
DVIR, KOPPARTY, SARAF, AND SUDAN
ON THE SIZE OF KAKEYA SETS IN FINITE FIELDS

AN EXPOSITION BY VSEVOLOD F. LEV

A Kakeya, or Besicovitch, set in a vector space is a set which contains a line in

every direction. The finite field Kakeya problem is to estimate, for integer r > 0 and

prime power q, the smallest possible size of a Kakeya set in Fr
q. A conjecture, which

was open for almost a decade and considered quite tough, says that this size is Ωr(q
r);

that is, for r fixed and q growing, every Kakeya set in Fr
q has positive density. This

conjecture was recently solved by Dvir [D], who gave a strikingly simple proof, using

the polynomial method, of the lower bound
(

q+r−1
r

)
≥ qr/r!.

A significant further progress was made in a subsequent paper by Dvir, Kopparty,

Saraf, and Sudan [DKSS], who use what they call the method of multiplicities to

improve Dvir’s bound to
(

q
2−1/q

)r
.

Below we first present Dvir’s original argument and then sketch the proof of the

DKSS’ estimate.

1. Dvir’s Bound.

Theorem 1 (Dvir, 2008). If r is a positive integer, q is a prime power, and K ⊆ Fr
q

is a Kakeya set, then |K| ≥
(

q+r−1
r

)
≥ qr/r!.

The proof is based on the following well-known lemma which shows that for every

small set in a finite vector space there is low-degree polynomial, vanishing on this set.

Lemma 1. Let r ≥ 1 and d ≥ 0 be integers and q a prime power. If S ⊆ Fr
q satisfies

|S| <
(

r+d
r

)
, then there is a non-zero polynomial over Fq in r variables of degree at

most d, vanishing on S.

Proof. Consider the linear space L of all polynomials over Fq in r variables of degree

at most d. The dimension of L does not exceed (in fact, is equal to) the number

of monomials in L, which is
(

r+d
d

)
. Consequently, the evaluation mapping L →

F|S|q , sending every polynomial to the |S|-tuple of its values on the elements of S, is

degenerate. Every polynomial in the kernel of this mapping vanishes on S. �
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Proof of Theorem 1. Let K ⊆ Fr
q be a Kakeya set. We show that no polynomial of

degree, smaller than q, vanishes on K; by Lemma 1, this implies that |K| ≥
(

r+q−1
r

)
,

as claimed.

Suppose, for a contradiction, that there do exist non-zero polynomials of degree,

smaller than q, vanishing on K. Let P be such a polynomial. Write d := degP and

P = PH + PN , where PH is a homogeneous polynomial of degree d, and degPN < d.

By the definition of a Kakeya set, for every u ∈ Fr
q \{0} (the direction) there exists

v ∈ Fr
q such that P (v + λu) = 0 for each λ ∈ Fq. We notice that P (v + λu) =

PH(v+λu)+PN(v+λu) is a polynomial in λ of degree d < q, with leading coefficient

PH(u). Since this polynomial vanishes for each λ ∈ Fq, all its coefficients are equal

to 0; in particular, PH(u) = 0 for every u ∈ Fr
q \ {0}. Since PH is homogeneous, we

also have PH(0) = 0. Thus, PH vanishes identically, whence P = PN and PN is not

identically zero (for P is not).

Thus, starting from the polynomial P we have found a non-zero polynomial of lower

degree, which also vanishes on K. Continuing in this way we will eventually reach a

zero-degree polynomial, vanishing on K, which is an absurdum. �

In contrast with [D], we have not used the Schwartz-Zippel lemma in the proof of

Theorem 1. However, the multiplicity version of this lemma is an important ingredient

of the argument of [DKSS] (presented in the next section). For this reason we believe

that the classical version of the lemma, showing that a polynomial of low degree

cannot have “too many” roots on a cartesian product, is also worth including here.

Lemma 2 (Schwartz-Zippel). If P is a non-zero polynomial of degree at most d in r

variables over the finite field F, and S ⊆ F, then P has at most |S|r−1d roots on the

cartesian product Sr := S × · · · × S.

Proof. Induction by r. Write

P (x1, . . . , xr) = Pk(x1, . . . , xr−1)x
k
r + · · ·+ P0(x1, . . . , xr−1),

where degPk ≤ d− k and Pk is a non-zero polynomial. By the induction hypothesis,

the number of (r − 1)-tuples (x1, . . . , xr−1) ∈ Sr−1, on which Pk vanishes, is at most

|S|r−2(d − k), and to every such (r − 1)-tuple there correspond at most |S| roots of

P on Sr. On the other hand, to every (r − 1)-tuple (x1, . . . , xr−1) ∈ Sr−1 on which

Pk does not vanish there correspond at most k roots of P on Sr. Consequently, the

total number of roots of P on Sr does not exceed

|S|r−1(d− k) + |S|r−1k = |S|r−1d.

�
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2. The DKSS Bound.

The major innovation introduced in [DKSS] is that instead of a polynomial, van-

ishing on a Kakeya set “with multiplicity 1”, a polynomial vanishing with higher

multiplicity is considered. We refer the reader to [DKSS] for the historical account

and the systematic development of the background notions, confining here to a very

brief overview of Hasse derivatives and multiplicities.

Let N0 denote the semigroup of non-negative integers, and let r ≥ 1 be an integer.

For a vector i = (i1, . . . , ir) ∈ Nr
0 write w(i) := i1 + · · ·+ ir. Given yet another vector

X = (X1, . . . , Xr) with the entries Xi in an arbitrary ring, let X i := X i1
1 · · ·X ir

r .

For a polynomial P in r variables and a vector i ∈ Nr
0, the Hasse derivative of P

of order i is the polynomial P (i), defined by

P (X + Y ) =
∑
i∈Nr

0

P (i)(Y )X i.

Notice that, letting X = 0, we get P (0)(Y ) = P (Y ). Also, it is easy to check that if PH

denotes the homogeneous part of P (meaning that PH is a homogeneous polynomial

such that deg(P − PH) < degP ), and (P (i))H denotes the homogeneous part of P (i),

then (P (i))H = (PH)(i).

A polynomial P in r variables over a field F is said to vanish at a point a ∈ Fr with

multiplicity m ≥ 0 if P (i)(a) = 0 for each i ∈ Nr
0 with w(i) < m, whereas there exists

i ∈ Nr
0 with w(i) = m such that P (i)(a) 6= 0. In this case a is also said to be a zero

of P of multiplicity m. We denote the multiplicity of zero of P at a by µ(P, a); thus,

µ(P, a) is the largest integer m with the property that

P (X + a) =
∑

i∈Nr
0 : w(i)≥m

c(i, a)X i; c(i, a) ∈ F.

It is not difficult to see that for any i ∈ Nr
0 and any a ∈ Fr we have

µ(P (i), a) ≥ µ(P, a)− w(i);

this is [DKSS, Lemma 5].

We need the following multiplicity version of Lemma 1.

Lemma 3 ([DKSS, Proposition 10]). Let r,m ≥ 1 and d ≥ 0 be integers, and q

a prime power. If S ⊆ Fr
q satisfies

(
m+r−1

r

)
|S| <

(
r+d

r

)
, then there is a non-zero

polynomial over Fq in r variables of degree at most d, vanishing at every point of S

with multiplicity at least m.
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Proof. The proof is a rather straightforward modification of that of Lemma 1. Let

L be the linear space of all polynomials over Fq in r variables of degree at most d;

thus, the dimension of L is
(

r+d
d

)
. Consider the evaluation mapping on L, sending

every polynomial to the vector of all its
(

m+r−1
r

)
|S| Hasse derivatives of order at most

m − 1 on the elements of S. (Notice that the number of Hasse derivatives of order

at most m − 1 of a given polynomial is the number of r-tuples i = (i1, . . . , ir) with

non-negative integer i1, . . . , ir, satisfying i1 + · · · + ir ≤ m − 1, which is
(

m+r−1
r

)
.)

Under the assumptions of the lemma, this mapping is degenerate. Every polynomial

in its kernel has all its Hasse derivatives of order at most m − 1 vanishing on each

element of S; that is, each element of S is a zero of this polynomial of multiplicity at

least m. �

Another ingredient is the following multiplicity version of the Schwartz-Zippel

lemma.

Lemma 4 ([DKSS, Lemma 8]). If P is a non-zero polynomial of degree at most d in

r variables over the finite field F, and S ⊆ F, then∑
z∈Sr

µ(P, z) ≤ d|S|r−1.

We omit the proof.

In fact, we need only the following corollary.

Corollary 1. Let P be a non-zero polynomial of degree at most d in r variables over

a finite field F, and let m be a positive integer. If P vanishes at every point of Fr

with multiplicity at least m, then d ≥ m|F|.

Eventually, we are ready to prove the theorem of Dvir, Kopparty, Saraf, and Sudan

on the size of a Kakeya set.

Theorem 2 ([DKSS, Theorem 11]). If r is a positive integer, q is a prime power,

and K ⊆ Fr
q is a Kakeya set, then |K| ≥

(
q

2−1/q

)r
.

Proof. Assuming that m and d are positive integers with

d < q

⌈
qm− d
q − 1

⌉
, (1)

(no typo: d enters both sides!) we show that(
m+ r − 1

r

)
|K| ≥

(
r + d

r

)
; (2)

the rest follows by optimization which we suppress here.
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Suppose for a contradiction that (2) fails whence, by Lemma 3, there exists a non-

zero polynomial P over Fq of degree at most d in r variables, vanishing at every point

of K with multiplicity at least m.

Write l :=
⌈

qm−d
q−1

⌉
and fix i = (i1, . . . , ir) with integer i1, . . . , ir ≥ 0 of weight

w := i1 + · · ·+ ir < l. Let Q := P (i), the ith Hasse derivative of P .

Since K is a Kakeya set, for every v ∈ Fr
q there exists u ∈ Fr

q with

µ(P, u+ tv) ≥ m (t ∈ Fq);

hence, with

µ(Q, u+ tv) ≥ m− w (t ∈ Fq).

It is easily seen, however, that µ(Q, u + tv) ≤ µ(Q(u + Tv), t), where Q(u + Tv) is

considered as a polynomial in the variable T . Thus, for every v ∈ Fr
q there exists

u ∈ Fr
q such that

µ(Q(u+ Tv), t) ≥ m− w (t ∈ Fq).

Compared with

degQ(u+ Tv) ≤ degQ ≤ d− w < q(m− w)

(as it follows from w < l), in view of Corollary 1 this shows that Q(u + Tv) is the

zero polynomial.

Let PH and QH denote the homogeneous parts of the polynomials P and Q, respec-

tively. As the leading coefficient of Q(u+ Tv) is QH(v), we conclude that P
(i)
H = QH

vanishes identically on Fr
q. This shows that all Hasse derivatives of PH of order,

smaller than l, vanish on Fr
q; in other words, PH vanishes with multiplicity at least l

at every point of Fr
q. Since, on the other hand, by (1) we have

degPH = degP ≤ d < ql,

from Corollary 1 we conclude that PH is the zero polynomial, which is wrong as the

homogeneous part of a non-zero polynomial is non-zero. This contradiction concludes

the proof. �
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