DVIR, KOPPARTY, SARAF, AND SUDAN
ON THE SIZE OF KAKEYA SETS IN FINITE FIELDS

AN EXPOSITION BY VSEVOLOD F. LEV

A Kakeya, or Besicovitch, set in a vector space is a set which contains a line in
every direction. The finite field Kakeya problem is to estimate, for integer r > 0 and
prime power ¢, the smallest possible size of a Kakeya set in F7. A conjecture, which
was open for almost a decade and considered quite tough, says that this size is ,.(¢");
that is, for r fixed and ¢ growing, every Kakeya set in [y has positive density. This
conjecture was recently solved by Dvir [D], who gave a strikingly simple proof, using
the polynomial method, of the lower bound (q+:_1) >q"/rl.

A significant further progress was made in a subsequent paper by Dvir, Kopparty,
Saraf, and Sudan [DKSS], who use what they call the method of multiplicities to
improve Dvir’s bound to (Q%W)T.

Below we first present Dvir’s original argument and then sketch the proof of the

DKSS’ estimate.

1. DvIR’S BOUND.

Theorem 1 (Dvir, 2008). If r is a positive integer, q is a prime power, and K C I
is a Kakeya set, then |K| > (“77") > ¢"/rl.

The proof is based on the following well-known lemma which shows that for every
small set in a finite vector space there is low-degree polynomial, vanishing on this set.

Lemma 1. Let r > 1 and d > 0 be integers and q a prime power. If S C Fy satisfies
S| < (rjd), then there is a non-zero polynomial over F, in r variables of degree at
most d, vanishing on S.

Proof. Consider the linear space £ of all polynomials over F, in 7 variables of degree
at most d. The dimension of £ does not exceed (in fact, is equal to) the number
of monomials in £, which is (”gd). Consequently, the evaluation mapping £ —
]Flfl, sending every polynomial to the |S|-tuple of its values on the elements of S, is

degenerate. Every polynomial in the kernel of this mapping vanishes on S. U
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Proof of Theorem 1. Let K C Fy be a Kakeya set. We show that no polynomial of
degree, smaller than ¢, vanishes on K; by Lemma 1, this implies that |K| > (’”“3_1),
as claimed.

Suppose, for a contradiction, that there do exist non-zero polynomials of degree,
smaller than ¢, vanishing on K. Let P be such a polynomial. Write d := deg P and
P = Py + Py, where Py is a homogeneous polynomial of degree d, and deg Py < d.

By the definition of a Kakeya set, for every u € Fy \ {0} (the direction) there exists
v € Iy such that P(v + Au) = 0 for each A € F,. We notice that P(v + Au) =
Py (v+Au) + Py(v+ Au) is a polynomial in A of degree d < ¢, with leading coefficient
Py (u). Since this polynomial vanishes for each A € [, all its coefficients are equal
to 0; in particular, Py (u) = 0 for every u € F} \ {0}. Since Py is homogeneous, we
also have Py(0) = 0. Thus, Py vanishes identically, whence P = Py and Py is not
identically zero (for P is not).

Thus, starting from the polynomial P we have found a non-zero polynomial of lower
degree, which also vanishes on K. Continuing in this way we will eventually reach a

zero-degree polynomial, vanishing on K, which is an absurdum. 0

In contrast with [D], we have not used the Schwartz-Zippel lemma in the proof of
Theorem 1. However, the multiplicity version of this lemma is an important ingredient
of the argument of [DKSS] (presented in the next section). For this reason we believe
that the classical version of the lemma, showing that a polynomial of low degree
cannot have “too many” roots on a cartesian product, is also worth including here.

Lemma 2 (Schwartz-Zippel). If P is a non-zero polynomial of degree at most d in r
variables over the finite field F, and S C F, then P has at most |S|"~'d roots on the
cartesian product S ;=S5 x --- x §S.

Proof. Induction by r. Write

P(x1,...,x.) = Pe(zy, ..., 20 )2k + o+ Py(zy, ..., 2),
where deg P, < d — k and P, is a non-zero polynomial. By the induction hypothesis,
the number of (r — 1)-tuples (z1,...,2, 1) € S™!, on which P, vanishes, is at most
|S|"~2(d — k), and to every such (r — 1)-tuple there correspond at most |S| roots of
P on S". On the other hand, to every (r — 1)-tuple (zy,...,7,._1) € ST™! on which

P, does not vanish there correspond at most k£ roots of P on S”. Consequently, the
total number of roots of P on S” does not exceed

SI""Hd — k) + 18Ik =|S|""d.



KAKEYA PROBLEM IN FINITE FIELDS 3
2. THE DKSS BouNnD.

The major innovation introduced in [DKSS] is that instead of a polynomial, van-
ishing on a Kakeya set “with multiplicity 1”7, a polynomial vanishing with higher
multiplicity is considered. We refer the reader to [DKSS] for the historical account
and the systematic development of the background notions, confining here to a very
brief overview of Hasse derivatives and multiplicities.

Let Ny denote the semigroup of non-negative integers, and let » > 1 be an integer.
For a vector i = (i1, ...,4,) € N, write w(i) := iy + - - - +4,. Given yet another vector
X = (Xy,...,X,) with the entries X; in an arbitrary ring, let X := X' ... X/r,

For a polynomial P in r variables and a vector ¢ € N, the Hasse derivative of P
of order i is the polynomial P defined by

P(X+Y)=> POY)X"
i€NG
Notice that, letting X = 0, we get P(O(Y) = P(Y). Also, it is easy to check that if Py
denotes the homogeneous part of P (meaning that Py is a homogeneous polynomial
such that deg(P — Py) < deg P), and (P™); denotes the homogeneous part of P(®),
then (P®)y = (Py)®.

A polynomial P in r variables over a field I is said to vanish at a point a € F” with
multiplicity m > 0 if P%(a) = 0 for each i € N, with w(i) < m, whereas there exists
i € Nj with w(i) = m such that P%(a) # 0. In this case a is also said to be a zero
of P of multiplicity m. We denote the multiplicity of zero of P at a by u(P,a); thus,
(P, a) is the largest integer m with the property that

P(X+a)= Y  c(i,a)X’; c(i,a) €F.
1ENG: w(i)>m
It is not difficult to see that for any ¢ € Njj and any a € F" we have
p(PY,a) > p(P,a) — wli);

this is [DKSS, Lemma 5].
We need the following multiplicity version of Lemma 1.

Lemma 3 ([DKSS, Proposition 10]). Let r,m > 1 and d > 0 be integers, and q
a prime power. If S C Fy satisfies (m+:71) S| < (":fd), then there is a non-zero
polynomial over I, in r variables of degree at most d, vanishing at every point of S
with multiplicity at least m.
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Proof. The proof is a rather straightforward modification of that of Lemma 1. Let

L be the linear space of all polynomials over [, in r variables of degree at most d;
r—+d
d

every polynomial to the vector of all its (

thus, the dimension of L is ( ) Consider the evaluation mapping on L, sending
m+r—1

m — 1 on the elements of S. (Notice that the number of Hasse derivatives of order

) |S| Hasse derivatives of order at most

at most m — 1 of a given polynomial is the number of r-tuples i = (i1, ...,4,) with
1n+r—1))

Under the assumptions of the lemma, this mapping is degenerate. Every polynomial

non-negative integer i1, ...,%,, satisfying ¢; + --- 4+ 4, < m — 1, which is (

in its kernel has all its Hasse derivatives of order at most m — 1 vanishing on each
element of S; that is, each element of S is a zero of this polynomial of multiplicity at
least m. OJ

Another ingredient is the following multiplicity version of the Schwartz-Zippel
lemma.

Lemma 4 ([DKSS, Lemma 8)). If P is a non-zero polynomial of degree at most d in
r variables over the finite field ¥, and S C T, then

> u(Pz) <d|SI
zeST

We omit the proof.
In fact, we need only the following corollary.

Corollary 1. Let P be a non-zero polynomial of degree at most d in r variables over
a finite field F, and let m be a positive integer. If P wvanishes at every point of F"
with multiplicity at least m, then d > m|F|.

Eventually, we are ready to prove the theorem of Dvir, Kopparty, Saraf, and Sudan
on the size of a Kakeya set.

Theorem 2 ([DKSS, Theorem 11]). If r is a positive integer, q is a prime power,
and K C F} is a Kakeya set, then |K| > (Q_Ll/q)r.

Proof. Assuming that m and d are positive integers with
—d
i)
qg—1
(no typo: d enters both sides!) we show that

(" = (1) )

the rest follows by optimization which we suppress here.
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Suppose for a contradiction that (2) fails whence, by Lemma 3, there exists a non-
zero polynomial P over F, of degree at most d in r variables, vanishing at every point
of K with multiplicity at least m.

Write [ := {qg%d—‘ and fix i = (i1,...,4,) with integer iy,...,4, > 0 of weight
w:=14; +---+1i, <. Let Q := P%, the ith Hasse derivative of P.

Since K is a Kakeya set, for every v € Fy there exists u € F} with
p(Pu+tv) >m (teF,);
hence, with
w(Q,u+tv) >m—w (telF,).
It is easily seen, however, that u(Q,u + tv) < p(Q(u + Tw),t), where Q(u + Tw) is
considered as a polynomial in the variable T'. Thus, for every v € Fy there exists
u € F} such that
w(Qu+Tv),t) >m—w (teF,).
Compared with

deg Q(u+Tv) <degQ < d—w < qg(m — w)

(as it follows from w < 1), in view of Corollary 1 this shows that Q(u + Tv) is the
zero polynomial.

Let Py and Qg denote the homogeneous parts of the polynomials P and @), respec-
tively. As the leading coefficient of Q(u + Tv) is Qp(v), we conclude that PI(}) =Qp
vanishes identically on Fy. This shows that all Hasse derivatives of Py of order,
smaller than [, vanish on Fy; in other words, Py vanishes with multiplicity at least
at every point of Fy. Since, on the other hand, by (1) we have

deg Py = deg P < d < ql,

from Corollary 1 we conclude that Py is the zero polynomial, which is wrong as the
homogeneous part of a non-zero polynomial is non-zero. This contradiction concludes
the proof. ([l
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