathbb{Z}$ and $a_{i} \in A_{i}$, there are exactly $N \operatorname{arcs}$ in Γ, labeled $\left[i, a_{i}\right]$. It is instructive to think of these arcs as going from the i th partite set "in the direction a_{i} ".

Notice, that the order of Γ is $k N$.
Let H be the directed cycle of length k. It is easily verified that every copy of H in Γ gives raise to a solution of the equation $x_{0} \cdots x_{k-1}=1$ in the variables $x_{i} \in A_{i}(i \in \mathbb{Z} / k \mathbb{Z})$. Conversely, to every such solution $\left(a_{0}, \ldots, a_{k-1}\right)$ there correspond N vertex-disjoint copies of H in Γ : namely,

$$
\begin{equation*}
\left((g, 0),\left(g a_{0}, 1\right), \ldots,\left(g a_{0} \ldots a_{k-2}, k-1\right),\left(g a_{0} \ldots a_{k-1}, 0\right)\right) ; g \in G . \tag{**}
\end{equation*}
$$

[^0]Given $\delta>0$, we find c as in Lemma 2. If the number of solutions of the equation in question is at most $c N^{k-1}$, then the number of copies of H in G is at most $c N^{k}<$ $c(k N)^{k}$; hence, by Lemma 2, there is a set E of at most $\delta(k N)^{2} \operatorname{arcs}$ of Γ such that every copy of H in Γ contains an arc from E.

For each $i \in \mathbb{Z} / k \mathbb{Z}$, let B_{i} be the set of all those $a_{i} \in A_{i}$ such that there are at least N / k edges in E labeled $\left[i, a_{i}\right]$. Clearly, we have $\left|B_{i}\right| \leq \frac{|E|}{N / k} \leq \delta k^{3} N$, and to complete the proof it suffices to show that every copy of H in Γ contains an edge labeled $\left[i, b_{i}\right]$ with $b_{i} \in B_{i}$; that is, if $a_{0} \cdots a_{k-1}=1$, where $a_{i} \in A_{i}$ for $i \in \mathbb{Z} / k \mathbb{Z}$, then there exists $i \in \mathbb{Z} / k \mathbb{Z}$ such that $a_{i} \in B_{i}$. To this end we consider again the N disjoint cycles in $(* *)$. Each of them contains an edge from E, and hence there exists $i \in \mathbb{Z} / k \mathbb{Z}$ such that at least N / k of these edges share the same label $\left[i, a_{i}\right]$. Thus, $a_{i} \in B_{i}$, as required.

Appendix: Equivalence of Lemmas 1' and $1^{\prime \prime}$.

Lemma $1^{\prime \prime}$ implies Lemma 1^{\prime} in an almost immediate way: given $\delta>0$ and assuming Lemma $1^{\prime \prime}$, find $c>0$ such that $\delta(c) \leq \delta$; then whenever Γ is a graph of order n with at most $c n^{3}$ triangles, there is a set of at most $\delta(c) n^{2} \leq \delta n^{2}$ edges of Γ, removing which destroys all the triangles.

To derive Lemma $1^{\prime \prime}$ from Lemma 1^{\prime}, fix a sequence $\delta_{1}>\delta_{2}>\cdots$ with $\lim _{i \rightarrow \infty} \delta_{i}=$ 0 , and find $c_{1}, c_{2}, \ldots>0$ such that, for every integer $i \geq 1$, if Γ is a graph of order n with at most $c_{i} n^{3}$ triangles, then at most $\delta_{i} n^{2}$ edges can be removed from Γ so that all the triangles are destroyed. Clearly, we can modify the sequence c_{1}, c_{2}, \ldots (decreasing some of its terms) to ensure that it is monotonically decreasing and satisfies $\lim _{i \rightarrow \infty} c_{i}=0$. Now let

$$
\delta(c):= \begin{cases}1 & \text { if } c>c_{1} \\ \delta_{i} & \text { if } c_{i+1}<c \leq c_{i}\end{cases}
$$

thus, $\lim _{c \rightarrow 0+} \delta(c)=0$. Now, if Γ is a graph of order n with at most $c n^{3}$ triangles, then, with i satisfying $c_{i+1}<c \leq c_{i}$, in view of $c n^{3} \leq c_{i} n^{3}$ and by the choice of c_{i}, all these triangles can be destroyed by removing at most $\delta_{i} n^{2}=\delta(c) n^{2}$ edges of Γ. Therefore, $\delta(c)$ satisfies the assertion of Lemma $1^{\prime \prime}$.

References

[AS04] N. Alon and A. Shapira, Testing subgraphs in directed graphs, J. Comput. System Sci. 69 (2004), 354-382.
[G05] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2005), 340-376.
[KSV09] D. Král', O. Serra, and L. Vena, A combinatorial proof of the Removal Lemma for Groups, J. Comb. Theory, Ser. A 116 (2009), 971-978.
[KSV] D. Král', O. Serra, and L. Vena, A Removal Lemma for Systems of Linear Equations over Finite Fields, submitted.
[RS78] I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Colloq. Math. Soc. J. Bolyai 18 (1978), 939-945.
[S04] J. Solymosi, A note on a question of Erdős and Graham, Combin. Probab. Comput. 13 (2004), 263-267.

[^0]: ${ }^{1}$ see [KSV] for a systematic treatment of this topic.

