FREIMAN
 ON BLOCKS OF CONSECUTIVE INTEGERS IN SMALL SUMSETS

AN EXPOSITION BY VSEVOLOD F. LEV

Abstract. This is a concise exposition of a year 2009 paper by Freiman on the existence of a long block of consecutive integers in a small sumset of a finite integer set.

As shown in [L97], if a A is a finite set of integers with $\operatorname{diam}(A)<\frac{3}{2}|A|-1$, then the sumset $2 A$ contains a block of $2|A|-1$ consecutive integers. The main result of [F09] gives a slightly stronger conclusion under a substantially weaker assumption.

Theorem (Freiman [F09]). Suppose that A is a finite set of integers with $\min A=0, l:=$ $\max A>0$, and $\operatorname{gcd}(A)=1$, and write $n:=|A|$. Let $b:=\max \{g \in \mathbb{Z}: g<l, g \notin 2 A\}$ and $c:=\min \{g \in \mathbb{Z}: g>l, g \notin 2 A\}$, so that $J:=[b+1, c-1] \subseteq 2 A$. If $|2 A| \leq 3 n-4$, then $c>b+l$ and

$$
|J| \geq 2 n-1+2|(b, c-l) \backslash A| .
$$

Corollary. Suppose that A is a finite set of integers, not contained in an arithmetic progression with the difference greater than 1 . If $|2 A| \leq 3|A|-4$, then $2 A$ contains a block of at least $2 n-1$ consecutive integers.

The proof of Freiman's theorem is presented below.
By a $g a p$ is a finite set of integers B we mean an integer $g \in[\min B, \max B] \backslash B$.
We consider (ordered) pairs of the form $(g, g+l)$ with $g \in[0, l]$. We say that the pair $(g, g+l)$ is left-empty if $g \notin 2 A$ while $g+l \in 2 A$, and that it is right-empty if $g \in 2 A$ while $g+l \notin 2 A$; such pairs will be collectively referred to as half-empty. ${ }^{\dagger}$ As an immediate consequence of Freiman's " $(3 n-4)$-theorem", the assumption $|2 A| \leq 3 n-4$ implies that all residue classes modulo l are represented in the sumset $2 A$. (The theorem readily shows that $l \leq 2 n-4$, whence the canonical image of A in the group $\mathbb{Z} / l \mathbb{Z}$ contains more than half the elements of the group.) As a result, for any $g \in[0, l]$, either $\{g, g+l\} \subseteq 2 A$, or the pair $(g, g+l)$ is half-empty. Moreover, the number of half-empty pairs is equal to the number of gaps in $2 A$, which is $2 l+1-|2 A|$. Consequently, the number of those $g \in[0, l]$ with $\{g, g+l\} \subseteq 2 A$ is $|2 A|-l$, and so the number of gaps $g \in[0, l] \backslash A$ with $\{g, g+l\} \subseteq 2 A$ is $|2 A|-l-n:$

$$
\begin{equation*}
|\{g \in[0, l]: g \notin A, \quad\{g, g+l\} \subseteq 2 A\}|=|2 A|-l-n . \tag{1}
\end{equation*}
$$

[^0]Freiman's critical observation is that every left-empty pair lies to the left of every right-empty pair in the sense that if $\left(g_{l}, g_{l}+l\right)$ is left-empty and $\left(g_{r}, g_{r}+l\right)$ is rightempty, then $g_{l}<g_{r}$. To prove this, assume for a contradiction that $g_{l}>g_{r}$ and that $g_{r}, g_{l}+l \in 2 A$ while $g_{l}, g_{r}+l \notin 2 A$. Without loss of generality, we can further assume that the interval $\left(g_{r}+1, g_{l}-1\right)$ does not contain any elements from half-empty pairs; that is, $\{g, g+l\} \subseteq 2 A$ for every integer $g \in\left(g_{r}, g_{l}\right)$. By the pigeonhole principle, from $g_{l} \notin 2 A$ we get

$$
\begin{equation*}
\left|A \cap\left[0, g_{l}\right]\right| \leq \frac{1}{2}\left(g_{l}+1\right) \tag{2}
\end{equation*}
$$

and, similarly, from $g_{r}+l \notin 2 A$,

$$
\begin{equation*}
\left|A \cap\left[g_{r}, l\right]\right| \leq \frac{1}{2}\left(l+1-g_{r}\right) . \tag{3}
\end{equation*}
$$

Adding up these two estimates we obtain

$$
n+\left|A \cap\left[g_{r}, g_{l}\right]\right| \leq \frac{1}{2}\left(l+\left(g_{l}-g_{r}\right)\right)+1
$$

equivalently,

$$
\left|\left[g_{r}, g_{l}\right] \backslash A\right| \geq n-\frac{1}{2} l+\frac{1}{2}\left(g_{l}-g_{r}\right) .
$$

Combining this with the trivial estimate

$$
\left|\left[g_{r}, g_{l}\right] \backslash A\right| \leq g_{l}-g_{r}+1
$$

gives

$$
\left|\left[g_{r}, g_{l}\right] \backslash A\right| \geq 2 n-l-1
$$

Comparing this with (1) leads to

$$
|2 A|-l-n \geq 2 n-l-1
$$

contradicting the assumption $|2 A| \leq 3 n-4$.
Having shown that every left-empty pair lies to the left of every right-empty pair, we can complete the proof of the theorem. Since $(b, b+l)$ is left-empty and $(c-l, c)$ is right-empty, we have $b<c-l$; that is, $c>b+l$. Notice that this inequality already shows that $2 A$ contains a block of at least l consecutive integers. To boost it further, we re-use (2) and (3) with $g_{l}=b$ and $g_{r}=c-l$, respectively, to get

$$
|A \cap[0, b]| \leq \frac{1}{2}(b+1)
$$

and

$$
|A \cap[c-l, l]| \leq \frac{1}{2}(2 l-c+1)
$$

Also, in a trivial way,

$$
|A \cap(b, c-l)|=c-l-b-1-|(b, c-l) \backslash A| .
$$

Taking the sum yields

$$
n \leq \frac{1}{2}(c-b)-|(b, c-l) \backslash A|
$$

which is equivalent to the assertion of the theorem.

References

[F09] G.A. Freiman, Inverse Additive Number Theory. XI. Long arithmetic progressions in sets with small sumsets, Acta Arithmetica 137 (4) (2009), 325-331.
[L97] V. Lev, Optimal Representations by Sumsets and Subset Sums, Journal of Number Theory 62 (1997), 127-143.

[^0]: ${ }^{\dagger}$ Our terminology reflects the practice to visualize elements of $2 A$ as filled circles, and gaps in $2 A$ as empty circles. It differs from Freiman's original terminology.

