DVIR, KOPPARTY, SARAF, AND SUDAN ON THE SIZE OF KAKEYA SETS IN FINITE FIELDS

AN EXPOSITION BY VSEVOLOD F. LEV

A Kakeya, or Besicovitch, set in a vector space is a set which contains a line in every direction. The finite field Kakeya problem is to estimate, for integer r > 0 and prime power q, the smallest possible size of a Kakeya set in \mathbb{F}_q^r . A conjecture, which was open for almost a decade and considered quite tough, says that this size is $\Omega_r(q^r)$; that is, for r fixed and q growing, every Kakeya set in \mathbb{F}_q^r has positive density. This conjecture was recently solved by Dvir [D], who gave a strikingly simple proof, using the polynomial method, of the lower bound $\binom{q+r-1}{r} \ge q^r/r!$.

A significant further progress was made in a subsequent paper by Dvir, Kopparty, Saraf, and Sudan [DKSS], who use what they call the method of multiplicities to improve Dvir's bound to $\left(\frac{q}{2-1/q}\right)^r$.

Below we first present Dvir's original argument and then sketch the proof of the DKSS' estimate.

1. DVIR'S BOUND.

Theorem 1 (Dvir, 2008). If r is a positive integer, q is a prime power, and $K \subseteq \mathbb{F}_q^r$ is a Kakeya set, then $|K| \ge \binom{q+r-1}{r} \ge q^r/r!$.

The proof is based on the following well-known lemma which shows that for every small set in a finite vector space there is low-degree polynomial, vanishing on this set.

Lemma 1. Let $r \ge 1$ and $d \ge 0$ be integers and q a prime power. If $S \subseteq \mathbb{F}_q^r$ satisfies $|S| < \binom{r+d}{r}$, then there is a non-zero polynomial over \mathbb{F}_q in r variables of degree at most d, vanishing on S.

Proof. Consider the linear space \mathcal{L} of all polynomials over \mathbb{F}_q in r variables of degree at most d. The dimension of \mathcal{L} does not exceed (in fact, is equal to) the number of monomials in \mathcal{L} , which is $\binom{r+d}{d}$. Consequently, the evaluation mapping $\mathcal{L} \to \mathbb{F}_q^{|S|}$, sending every polynomial to the |S|-tuple of its values on the elements of S, is degenerate. Every polynomial in the kernel of this mapping vanishes on S. \Box Proof of Theorem 1. Let $K \subseteq \mathbb{F}_q^r$ be a Kakeya set. We show that no polynomial of degree, smaller than q, vanishes on K; by Lemma 1, this implies that $|K| \ge \binom{r+q-1}{r}$, as claimed.

Suppose, for a contradiction, that there do exist non-zero polynomials of degree, smaller than q, vanishing on K. Let P be such a polynomial. Write $d := \deg P$ and $P = P_H + P_N$, where P_H is a homogeneous polynomial of degree d, and deg $P_N < d$.

By the definition of a Kakeya set, for every $u \in \mathbb{F}_q^r \setminus \{0\}$ (the direction) there exists $v \in \mathbb{F}_q^r$ such that $P(v + \lambda u) = 0$ for each $\lambda \in \mathbb{F}_q$. We notice that $P(v + \lambda u) = P_H(v + \lambda u) + P_N(v + \lambda u)$ is a polynomial in λ of degree d < q, with leading coefficient $P_H(u)$. Since this polynomial vanishes for each $\lambda \in \mathbb{F}_q$, all its coefficients are equal to 0; in particular, $P_H(u) = 0$ for every $u \in \mathbb{F}_q^r \setminus \{0\}$. Since P_H is homogeneous, we also have $P_H(0) = 0$. Thus, P_H vanishes identically, whence $P = P_N$ and P_N is not identically zero (for P is not).

Thus, starting from the polynomial P we have found a non-zero polynomial of lower degree, which also vanishes on K. Continuing in this way we will eventually reach a zero-degree polynomial, vanishing on K, which is an absurdum.

In contrast with [D], we have not used the *Schwartz-Zippel lemma* in the proof of Theorem 1. However, the multiplicity version of this lemma is an important ingredient of the argument of [DKSS] (presented in the next section). For this reason we believe that the classical version of the lemma, showing that a polynomial of low degree cannot have "too many" roots on a cartesian product, is also worth including here.

Lemma 2 (Schwartz-Zippel). If P is a non-zero polynomial of degree at most d in r variables over the finite field \mathbb{F} , and $S \subseteq \mathbb{F}$, then P has at most $|S|^{r-1}d$ roots on the cartesian product $S^r := S \times \cdots \times S$.

Proof. Induction by r. Write

$$P(x_1, \dots, x_r) = P_k(x_1, \dots, x_{r-1})x_r^k + \dots + P_0(x_1, \dots, x_{r-1}),$$

where deg $P_k \leq d-k$ and P_k is a non-zero polynomial. By the induction hypothesis, the number of (r-1)-tuples $(x_1, \ldots, x_{r-1}) \in S^{r-1}$, on which P_k vanishes, is at most $|S|^{r-2}(d-k)$, and to every such (r-1)-tuple there correspond at most |S| roots of P on S^r . On the other hand, to every (r-1)-tuple $(x_1, \ldots, x_{r-1}) \in S^{r-1}$ on which P_k does not vanish there correspond at most k roots of P on S^r . Consequently, the total number of roots of P on S^r does not exceed

$$|S|^{r-1}(d-k) + |S|^{r-1}k = |S|^{r-1}d.$$

2. The DKSS Bound.

The major innovation introduced in [DKSS] is that instead of a polynomial, vanishing on a Kakeya set "with multiplicity 1", a polynomial vanishing with higher multiplicity is considered. We refer the reader to [DKSS] for the historical account and the systematic development of the background notions, confining here to a very brief overview of Hasse derivatives and multiplicities.

Let \mathbb{N}_0 denote the semigroup of non-negative integers, and let $r \geq 1$ be an integer. For a vector $i = (i_1, \ldots, i_r) \in \mathbb{N}_0^r$ write $w(i) := i_1 + \cdots + i_r$. Given yet another vector $X = (X_1, \ldots, X_r)$ with the entries X_i in an arbitrary ring, let $X^i := X_1^{i_1} \cdots X_r^{i_r}$.

For a polynomial P in r variables and a vector $i \in \mathbb{N}_0^r$, the Hasse derivative of P of order i is the polynomial $P^{(i)}$, defined by

$$P(X+Y) = \sum_{i \in \mathbb{N}_0^r} P^{(i)}(Y) X^i.$$

Notice that, letting X = 0, we get $P^{(0)}(Y) = P(Y)$. Also, it is easy to check that if P_H denotes the homogeneous part of P (meaning that P_H is a homogeneous polynomial such that $\deg(P - P_H) < \deg P$), and $(P^{(i)})_H$ denotes the homogeneous part of $P^{(i)}$, then $(P^{(i)})_H = (P_H)^{(i)}$.

A polynomial P in r variables over a field \mathbb{F} is said to vanish at a point $a \in \mathbb{F}^r$ with multiplicity $m \ge 0$ if $P^{(i)}(a) = 0$ for each $i \in \mathbb{N}_0^r$ with w(i) < m, whereas there exists $i \in \mathbb{N}_0^r$ with w(i) = m such that $P^{(i)}(a) \ne 0$. In this case a is also said to be a zero of P of multiplicity m. We denote the multiplicity of zero of P at a by $\mu(P, a)$; thus, $\mu(P, a)$ is the largest integer m with the property that

$$P(X+a) = \sum_{i \in \mathbb{N}_0^r \colon w(i) \ge m} c(i,a) X^i; \quad c(i,a) \in \mathbb{F}.$$

It is not difficult to see that for any $i \in \mathbb{N}_0^r$ and any $a \in \mathbb{F}^r$ we have

$$\mu(P^{(i)}, a) \ge \mu(P, a) - w(i);$$

this is [DKSS, Lemma 5].

We need the following multiplicity version of Lemma 1.

Lemma 3 ([DKSS, Proposition 10]). Let $r, m \ge 1$ and $d \ge 0$ be integers, and qa prime power. If $S \subseteq \mathbb{F}_q^r$ satisfies $\binom{m+r-1}{r}|S| < \binom{r+d}{r}$, then there is a non-zero polynomial over \mathbb{F}_q in r variables of degree at most d, vanishing at every point of Swith multiplicity at least m. Proof. The proof is a rather straightforward modification of that of Lemma 1. Let \mathcal{L} be the linear space of all polynomials over \mathbb{F}_q in r variables of degree at most d; thus, the dimension of \mathcal{L} is $\binom{r+d}{d}$. Consider the evaluation mapping on \mathcal{L} , sending every polynomial to the vector of all its $\binom{m+r-1}{r}|S|$ Hasse derivatives of order at most m-1 on the elements of S. (Notice that the number of Hasse derivatives of order at most m-1 of a given polynomial is the number of r-tuples $i = (i_1, \ldots, i_r)$ with non-negative integer i_1, \ldots, i_r , satisfying $i_1 + \cdots + i_r \leq m-1$, which is $\binom{m+r-1}{r}$.) Under the assumptions of the lemma, this mapping is degenerate. Every polynomial in its kernel has all its Hasse derivatives of order at most m-1 vanishing on each element of S; that is, each element of S is a zero of this polynomial of multiplicity at least m.

Another ingredient is the following multiplicity version of the Schwartz-Zippel lemma.

Lemma 4 ([DKSS, Lemma 8]). If P is a non-zero polynomial of degree at most d in r variables over the finite field \mathbb{F} , and $S \subseteq \mathbb{F}$, then

$$\sum_{z \in S^r} \mu(P, z) \le d|S|^{r-1}.$$

We omit the proof.

In fact, we need only the following corollary.

Corollary 1. Let P be a non-zero polynomial of degree at most d in r variables over a finite field \mathbb{F} , and let m be a positive integer. If P vanishes at every point of \mathbb{F}^r with multiplicity at least m, then $d \ge m|\mathbb{F}|$.

Eventually, we are ready to prove the theorem of Dvir, Kopparty, Saraf, and Sudan on the size of a Kakeya set.

Theorem 2 ([DKSS, Theorem 11]). If r is a positive integer, q is a prime power, and $K \subseteq \mathbb{F}_q^r$ is a Kakeya set, then $|K| \ge \left(\frac{q}{2-1/q}\right)^r$.

Proof. Assuming that m and d are positive integers with

$$d < q \left\lceil \frac{qm-d}{q-1} \right\rceil,\tag{1}$$

(no typo: d enters both sides!) we show that

$$\binom{m+r-1}{r}|K| \ge \binom{r+d}{r};\tag{2}$$

the rest follows by optimization which we suppress here.

Suppose for a contradiction that (2) fails whence, by Lemma 3, there exists a nonzero polynomial P over \mathbb{F}_q of degree at most d in r variables, vanishing at every point of K with multiplicity at least m.

Write $l := \left\lceil \frac{qm-d}{q-1} \right\rceil$ and fix $i = (i_1, \ldots, i_r)$ with integer $i_1, \ldots, i_r \ge 0$ of weight $w := i_1 + \cdots + i_r < l$. Let $Q := P^{(i)}$, the *i*th Hasse derivative of P.

Since K is a Kakeya set, for every $v \in \mathbb{F}_q^r$ there exists $u \in \mathbb{F}_q^r$ with

$$\mu(P, u + tv) \ge m \quad (t \in \mathbb{F}_q);$$

hence, with

$$\mu(Q, u + tv) \ge m - w \quad (t \in \mathbb{F}_q).$$

It is easily seen, however, that $\mu(Q, u + tv) \leq \mu(Q(u + Tv), t)$, where Q(u + Tv) is considered as a polynomial in the variable T. Thus, for every $v \in \mathbb{F}_q^r$ there exists $u \in \mathbb{F}_q^r$ such that

$$\mu(Q(u+Tv),t) \ge m-w \quad (t \in \mathbb{F}_q).$$

Compared with

$$\deg Q(u+Tv) \le \deg Q \le d-w < q(m-w)$$

(as it follows from w < l), in view of Corollary 1 this shows that Q(u + Tv) is the zero polynomial.

Let P_H and Q_H denote the homogeneous parts of the polynomials P and Q, respectively. As the leading coefficient of Q(u + Tv) is $Q_H(v)$, we conclude that $P_H^{(i)} = Q_H$ vanishes identically on \mathbb{F}_q^r . This shows that all Hasse derivatives of P_H of order, smaller than l, vanish on \mathbb{F}_q^r ; in other words, P_H vanishes with multiplicity at least lat every point of \mathbb{F}_q^r . Since, on the other hand, by (1) we have

$$\deg P_H = \deg P \le d < ql,$$

from Corollary 1 we conclude that P_H is the zero polynomial, which is wrong as the homogeneous part of a non-zero polynomial is non-zero. This contradiction concludes the proof.

References

[D] Z. DVIR, On the size of Kakeya sets in finite fields, J. of the AMS, to appear.

[DKSS] Z.DVIR, S. KOPPARTY, S. SARAF, and M. SUDAN, Extensions to the method of multiplicities, with applications to Kakeya sets and mergers, *Submitted*.