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The triangle removal lemma says, loosely speaking, that a graph of order n with

o(n3) triangles can be made triangle-free by removing o(n2) edges. It seems that the

most common rigorous statement of this lemma is as follows.

Lemma 1′ (The Triangle Removal Lemma, Standard Version). For any δ > 0 there

exists c > 0 such that if Γ is a graph of order n with at most cn3 triangles, then there

is a set of at most δn2 edges of Γ, removing which destroys all the triangles.

Green [G05] uses the following restatement, which can be shown equivalent; see

Appendix.

Lemma 1′′ (The Triangle Removal Lemma, Alternative Version). For any c > 0

there exists δ = δ(c) > 0 with limc→0+ δ(c) = 0 such that if Γ is a graph of order n

with at most cn3 triangles, then there is a set of at most δn2 edges of Γ, removing

which destroys all the triangles.

We refer the reader to [G05] for discussion, attribution, and connections with Sze-

merédi’s regularity lemma, from which the triangle removal lemma easily follows.

One of the central results of [G05] is a kind of regularity lemma for abelian groups,

as a corollary of which the following “removal lemma for abelian groups” is obtained.

Theorem 1 (Green [G05, Theorem 1.5]). Let G be a finite abelian group of order

N := |G|, and let k ≥ 3 be an integer. If A1, . . . , Ak are subsets of G such that the

equation x1 + · · ·+xk = 0 has o(Nk−1) solutions in the variables xi ∈ Ai (1 ≤ i ≤ k),

then one can remove o(N) elements from each set Ai so as to leave sets A′i with the

property that this equation has no solutions with xi ∈ A′i (1 ≤ i ≤ k).

(We have presented the intuitive version of the theorem; it can be made precise

following the same lines as in Lemmas 1′ and 1′′.)

In [KSV09], Theorem 1 is given a completely different proof, relying on a graph-

theoretic extension of the triangle removal lemma. Indeed, since the approach of

[KSV09] is purely combinatorial (in contrast with Green’s approach, based on Fourier

analysis), it yields a more general result, extending onto non-abelian groups.
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Theorem 2 (Král’-Serra-Vena [KSV09, Theorem 2]). Let G be a finite group of order

N := |G|, and let k ≥ 3 be an integer. If A1, . . . , Ak are subsets of G such that the

equation x1 · · ·xk = 1 has o(Nk−1) solutions in the variables xi ∈ Ai (1 ≤ i ≤ k),

then one can remove o(N) elements from each set Ai so as to leave sets A′i with the

property that this equation has no solutions with xi ∈ A′i (1 ≤ i ≤ k).

Notice, that the only difference between Theorems 1 and 2 is that in the latter

theorem, G is not assumed to be abelian; accordingly, the multiplicative notation is

used.

Corollary 1. Let G be a finite group of odd order N := |G|. If the equation xy = z2

has o(N2) solutions in the elements of a subset A ⊆ G, then |A| = o(N).

Though in [KSV09] some extensions onto certain systems of equations are also

provided1, here we confine ourselves to reproducing the proof of Theorem 2. The

argument applies to the “distinct summands Cayley graph” (cf. [RS78, S04]) the

following digraph removal lemma of Alon and Shapira.

Lemma 2 (Alon-Shapira [AS04, Lemma 4.1]). For every δ, k > 0 there exists c > 0

with the following property: if H is a digraph of order k, and Γ is a digraph of order

n containing at most cnk copies of H, then there is a set of at most δn2 edges of Γ,

removing which from Γ renders it H-free.

Proof of Theorem 2. Consider the k-partite digraph Γ on k disjoint copies of the group

G in which every arc joins an element from the ith copy with an element from the

(i+ 1)th copy, for some i ∈ [0, k− 1], and the arc is present if and only if the ratio of

the two elements belong to Ai. Formally, we re-index the subsets Ai with the elements

of Z/kZ, and define Γ to be the digraph with the vertex set G× (Z/kZ) and the arc

set

{((g, i), (gai, i+ 1)) : g ∈ G, i ∈ Z/kZ, ai ∈ Ai.}. (∗)
We assign the label [i, ai] to the arc in (∗). Thus, for each i ∈ Z/kZ and ai ∈ Ai,

there are exactly N arcs in Γ, labeled [i, ai]. It is instructive to think of these arcs as

going from the ith partite set “in the direction ai”.

Notice, that the order of Γ is kN .

Let H be the directed cycle of length k. It is easily verified that every copy of

H in Γ gives raise to a solution of the equation x0 · · ·xk−1 = 1 in the variables

xi ∈ Ai (i ∈ Z/kZ). Conversely, to every such solution (a0, . . . , ak−1) there correspond

N vertex-disjoint copies of H in Γ: namely,

((g, 0), (ga0, 1), . . . , (ga0 . . . ak−2, k − 1), (ga0 . . . ak−1, 0)); g ∈ G. (∗∗)
1see [KSV] for a systematic treatment of this topic.
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Given δ > 0, we find c as in Lemma 2. If the number of solutions of the equation

in question is at most cNk−1, then the number of copies of H in G is at most cNk <

c(kN)k; hence, by Lemma 2, there is a set E of at most δ(kN)2 arcs of Γ such that

every copy of H in Γ contains an arc from E.

For each i ∈ Z/kZ, let Bi be the set of all those ai ∈ Ai such that there are at least

N/k edges in E labeled [i, ai]. Clearly, we have |Bi| ≤ |E|
N/k
≤ δk3N , and to complete

the proof it suffices to show that every copy of H in Γ contains an edge labeled [i, bi]

with bi ∈ Bi; that is, if a0 · · · ak−1 = 1, where ai ∈ Ai for i ∈ Z/kZ, then there exists

i ∈ Z/kZ such that ai ∈ Bi. To this end we consider again the N disjoint cycles

in (∗∗). Each of them contains an edge from E, and hence there exists i ∈ Z/kZ
such that at least N/k of these edges share the same label [i, ai]. Thus, ai ∈ Bi, as

required. �

Appendix: Equivalence of Lemmas 1′ and 1′′.

Lemma 1′′ implies Lemma 1′ in an almost immediate way: given δ > 0 and assuming

Lemma 1′′, find c > 0 such that δ(c) ≤ δ; then whenever Γ is a graph of order n with

at most cn3 triangles, there is a set of at most δ(c)n2 ≤ δn2 edges of Γ, removing

which destroys all the triangles.

To derive Lemma 1′′ from Lemma 1′, fix a sequence δ1 > δ2 > · · · with limi→∞ δi =

0, and find c1, c2, . . . > 0 such that, for every integer i ≥ 1, if Γ is a graph of order n

with at most cin
3 triangles, then at most δin

2 edges can be removed from Γ so that

all the triangles are destroyed. Clearly, we can modify the sequence c1, c2, . . . (de-

creasing some of its terms) to ensure that it is monotonically decreasing and satisfies

limi→∞ ci = 0. Now let

δ(c) :=

{
1 if c > c1,

δi if ci+1 < c ≤ ci
;

thus, limc→0+ δ(c) = 0. Now, if Γ is a graph of order n with at most cn3 triangles,

then, with i satisfying ci+1 < c ≤ ci, in view of cn3 ≤ cin
3 and by the choice of ci,

all these triangles can be destroyed by removing at most δin
2 = δ(c)n2 edges of Γ.

Therefore, δ(c) satisfies the assertion of Lemma 1′′.
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