DVIR, KOPPARTY, SARAF, AND SUDAN ON THE SIZE OF KAKEYA SETS IN FINITE FIELDS

AN EXPOSITION BY VSEVOLOD F. LEV

A Kakeya, or Besicovitch, set in a vector space is a set which contains a line in every direction. The finite field Kakeya problem is to estimate, for integer $r>0$ and prime power q, the smallest possible size of a Kakeya set in \mathbb{F}_{q}^{r}. A conjecture, which was open for almost a decade and considered quite tough, says that this size is $\Omega_{r}\left(q^{r}\right)$; that is, for r fixed and q growing, every Kakeya set in \mathbb{F}_{q}^{r} has positive density. This conjecture was recently solved by Dvir [D], who gave a strikingly simple proof, using the polynomial method, of the lower bound $\binom{q+r-1}{r} \geq q^{r} / r$!.

A significant further progress was made in a subsequent paper by Dvir, Kopparty, Saraf, and Sudan [DKSS], who use what they call the method of multiplicities to improve Dvir's bound to $\left(\frac{q}{2-1 / q}\right)^{r}$.

Below we first present Dvir's original argument and then sketch the proof of the DKSS' estimate.

1. Dvir's Bound.

Theorem 1 (Dvir, 2008). If r is a positive integer, q is a prime power, and $K \subseteq \mathbb{F}_{q}^{r}$ is a Kakeya set, then $|K| \geq\binom{ q+r-1}{r} \geq q^{r} / r$!.

The proof is based on the following well-known lemma which shows that for every small set in a finite vector space there is low-degree polynomial, vanishing on this set.

Lemma 1. Let $r \geq 1$ and $d \geq 0$ be integers and q a prime power. If $S \subseteq \mathbb{F}_{q}^{r}$ satisfies $|S|<\binom{r+d}{r}$, then there is a non-zero polynomial over \mathbb{F}_{q} in r variables of degree at most d, vanishing on S.

Proof. Consider the linear space \mathcal{L} of all polynomials over \mathbb{F}_{q} in r variables of degree at most d. The dimension of \mathcal{L} does not exceed (in fact, is equal to) the number of monomials in \mathcal{L}, which is $\binom{r+d}{d}$. Consequently, the evaluation mapping $\mathcal{L} \rightarrow$ $\mathbb{F}_{q}^{|S|}$, sending every polynomial to the $|S|$-tuple of its values on the elements of S, is degenerate. Every polynomial in the kernel of this mapping vanishes on S.

Proof of Theorem 1. Let $K \subseteq \mathbb{F}_{q}^{r}$ be a Kakeya set. We show that no polynomial of degree, smaller than q, vanishes on K; by Lemma 1, this implies that $|K| \geq\binom{ r+q-1}{r}$, as claimed.

Suppose, for a contradiction, that there do exist non-zero polynomials of degree, smaller than q, vanishing on K. Let P be such a polynomial. Write $d:=\operatorname{deg} P$ and $P=P_{H}+P_{N}$, where P_{H} is a homogeneous polynomial of degree d, and $\operatorname{deg} P_{N}<d$.

By the definition of a Kakeya set, for every $u \in \mathbb{F}_{q}^{r} \backslash\{0\}$ (the direction) there exists $v \in \mathbb{F}_{q}^{r}$ such that $P(v+\lambda u)=0$ for each $\lambda \in \mathbb{F}_{q}$. We notice that $P(v+\lambda u)=$ $P_{H}(v+\lambda u)+P_{N}(v+\lambda u)$ is a polynomial in λ of degree $d<q$, with leading coefficient $P_{H}(u)$. Since this polynomial vanishes for each $\lambda \in \mathbb{F}_{q}$, all its coefficients are equal to 0 ; in particular, $P_{H}(u)=0$ for every $u \in \mathbb{F}_{q}^{r} \backslash\{0\}$. Since P_{H} is homogeneous, we also have $P_{H}(0)=0$. Thus, P_{H} vanishes identically, whence $P=P_{N}$ and P_{N} is not identically zero (for P is not).

Thus, starting from the polynomial P we have found a non-zero polynomial of lower degree, which also vanishes on K. Continuing in this way we will eventually reach a zero-degree polynomial, vanishing on K, which is an absurdum.

In contrast with [D], we have not used the Schwartz-Zippel lemma in the proof of Theorem 1. However, the multiplicity version of this lemma is an important ingredient of the argument of [DKSS] (presented in the next section). For this reason we believe that the classical version of the lemma, showing that a polynomial of low degree cannot have "too many" roots on a cartesian product, is also worth including here.

Lemma 2 (Schwartz-Zippel). If P is a non-zero polynomial of degree at most d in r variables over the finite field \mathbb{F}, and $S \subseteq \mathbb{F}$, then P has at most $|S|^{r-1} d$ roots on the cartesian product $S^{r}:=S \times \cdots \times S$.

Proof. Induction by r. Write

$$
P\left(x_{1}, \ldots, x_{r}\right)=P_{k}\left(x_{1}, \ldots, x_{r-1}\right) x_{r}^{k}+\cdots+P_{0}\left(x_{1}, \ldots, x_{r-1}\right),
$$

where $\operatorname{deg} P_{k} \leq d-k$ and P_{k} is a non-zero polynomial. By the induction hypothesis, the number of $(r-1)$-tuples $\left(x_{1}, \ldots, x_{r-1}\right) \in S^{r-1}$, on which P_{k} vanishes, is at most $|S|^{r-2}(d-k)$, and to every such $(r-1)$-tuple there correspond at most $|S|$ roots of P on S^{r}. On the other hand, to every $(r-1)$-tuple $\left(x_{1}, \ldots, x_{r-1}\right) \in S^{r-1}$ on which P_{k} does not vanish there correspond at most k roots of P on S^{r}. Consequently, the total number of roots of P on S^{r} does not exceed

$$
|S|^{r-1}(d-k)+|S|^{r-1} k=|S|^{r-1} d .
$$

2. The DKSS Bound.

The major innovation introduced in [DKSS] is that instead of a polynomial, vanishing on a Kakeya set "with multiplicity 1", a polynomial vanishing with higher multiplicity is considered. We refer the reader to [DKSS] for the historical account and the systematic development of the background notions, confining here to a very brief overview of Hasse derivatives and multiplicities.

Let \mathbb{N}_{0} denote the semigroup of non-negative integers, and let $r \geq 1$ be an integer. For a vector $i=\left(i_{1}, \ldots, i_{r}\right) \in \mathbb{N}_{0}^{r}$ write $w(i):=i_{1}+\cdots+i_{r}$. Given yet another vector $X=\left(X_{1}, \ldots, X_{r}\right)$ with the entries X_{i} in an arbitrary ring, let $X^{i}:=X_{1}^{i_{1}} \cdots X_{r}^{i_{r}}$.

For a polynomial P in r variables and a vector $i \in \mathbb{N}_{0}^{r}$, the Hasse derivative of P of order i is the polynomial $P^{(i)}$, defined by

$$
P(X+Y)=\sum_{i \in \mathbb{N}_{0}^{r}} P^{(i)}(Y) X^{i} .
$$

Notice that, letting $X=0$, we get $P^{(0)}(Y)=P(Y)$. Also, it is easy to check that if P_{H} denotes the homogeneous part of P (meaning that P_{H} is a homogeneous polynomial such that $\left.\operatorname{deg}\left(P-P_{H}\right)<\operatorname{deg} P\right)$, and $\left(P^{(i)}\right)_{H}$ denotes the homogeneous part of $P^{(i)}$, then $\left(P^{(i)}\right)_{H}=\left(P_{H}\right)^{(i)}$.

A polynomial P in r variables over a field \mathbb{F} is said to vanish at a point $a \in \mathbb{F}^{r}$ with multiplicity $m \geq 0$ if $P^{(i)}(a)=0$ for each $i \in \mathbb{N}_{0}^{r}$ with $w(i)<m$, whereas there exists $i \in \mathbb{N}_{0}^{r}$ with $w(i)=m$ such that $P^{(i)}(a) \neq 0$. In this case a is also said to be a zero of P of multiplicity m. We denote the multiplicity of zero of P at a by $\mu(P, a)$; thus, $\mu(P, a)$ is the largest integer m with the property that

$$
P(X+a)=\sum_{i \in \mathbb{N}_{0}^{r}: w(i) \geq m} c(i, a) X^{i} ; \quad c(i, a) \in \mathbb{F} .
$$

It is not difficult to see that for any $i \in \mathbb{N}_{0}^{r}$ and any $a \in \mathbb{F}^{r}$ we have

$$
\mu\left(P^{(i)}, a\right) \geq \mu(P, a)-w(i)
$$

this is [DKSS, Lemma 5].
We need the following multiplicity version of Lemma 1.
Lemma 3 ([DKSS, Proposition 10]). Let $r, m \geq 1$ and $d \geq 0$ be integers, and q a prime power. If $S \subseteq \mathbb{F}_{q}^{r}$ satisfies $\binom{m+r-1}{r}|S|<\binom{r+d}{r}$, then there is a non-zero polynomial over \mathbb{F}_{q} in r variables of degree at most d, vanishing at every point of S with multiplicity at least m.

Proof. The proof is a rather straightforward modification of that of Lemma 1. Let \mathcal{L} be the linear space of all polynomials over \mathbb{F}_{q} in r variables of degree at most d; thus, the dimension of \mathcal{L} is $\binom{r+d}{d}$. Consider the evaluation mapping on \mathcal{L}, sending every polynomial to the vector of all its $\binom{m+r-1}{r}|S|$ Hasse derivatives of order at most $m-1$ on the elements of S. (Notice that the number of Hasse derivatives of order at most $m-1$ of a given polynomial is the number of r-tuples $i=\left(i_{1}, \ldots, i_{r}\right)$ with non-negative integer i_{1}, \ldots, i_{r}, satisfying $i_{1}+\cdots+i_{r} \leq m-1$, which is $\binom{m+r-1}{r}$.) Under the assumptions of the lemma, this mapping is degenerate. Every polynomial in its kernel has all its Hasse derivatives of order at most $m-1$ vanishing on each element of S; that is, each element of S is a zero of this polynomial of multiplicity at least m.

Another ingredient is the following multiplicity version of the Schwartz-Zippel lemma.

Lemma 4 ([DKSS, Lemma 8]). If P is a non-zero polynomial of degree at most d in r variables over the finite field \mathbb{F}, and $S \subseteq \mathbb{F}$, then

$$
\sum_{z \in S^{r}} \mu(P, z) \leq d|S|^{r-1}
$$

We omit the proof.
In fact, we need only the following corollary.
Corollary 1. Let P be a non-zero polynomial of degree at most d in r variables over a finite field \mathbb{F}, and let m be a positive integer. If P vanishes at every point of \mathbb{F}^{r} with multiplicity at least m, then $d \geq m|\mathbb{F}|$.

Eventually, we are ready to prove the theorem of Dvir, Kopparty, Saraf, and Sudan on the size of a Kakeya set.

Theorem 2 ([DKSS, Theorem 11]). If r is a positive integer, q is a prime power, and $K \subseteq \mathbb{F}_{q}^{r}$ is a Kakeya set, then $|K| \geq\left(\frac{q}{2-1 / q}\right)^{r}$.
Proof. Assuming that m and d are positive integers with

$$
\begin{equation*}
d<q\left\lceil\frac{q m-d}{q-1}\right\rceil \tag{1}
\end{equation*}
$$

(no typo: d enters both sides!) we show that

$$
\begin{equation*}
\binom{m+r-1}{r}|K| \geq\binom{ r+d}{r} \tag{2}
\end{equation*}
$$

the rest follows by optimization which we suppress here.

Suppose for a contradiction that (2) fails whence, by Lemma 3, there exists a nonzero polynomial P over \mathbb{F}_{q} of degree at most d in r variables, vanishing at every point of K with multiplicity at least m.
Write $l:=\left\lceil\frac{q m-d}{q-1}\right\rceil$ and fix $i=\left(i_{1}, \ldots, i_{r}\right)$ with integer $i_{1}, \ldots, i_{r} \geq 0$ of weight $w:=i_{1}+\cdots+i_{r}<l$. Let $Q:=P^{(i)}$, the i th Hasse derivative of P.

Since K is a Kakeya set, for every $v \in \mathbb{F}_{q}^{r}$ there exists $u \in \mathbb{F}_{q}^{r}$ with

$$
\mu(P, u+t v) \geq m \quad\left(t \in \mathbb{F}_{q}\right) ;
$$

hence, with

$$
\mu(Q, u+t v) \geq m-w \quad\left(t \in \mathbb{F}_{q}\right) .
$$

It is easily seen, however, that $\mu(Q, u+t v) \leq \mu(Q(u+T v), t)$, where $Q(u+T v)$ is considered as a polynomial in the variable T. Thus, for every $v \in \mathbb{F}_{q}^{r}$ there exists $u \in \mathbb{F}_{q}^{r}$ such that

$$
\mu(Q(u+T v), t) \geq m-w \quad\left(t \in \mathbb{F}_{q}\right) .
$$

Compared with

$$
\operatorname{deg} Q(u+T v) \leq \operatorname{deg} Q \leq d-w<q(m-w)
$$

(as it follows from $w<l$), in view of Corollary 1 this shows that $Q(u+T v)$ is the zero polynomial.

Let P_{H} and Q_{H} denote the homogeneous parts of the polynomials P and Q, respectively. As the leading coefficient of $Q(u+T v)$ is $Q_{H}(v)$, we conclude that $P_{H}^{(i)}=Q_{H}$ vanishes identically on \mathbb{F}_{q}^{r}. This shows that all Hasse derivatives of P_{H} of order, smaller than l, vanish on \mathbb{F}_{q}^{r}; in other words, P_{H} vanishes with multiplicity at least l at every point of \mathbb{F}_{q}^{r}. Since, on the other hand, by (1) we have

$$
\operatorname{deg} P_{H}=\operatorname{deg} P \leq d<q l,
$$

from Corollary 1 we conclude that P_{H} is the zero polynomial, which is wrong as the homogeneous part of a non-zero polynomial is non-zero. This contradiction concludes the proof.

References

[D] Z. Dvir, On the size of Kakeya sets in finite fields, J. of the $A M S$, to appear.
[DKSS] Z.Dvir, S. Kopparty, S. Saraf, and M. Sudan, Extensions to the method of multiplicities, with applications to Kakeya sets and mergers, Submitted.

