
Online unit clustering: variations on a theme

Leah Epstein∗ Asaf Levin† Rob van Stee‡

Abstract

Online unit clustering is a clustering problem where classification of points is done in an online
fashion, but the exact location of clusters can be modified dynamically. We study several variants and
generalizations of the online unit clustering problem, which are inspired by variants of packing and
scheduling problems in the literature.

1 Introduction

Clustering problems involve a partition of a set of points into groups, which are often called clusters. The
goal is typically the optimization of a given objective function. Clustering problems are fundamental and
have numerous applications. Such applications include the usage of clustering for computer related pur-
poses, such as information retrieval and data mining, but also various applications in other fields, such as
medical diagnosis and facility location.

In the online scenario which we study, points are presented one by one to the algorithm, and must be
assigned to clusters upon arrival. An assignment of a point to a cluster becomes fixed at this time, and
cannot be changed later. We measure the performance of an online algorithmA by comparing it to an
optimal offline algorithmOPT using the competitive ratio, which is defined assupσ

A(σ)
OPT(σ) . Hereσ is the

input, i.e., a sequence of request points, andALG(σ) denotes the cost of an algorithmALG for this input,
which is the number of clusters in the basic problem, and is a function of the solution in a more general
setting. For an algorithmALG, if σ is clear from the context, we dropσ from the notation and useALG

to denote the cost of the algorithmALG. For randomized algorithms, we replaceA(σ) with E(A(σ)), and
define the competitive ratio assupσ

E(A(σ))
OPT(σ) . An algorithm with competitive ratio of at mostR is called

R-competitive.
A study of online partitioning of points into clusters was presented by Charikar et al. [6]. They con-

sidered the so calledonline unit covering problem. In this problem, a set ofn points needs to be covered
by balls of unit radius, and the goal is to minimize the number of balls used. They gave an upper bound of
O(2dd log d) and a lower bound ofΩ(log d/ log log log d) on the competitive ratio of deterministic online
algorithms ind dimensions. This problem is fully online in the sense that points arrive one by one, each
point needs to be assigned to a ball upon arrival, and if it is assigned to a new ball, the exact location of this
ball is fixed at this time. The tight bounds on the competitive ratio ford = 1 andd = 2 are respectively2
and4.

Chan and Zarrabi-Zadeh [5] introduced theunit clustering problem. In this problem the input and goals
are very similar to unit covering. This is an online problem as well, but it is more flexible in the sense that
it does not require to fix the exact position of each ball in advance. The algorithm needs to make sure that a

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
†Department of Statistics, The Hebrew University, Jerusalem, Israel.levinas@mscc.huji.ac.il.
‡Max-Planck-Institut f̈ur Informatik, Saarbr̈ucken, Germany.vanstee@mpi-inf.mpg.de . Research supported by the

German Research Foundation (DFG). Work performed while this author was at the University of Karlsruhe, Germany.

1

set of points which is assigned to one ball (cluster) can always be covered by a single ball. The goal is still
to minimize the total number of balls used. Therefore, the algorithm may terminate having clusters that still
have more than one option for their location. In an offline scenario, unit covering and unit clustering are
the same problem. However, in the online model, an algorithm now has the option of shifting a cluster after
a new point arrives, as long as this cluster still covers all the points that are assigned to it. In [5, 12], the
two-dimensional problem is considered in theL∞ norm rather than theL2 norm. Thus “balls” are actually
squares or cubes. In this paper, we focus on the cased = 1, for which the two metrics are identical.

Note that online clustering is an online graph coloring problem. If we see the clusters as colors, and the
points are seen as vertices, then an edge between two points occurs if they are too far apart to be colored using
the same color. The resulting graph for the one-dimensional problem is the complement of a unit interval
graph (alternatively, the problem can be seen as a clique partitioning problem in unit interval graphs). See
[18] for a survey on online graph coloring. Note that online coloring is a difficult problem that does not
admit a constant competitive ratio already for trees [15, 20]. There is a small number of classes that admit
constant competitive algorithms, one of which is interval graphs [19].

For the one-dimensional case, it was shown in [5] that several naı̈ve algorithms all have a competitive
ratio of 2. Some of these algorithms are actually designed to solve the unit covering problem and thus
cannot be expected to overcome this bound (due to the lower bound of [6]). Chan and Zarrabi-Zadeh [5]
also showed that any randomized algorithm for unit covering has a competitive ratio of at least 2. Thus
randomization by itself without additional relaxation of the problem would not allow to overcome the lower
bound of 2. To demonstrate the difference between unit covering and unit clustering, i.e., the role of shifting
clusters, they presented a randomized algorithm with a competitive ratio of15/8 = 1.875 (later improved
by the same authors to 1.833 in [23]). Finally, they showed a lower bound of4/3 on the competitive ratio
of any randomized algorithm. The deterministic lower bound that is implied by their work is3/2 = 1.5. A
multi-dimensional extension of their algorithm, that they design, results in a11/3-competitive algorithm for
two dimensions, and a2d · 11/12-competitive algorithm for generald.

Epstein and van Stee [12] improved these results by presenting a relatively simpledeterministicalgo-
rithm which attains a competitive ratio of7/4 = 1.75. Using the construction presented by Chan and
Zarrabi-Zadeh [5], this implies an upper bound of2d · 7/8 in d dimensions. Moreover, they improve the
randomized lower bound to3/2 = 1.5 and show a deterministic lower bound of8/5 = 1.6. Finally, they
give a deterministic lower bound of 2 and a randomized lower bound of11/6 ≈ 1.8333 in two dimensions.
The deterministic lower bound holds for theL2 norm as well.

In the current paper, we study several variants and generalizations of this problem. These are presented
below together with our results. For most versions, we give matching upper and lower bounds on the best
possible performance of an online algorithm. In all versions except the one with resource augmentation, the
maximum possible length of a cluster is still 1 as before.

We study the following problems.

1. Clustering with rejection. An input point has a non-negative value associated with it, which is
called its rejection penalty. For each point that is not assigned to a cluster, its penalty must be paid.
Problems with rejection have application in customer service, where the rejection penalty represents
the compensation to be paid to a disappointed customer, or if a customer cannot be refused, it is
the cost for servicing this customer in an alternative way (such as out-sourcing). We note that the
clustering with rejection problem is the online coloring with rejection problem when restricted to
the complement of a unit interval graph. A previous study of the online coloring with rejection of
other graph classes appears in [11]. Many other combinatorial optimization and online problems were
studied in this scenario, see e.g. [13, 4, 7, 8]. We design an algorithm of competitive ratio 3 for this
problem and prove a matching lower bound.

2. Max clustering. Every input point has a weight. Points are to be assigned to clusters, so that every

2

cluster would not exceed the length of 1. The cost of a cluster is the maximum weight of any point
assigned to it. The goal is to minimize the total cost of the clusters. Max coloring of graphs was
introduced by Pemmaraju, Raman and Varadarajan [22] and studied in an online environment in [10].

We show that theGRID algorithm has competitive ratio 2 for this problem and prove a matching lower
bound.

3. Clustering with cardinality constraints. In this variant we are given a parameterk, where each
cluster can serve at mostk points that can all be covered by one interval of length 1. This model
assumes that the service provided by the cluster is limited to a given number of clients.

A large amount of work on capacitated variants of combinatorial optimization and online problems
exists in the literature [21, 14, 3, 9].

We design algorithms of competitive ratio32 for k = 2 and2 for k ≥ 3. We prove matching lower
bounds fork = 2 andk ≥ 4 and a lower bound of 1.75 fork = 3.

4. Clustering with resource augmentation. Resource augmentation, or extra resource analysis is
a generalization of competitive analysis, where the online algorithm may use resources that are not
available to an optimal offline algorithm to which the online algorithm is compared [17]. We study a
resource augmented variant of clustering where the online algorithm uses clusters of length at mostb,
whereb > 1 is a given parameter, whereas the clusters of the offline algorithm are still of length at
most 1. We show a tight bound of 1 for anyb ≥ 2, a lower bound of3/2 for any cluster size in(1, 2),
and an algorithm of competitive ratio exactly5/3 for b ≥ 3/2.

5. Clustering with temporary request points. In this variant, requests are not permanent but arrive
and leave over time. The duration of a request point is unknown until the time it leaves. Each point
needs to be covered at all times of its duration. The momentary cost of an algorithm at any point in
time is determined by the number of clusters that are serving a nonempty subset of request points.
The cost of an algorithm is its maximum momentary cost over time.

Previous work on online problems with temporary requests can be found in [16, 1, 2].

We show that theGRID algorithm has competitive ratio 2 for this problem and prove a matching lower
bound.

Note that in this paper we consider only the (absolute) competitive ratio and not the asymptotic com-
petitive ratio. This is motivated by the fact that in all the variants that we consider one can repeat the input
sequence multiple times in disjoint parts of the real line. These disjoint parts cannot be assigned to the same
sets of clusters, and therefore the cost of the solution is the sum of all costs (of the different parts).

We conclude this paper in Section 7 by noting that most of our results apply also to the similar variants
of the online covering problem.

2 Clustering with rejection

In this variant of the problem, each pointp has two attributes. In addition to its location on the real line, a
point has a non-negative weightwp (which is interpreted as its rejection penalty) associated with it. Each
arriving point must be either assigned to a cluster upon arrival (i.e., accepted) or rejected. The set of points
assigned to one cluster must lie within an interval of length1.

A rejected point does not need to be assigned to a cluster; instead of the assignment, the algorithm pays
a penalty for not serving the point. Thus the cost of an algorithmA is the sum of rejection penalties of
points rejected byA plus the number of clusters used for the accepted points.

3

Clustering with rejection is a generalization of standard unit clustering, i.e., unit clustering is the special
case of clustering with rejection where all rejection penalties are infinite.

The following algorithmGRID ([5]) is used as a building block in this section.
For every integer−∞ < k < ∞, GRID considers points arriving in the intervalIk = (k, k + 1] separately
and independently from other points. Upon arrival of the first point inIk, a new cluster is opened in the
interval[k, k + 1] and all future points in this interval are assigned to this cluster.

We prove a tight bound of 3 for this problem. We begin with a description of an algorithm which is
based onGRID.

Denote the subsequence (of the input sequence) of points which belong toIk by Pk. As long as the total
weight of points inPk does not exceed12 , all such points are rejected. Letpk be the first point which causes
the total weight of points inPk that arrived so far to be at least1

2 . Upon arrival ofpk, a new cluster is opened
in the interval[k, k + 1] and all future points inPk are assigned to it. We call this algorithmREJECTIVE

GRID (RGRID).

Theorem 1 The competitive ratio ofRGRID is 3 and this is best possible.

Proof We start with the proof of the upper bound. Consider an optimal offline algorithmOPT. We analyze
each interval of the form(k, k + 1] separately, thus we assign shares of the cost ofOPT to such intervals
so that the sum of shares of the cost, that are assigned to the union of all intervals, is exactlyOPT. The
cost of every point rejected byOPT is simply assigned to the unique interval it belongs to. Without loss of
generality, we assume thatOPT always uses clusters of size 1. For every cluster ofOPT, this cluster then
contains points of exactly two such intervals. We thus assign its cost in equal shares to both these intervals.

We will prove that the cost ofRGRID on every interval is at most three times the cost ofOPT that is
assigned to it. Consider an intervalIk = (k, k+1] that contains at least one point (the algorithm pays a total
of zero on an interval with no points, and thus the cost for this interval clearly does not exceed three times
the cost ofOPT that was assigned to this interval).

If the total weight of points inIk, which we denote byrk, is less than12 , the algorithm does not open a
cluster for this interval and pays exactlyrk. On the other hand,OPT either covers some of these points by at
least one cluster, or rejects all these points. In the first case, at least one cluster ofOPT overlaps withIk, so
a share of at least12 from the cost ofOPT was assigned toIk. In the second case, a share of cost of at least
rk was assigned to this cluster. In both cases the assigned cost is no smaller than the cost ofRGRID.

Finally, if rk ≥ 1
2 , the cost ofRGRID on Ik is no larger than32 . This cost results from the rejection

penalties of all points arriving beforepk, which is less than12 , and the cost of one cluster, which is an
additional1. Similarly to the previous case,OPT either has at least one cluster overlapping withIk, or
rejects all points ofPk. In the first case a cost of at least1

2 is assigned to this interval and in the second case,
a cost ofrk ≥ 1

2 is assigned to it. The ratio of the cost ofRGRID on Ik, and the share of cost ofOPT that is
assigned toIk, is no larger than 3.

We next prove a lower bound of 3 on the competitive ratio of any algorithm. LetN be a large enough
integer. Consider the following sequence. The first phase consists of the pointsi

16N for i = 1, 2, . . ., each
one of these points has a weight of1

N (the denominator16N is chosen for simplicity). These points are
presented one by one until a cluster is opened. The point for which a cluster is opened is the last point of
this phase. If no cluster is opened, the first phase stops after4N points are given, in this case no further
points will be defined and the sequence stops. Otherwise, leti′ be the index of the last point presented. The
next phase consists of multiple instances of the pointi′−1

16N −1, where each such instance has a penalty of1
N .

Note that the distance between these points and the point for which a cluster was opened is1+ 1
16N , thus the

points of the second phase cannot be assigned to the same cluster. Such points are presented fori = 0, . . .,
until a new cluster is opened or until4N points are presented. The sequence terminates here in both cases.

4

Consider first the case where4N points were presented in the first phase and no cluster was opened. All
points of the first phase lie in an interval of length1

4 , thus they can fit in one cluster andOPT = 1. The total
rejection penalty paid by the algorithm is4, which results in a competitive ratio of4.

Next, we consider the case that4N points were presented in the second phase, but no additional cluster
was opened. Note that the interval[i

′−1
16N − 1, i′−1

16N] contains all points but the last point of phase 1, and thus
OPT can open one cluster and reject just one point. We getOPT≤ 1 + 1

N . However, the algorithm pays at
least 1 for the first phase and4 for the rejection penalties of the second phase, which gives a total of at least
5. This case results in a competitive ratio of more than4.

Consider now the case where clusters were opened in both phases. Leti′′ denote the index of the point
for which a cluster was opened in the second phase. The cost of the algorithm isi′+i′′

N + 2. As we saw
above, we haveOPT ≤ 1 + 1

N . Another possible offline solution would be to reject all points, and get
the costi

′+i′′+2
N . ThusOPT ≤ min{ i′+i′′+2

N , N+1
N } . If i′ + i′′ + 3 ≤ N , the cost of the algorithm is at

least i′+i′′
N + 2 ≥ 3(i′+i′′+2

N) ≥ 3OPT. Otherwise,i′ + i′′ ≥ N − 2, the cost of the algorithm is at least
i′+i′′

N + 2 ≥ 3− 2
N ≥ 3N−2

N+1 OPT. SinceN can be chosen to be arbitrarily large, we obtain a lower bound of
3 on the competitive ratio. ¤

3 Max clustering

In this variant of the problem, each pointp has a non-negative weightwp associated with it. Each arriving
point must be assigned to a cluster upon arrival. The set of points assigned to one cluster must lie within an
interval of length1. The cost of a cluster is the largest weight of any point assigned to this cluster. The cost
of an algorithm is the sum of costs of the clusters defined by the algorithm.

This problem is the generalization of standard unit clustering, since unit clustering is the special case of
max clustering where all weights are equal.

We prove a tight bound of 2 for this problem. The upper bound is achieved by simply applyingGRID

for this problem.

Theorem 2 The competitive ratio ofGRID is 2 and this is best possible.

Proof We start with the proof of the upper bound. Consider an optimal offline algorithmOPT. We analyze
each interval of the form(k, k + 1] separately, thus we assign shares of the cost ofOPT to such intervals, so
that the sum of shares of cost that are assigned to the union of all intervals is exactlyOPT. Without loss of
generality, we assume thatOPTalways uses clusters of size 1. For every cluster ofOPTof costw, this cluster
then contains points of exactly two such intervals. We therefore assign its cost in equal shares to both these
intervals, i.e., a cost ofw2 to each one of them.

We will prove that the cost ofGRID on every interval is at most twice the cost ofOPT that is assigned to
it. Consider an intervalIk = (k, k + 1] that contains at least one point (the algorithm pays a total of zero on
an interval with no points, and thus the cost for this interval clearly does not exceed twice the cost ofOPT

that was assigned to this interval).
Consider an intervalIk for which the cluster inGRID has weighta. ThusIk contains a request point of

weighta. This point is covered by some cluster ofOPT which has weight at leasta. Thus a cost of at least
a
2 was assigned to this interval. Therefore, the ratio of the cost ofRGRID on Ik and the cost assigned toIk

is no larger than 2.
We next prove a lower bound of 2 on the competitive ratio of any algorithm. LetM be a large enough

integer, and letN = M2. Consider the following sequence. The first request point is0, and has weight1.
Clearly the algorithm must open a cluster for this point. Additional points are presented until the algorithm
opens an additional cluster or until all these points are presented. The points arei

N for i = 0, . . . , N , where

5

the point i
N has weight1 + iM

N . If no additional cluster was opened, a last request for the point1 + 1
N with

weightM + 1 arrives.
If the last point arrived, it means that the algorithm must open a cluster for this point, since its distance

from the very first point is larger than1. Thus the cost of the algorithm for the first cluster is the weight of
the point in position1, which isM + 1, and the cost of the second cluster isM + 1 as well. An optimal
algorithm would assign all points but the first one to a common cluster, having a cost ofM + 1 for this
cluster, and the first point can be assigned to an additional cluster, which will have the cost1. This gives a
competitive ratio of at least2(M+1)

M+2 = 2− 2
M+2 .

If the last point did not arrive, it means that the sequence stopped right after a second cluster was opened.
Let i′ ≥ 1 denote the index of the last request point that was presented. An optimal algorithm would use
a single cluster of weight1 + i′M

N for all requests. The algorithm uses two clusters, where the first cluster

contains all points but the last one, and thus costs1 + (i′−1)M
N , and the second cluster costs1 + i′M

N . We get

a competitive ratio of at least2+(2i′−1)M/N
1+i′M/N = 2M+2i′−1

M+i′ ≥ 2− 1
M .

SinceM can be taken to be arbitrarily large, this results in a lower bound of 2 on the competitive ratio
of any algorithm. ¤

4 Clustering with cardinality constraints

In this section we consider the unit clustering problem, where a parameterk limits the number of points that
can be assigned to one cluster. Clearly, the casek = 1 is trivial. A cluster can contain a setS of points if it
is contained in an interval of length 1, and on top of that,|S| ≤ k.

The next proposition resolves the casek = 2. For this case we can apply a greedy algorithm that inserts
a point into an existing cluster if possible, and otherwise opens a new cluster for it. Note that this approach
is based on a greedy algorithm for finding a maximum cardinality matching.

Proposition 1 The competitive ratio of the greedy algorithm fork = 2 is 3
2 , and this is best possible.

Proof For the upper bound, we show the relation to maximum matchings. Letm be the cardinality of a
maximum matching on the graph of request points (when two points share an edge if the distance between
them is at most1). Letn be the number of request points. We haveOPT = n−m, since an optimal algorithm
is one that maximizes the number of clusters that cover two points. Since for each edge of the maximum
matching implied byOPT at least one endpoint was assigned to a cluster with two points by the algorithm
(by the greedy assignment rule), we get that at leastm points are in such clusters. Thus the cost of the
algorithm is at mostn− m

2 . Usingn ≥ 2m we getn−m/2
n−m ≤ 1 + m/2

n−m ≤ 3
2 .

For the lower bound, consider the two points1 and2. If the algorithm assigns them to two clusters the
sequence stops. ClearlyOPT = 1, which gives a competitive ratio of2. Otherwise, two additional points0
and3 are presented. The algorithm opens two new clusters, whereasOPT = 2, this gives a competitive ratio
of 3

2 . ¤
We next consider the casek = 3.

Theorem 3 Any algorithm fork = 3 has competitive ratio of at least74 = 1.75.

Proof The first three points are in positions2, 2.5, 3. These three points must be assigned by the online
algorithm to one cluster that we denote byA (otherwise, the input sequence stops and the online algorithm
paid at least twice the cost of the optimal offline solution). Note that by the cardinality constraint no further
point can be assigned toA. In this case, we say thatA is full. The next point is in position3.5 and it must
be assigned to a new cluster that we denote byB. The fifth point is in position4.5, and it can be assigned to
B or to a new clusterC.

6

• Assume that the fifth point is assigned to clusterB. The location ofB is then fixed. The sixth point
is in position5, and it cannot be assigned toA or B, and hence we must open a new cluster denoted
asC for this point. The seventh point is in position4, and it can be assigned to eitherB or C or to a
new clusterD.

– Assume that the seventh point is assigned to clusterB. B is now full. The next point is in
position4.4. This point cannot be assigned to clusterB due to the cardinality constraint, and
hence it must be assigned to eitherC or to a new clusterD.

∗ Assume that point 8 is assigned to clusterC. In this case, the next points are at positions
1.7, 2.8, 3.9, 5.5. None of these points can be assigned to existing clusters, thus there are
now seven clusters. The points can be served using only four clusters that contain three
points each:[1.7, 2.5], [2.8, 3.5], [3.9, 4.4], [4.5, 5.5]. Therefore, the competitive ratio in
this case is at least7/4.

∗ Assume that point 8 is assigned to clusterD. The next two points are at 3.3 and 2.1, two
new clusters are opened for them. Two additional points then appear at 1.1 and 2.2, and
at least one additional cluster must be opened for them, giving seven clusters. The points
can be served using only four clusters:[1.1, 2.1], [2.2, 3], [3.3, 4], [4.4, 5]. Therefore, the
competitive ratio in this case is at least7/4.

– Assume that the seventh point is assigned to clusterC. The position ofC is then fixed. The
next points appear at positions1.1, 2.2, 3.4, 5.5 and must be assigned to four new clusters. The
points can be served using only four clusters:[1.1, 2.0], [2.2, 3], [3.4, 4], [4.5, 5.5]. Therefore,
the competitive ratio in this case is at least7/4.

– Assume that the seventh point is assigned to clusterD. Now, two points appear at positions
2.9 and 1.8. Neither one can be assigned to an existing cluster, so there are now six clusters.
The points can be served using only three clusters:[1.8, 2.5], [2.9, 3.5], [4, 5]. Therefore, the
competitive ratio in this case is at least2.

• Assume that the fifth point is assigned to clusterC. The sixth point is in position1.1, and it must
be assigned to a new clusterD. The seventh point is in position0.1 and it can be either assigned to
clusterD or to a new clusterE.

– Assume that the seventh point is assigned to clusterD. The next points appear at positions
0, 1.2, 2.3 and must be assigned to three new clusters, sinceA is full and the location ofD is
fixed. The points can be served using four clusters:[0, 0.1], [1.1, 2], [2.3, 3], [3.5, 4.5]. Therefore,
the competitive ratio in this case is at least7/4.

– Assume that the seventh point is assigned to clusterE. The eighth point is in position4. The
input so far can be served using three clusters:[0.1, 1.1], [2, 3], [3.5, 4.5]. Therefore, the online
algorithm cannot use a new cluster for the eighth point. Since the distance to the sixth and
seventh point is too large, the online algorithm must assign the eighth point toB or C.

∗ Assume that the eighth point is assigned to clusterB. The next points are at positions
3.3, 3.4. At most one of these can be assigned toB, the other one must be assigned to a new
cluster. Finally there is a point at position 2.2, it must also be assigned to a new cluster. The
points can be served using four clusters:[0.1, 1.1], [2, 2.5], [3, 3.4], [3.5, 4.5]. Therefore, the
competitive ratio is again at least7/4.

∗ Assume that the 8-th point is assigned to clusterC. The final two points appear at positions
5.5 and 2.3 and must be assigned to new clusters:A is full and C cannot serve both 5.5
and 4. The points can be served using four clusters:[0.1, 1.1], [2, 2.5], [3, 4], [4.5, 5.5].
Therefore, the competitive ratio in this case is at least7/4.

7

We conclude that in all cases the competitive ratio of the online algorithm is at least7/4. ¤
Finally, we consider the casek ≥ 4. For this case we can show a tight bound of2. The algorithm

CONSTRAINED GRID (CGRID) acts as follows. CGRID appliesGRID in order to partition the request
points into mega-clusters. Each mega-cluster is partitioned in an online fashion into clusters consisting of
at mostk points. All these clusters are defined in the exact same interval as the mega-cluster. Thus, there is
at most one active cluster for each mega-cluster at each time. A new point is assigned to a mega-cluster and
then to an active cluster of this mega-cluster. If as a result the active cluster hask points, it is closed. If a
point is assigned to a mega-cluster which has no active cluster, such an active cluster is opened.

Theorem 4 CGRID has a competitive ratio of 2, which is best possible for anyk ≥ 4.

Proof Consider the cost of an optimal solutionOPT′ to the problemP ′ where every cluster must be
contained in an interval of the form(k, k + 1]. This cost is also denoted byOPT′. We can show that
OPT′ ≤ 2OPT as follows. Given a cluster ofOPT, [x, y] wherey ≤ x + 1. We can assume without loss of
generality thatx andy are request points, otherwise we can reduce the length of the cluster so that it fulfills
this property. Letz = dxe. If z ≥ y, we are done, since the interval is already contained in an interval of
the form(k, k + 1]. Otherwise, letz′ be the leftmost request point in(x, y] that is larger thanz, since the
input consists of a finite number of points, and sincey is a request point andy > z, the pointz′ must exist.
We split this cluster into the two parts[x, z] and [z′, y]. We show that our algorithm provides an optimal
solution toP ′. Since clusters ofOPT′ are always contained in an interval of the form(j, j + 1], given a set

of pointsJk in the interval(k, k + 1],
⌈ |Jk|

k

⌉
clusters ofOPT′ are required for this set, and this is exactly the

number of clusters that the algorithm uses. Thus the competitive ratio ofCGRID is at most 2.
To prove the lower bound, we define the following sequence. It starts withk requests,k− 2 of the point

1 and two of the point2. At this timeOPT = 1 and thus if at least two clusters are opened we are done. If
a single cluster is opened, this cluster cannot be used any further. Next, two points arrive which are4

3 and
5
3 . If two additional clusters are opened, the point3 is requested. We haveOPT = 2 (by assigning thek − 2
points at1, and the two points at43 and 5

3 to one cluster, and the other three points to another cluster). The
new point is too far from any cluster that can still receive points and thus the algorithm uses four clusters.
Otherwise, a single new cluster is opened. Two new points are presented;8

3 and 1
3 . These points require

two new clusters. However, an optimal solution would be to assign allk points in the interval[13 , 4
3] to one

cluster, and the remaining four points in[53 , 8
3] to another cluster. The competitive ratio is again2. ¤

5 Clustering with resource augmentation

In this variant of the problem, the online algorithm uses clusters of maximum lengthb which is larger
than the length of clusters used by an optimal offline algorithm which is used for comparison. Thus, each
arriving point must be assigned to a cluster upon arrival. The set of points assigned to one cluster by an
online algorithm must lie within an interval of lengthb. The cost of an algorithm is the number of the
clusters defined by the algorithm. An offline algorithm can assign a set of pointsS to one cluster if the
maximum distance between any two points isS is at most1.

5.1 Two initial results

The typical question in problems with resource augmentation is whether it is possible to reach a competitive
ratio of 1, or an even smaller competitive ratio. We show that the former is impossible forb < 2 and the
latter is never possible.

Proposition 2 For anyb > 1, the competitive ratio of any algorithm is at least1. For any1 < b < 2, the
competitive ratio of any algorithm is at least3

2 .

8

Proof An input which consists of a single point proves the first claim. The second claim follows from the
lower bound proof in Proposition 1. The first case is the same. In the second case, two new clusters must be
opened ifb < 2. ¤

We define the following algorithmCENTER, which is based on an algorithm suggested in [5] for the
standard unit covering problem. For every new request point, it is assigned to an existing cluster if possible.
Otherwise, for a request atx, a cluster[x− 1, x + 1] is opened.

Proposition 3 The competitive ratio ofCENTER for b ≥ 2 is 1.

Proof We assign each cluster opened byCENTER to a cluster used by an optimal offline algorithmOPT.
The assignment is done so that at most one cluster ofCENTER is assigned to each cluster ofOPT, and thus
the competitive ratio follows.

Given a cluster ofCENTER, A = [a − 1, a + 1], the pointa is a request point. ThusOPT must have a
clusterO which contains it. We assignA to O. Note thatO is contained inA. We next show that no other
clusters ofCENTERare assigned toO. Assume by contradiction that clusterB = [b−1, b+1] of CENTER is
assigned toO. Thenb is a request point. Without loss of generality, assume thatB is opened afterA. Then
the pointb does not belong to the interval[a− 1, a + 1], and thusb does not belong toO, contradiction.¤

5.2 Simple algorithms

Before we design an algorithm, we show that simple generalizations of previously known algorithms that
simply use longer clusters do not have a competitive ratio which is smaller than 2.

For a given value1 < b < 2 we define the algorithmLONG GREEDY (LGREEDY) as follows. A new
pointp fits into a clusterC if p can be assigned toC, so that its length does not exceedb. LGREEDY assigns
an arriving point to a cluster into which it fits, if such a cluster exists (ties are broken arbitrarily). If no such
cluster exists, a new cluster is opened for the new point.

Proposition 4 The competitive ratio ofLGREEDY for any fixed value ofb, such that1 < b < 2, is at least
2.

Proof Consider the following input. LetM be a large enough integer. Fori = 1, ...,M the points2i,
2i + b are requested (the points arrive from left to right). Next, the points2i + 1 + b

2 are requested for
i = 0, . . . , M . These points requireM + 1 additional clusters. Therefore,LGREEDY uses2M + 1 clusters.
An optimal offline solution opens the clusters[2i + 1, 2i + 2] for i = 0, . . . , M , thusOPT = M + 1. As M
grows, the competitive ratio tends to 2. ¤

We next define the algorithmLONG GRID (LGRID) as follows. Create a grid which consists of all points
of the formi · b for all (possibly negative, or zero) integer values ofi. If a new pointp does not fit into a
previously existing cluster, an interval of the form(j ·b, (j+1)b] is determined, such that the pointp belongs
to it, and a cluster is opened at[j · b, (j + 1)b].

Proposition 5 The competitive ratio ofLGRID for any fixed value ofb, such that1 < b < 2, is at least 2.

Proof Consider the following input. LetM be a large enough integer. Fori = 0, ..., M − 1 the points
2ib − 1/2 and2ib + 1/2 are requested.LGRID opens a cluster for each point, so these points require2M
clusters. An optimal offline solution opens the clusters[2ib − 1/2, 2ib + 1/2] for i = 0, . . . , M − 1, thus
OPT = M . ¤

Another generalization of a known algorithm isLONG CENTER (LCENTER). If a new pointp does not
fit into a previously existing cluster, this algorithm opens a cluster of lengthb centered atp.

9

Proposition 6 The competitive ratio ofLCENTER for any fixed value ofb, such that1 < b < 2, is at least
2.

Proof Consider the following input. LetM be a large enough integer. Fori = 1, ..., 2M the pointi is
requested.LCENTER opens a cluster centered at each point, so the only integer point contained in each
cluster is its center point. Therefore, these points require2M clusters. An optimal offline solution opens the
clusters[2i− 1, 2i] for i = 1, . . . ,M , thusOPT = M . ¤

Since previously known algorithms do not succeed to make use of the extended length of clusters, we
design an algorithm forb ∈ [3/2, 1) which fixes some clusters similarly to the algorithm of [12]. Unlike
that algorithm, the algorithm makes use of extending clusters, but only in particular cases, and otherwise it
is based on Greedy with clusters of length 1.

5.3 An algorithm with resource augmentation forb ∈ [3
2
, 2)

The main idea of this algorithm is simple: we take advantage of the resource augmentation by not having
to create new clusters between two clusters that are relatively close together (Step 1) and we do our best to
avoid the situation where three clusters intersect a common interval of length 1 (Step 2).

We first discuss a general property of algorithms of this type. An algorithm is calledthrifty if it never
opens a new cluster for a request point which fits in an existing cluster without extending its length beyond
1.

Lemma 1 For a thrifty algorithm, there can be no interval of length 1 which completely contains two
clusters.

Proof Assume that two clusters that are defined by a thrifty algorithm are contained in an interval of length
1. LetA andB be two such consecutive clusters (i.e., such that there is no cluster between them).

Without loss of generality, denote byA the cluster that is defined earlier by the algorithm. Letb be the
first request point inB. We consider the time at whichb is assigned to a cluster. Since the pointb fits in
A without extending its length above 1, a thrifty algorithm cannot createB at this time, which leads to a
contradiction. ¤

The algorithm is defined as follows. A cluster is calledsingleunless it has beenjoined with another
cluster in Step 1 or in Step 2. Letp be the new arriving point.

1. If p appears between two existing single clustersA andB, and the minimum distance between two
points fromA andB is at most 1, andp cannot be assigned to either cluster while keeping the lengths
at most 1, we extend both clusters to the point that is in the middle of the gap between them. Nowp is
contained in (at least) one of the clusters. Assignp to a cluster it is contained in. We now callA and
B joinedclusters.

2. If p appears between two existing single clustersA andB, andp can be assigned to both of them
while keeping the lengths at most 1, there are three cases.

(a) If there exist two additional clustersC andD that are at most 1 away fromp, join A andB at
pointp. Assignp arbitrarily toA or B.

(b) If there exists one additional clusterC such thatd(p, C) ≤ 1, assignp to the cluster amongA
andB which is closer toC.

(c) Else, assignp arbitrarily toA or B.

10

BA

BpA

<1<1

2 (a)

C D

C DBA

B

>1>1

Step 1

BA

BpA

<1<1

2 (b)

C

C BA

BpA

<1<1

2 (c)

A p

<1

Figure 1: Creation of a joined pair in Step 1 and 2(a), and other assignments

3. If p appears between a single clusterA and a joined clusterB, B was joined in Step 2,d(p, q) ≤ 1
for all request pointsq ∈ A andd(p, q) ≤ 1 for all pointsq ∈ B, then we assignp to B unless this
bringsB within a distance of 1 of another clusterC; in that case, assignp to A.

4. If p appears between two joined clusters and can be assigned to both of them while keeping their
lengths at most3/2, assignp arbitrarily to one of them.

5. If p can be assigned to only one existing cluster while keeping its length at most 1, do so.

6. If p is not assigned to a cluster by the previous rules, open a new cluster forp.

For an illustration, see Figure 1. A pair of clusters that is joined in Step 1 is called along pair, other
joined pairs are calledshort pairs. It can be seen that our algorithm is thrifty. Thus, it follows from Lemma
1 that if Case 2(a) occurs, clustersC andD must indeed be at different sides ofp. Note that by the definition
of the algorithm, clusters never overlap.

Note that Lemma 1 holds even if there are joined clusters nearby. Specifically, the lemma shows that for
two single clustersA andB that both contain only one request point, we haved(A,B) > 1.

5.4 Analysis

A pair of clusters are calledconsecutiveif there is no cluster that is located between them. In the following,
we will repeatedly discuss sets of consecutive clustersC1, C2, In such cases, denote the leftmost request
point contained inCi by `i and the rightmost request point byri. We now consider a fixed optimal offline
algorithm. We call the clusters used by this algorithm “optimal clusters”. The clusters used by our algorithm
are called “online clusters”. We say that an optimal clusterconnectstwo online clusters if it intersects both
of them.

11

As noted in [5], it is trivial to provide an optimal solution for a given input offline: starting from the left,
repeatedly define a cluster of length 1 that has as its left endpoint the leftmost unserved point. It can be seen
that in this solution, no two clusters overlap (not even at their endpoints). We will compare our algorithm to
this solution.

Lemma 2 There can be no interval of length 1 which intersects with three different online single clusters.

Proof Suppose there is such an interval which contains requests from the single clustersC1, C2 andC3

(from left to right). Note that these three clusters are consecutive clusters, since otherwise, if there is a
clusterC4 betweenC1 andC2 or betweenC2 andC3, thenC2 andC4 are fully contained in an interval of
length1 in contradiction to Lemma 1.

The assumption impliesd(r1, `3) ≤ 1. Let q be the oldest request point inC2. There are two cases. Ifq
is newer thanr1 and`3, C1 andC3 would have been joined together whenq arrived in Step 1 or Step 2, or
q would have been assigned to one of them in Step 2 or 5.

Otherwise, without loss of generality, letr1 be newer thaǹ3 (andq). Whenr1 arrives, it could be
assigned toC2, sincer1 is less than 1 away from the furthest point inC2. If our algorithm does not do this,
it must be because there was a second possible cluster to assignr1 to (Step 2). However, in this case,C1 and
C2 end up joined (Step 2(a)) orr1 gets assigned toC2 becauseC3 is less than 1 away fromr1 (Step 2(b)).
¤

Definition 1 A groupof online clusters is a maximal set of consecutive clusters such that each two succes-
sive clusters are ‘connected’ by an optimal cluster.

That is, ifC1, . . . , Cm (numbered from left to right) are consecutive online clusters that form a group, there
is an optimal cluster which contains bothri and`i+1 for i = 1, . . . ,m− 1. (These optimal clusters are not
necessarily all distinct.)

If there is more than one group, for each group we have that the leftmost point of the leftmost online
cluster is not to the right of the leftmost point of the leftmost optimal cluster by the way we construct our
optimal solution. Two clusters that are joined together are not necessarily in the same group.

Lemma 3 For m ≥ 3, at leastm − 1 optimal clusters are needed to serve all the request points inm
consecutive single clusters that are in the same group.

Proof If at mostm − 2 optimal clusters serve the requests inm consecutive single clusters, then there is
either an optimal cluster which servesall requests of at least two single clusters (impossible by Lemma 1)
or, if there is no such cluster, an optimal cluster that serves some requests from at least three online clusters
by the pigeonhole principle. This is impossible by Lemma 2. ¤

Lemma 4 It requires at least three optimal clusters to serve all requests from a long pair, and at least two
optimal clusters to serve all requests from a short pair. A long pair has at least one optimal cluster that is
fully contained in the union of the pair of online clusters.

Proof In Step 1,p is more than one away from the furthest endpoints of bothA andB, which are both
request points. This gives three points, each one of which must be in a different optimal cluster, which
implies that at least three optimal clusters are required to serve all the points in these two clusters. The
cluster that servesp is completely contained within the interval spanned byA andB.

In Step 2(a), the clustersA andB are not contained in an interval of length 1 by Lemma 1. Since their
endpoints are request points, the lemma follows. ¤

12

Lemma 5 Consider a clusterJ in a short pair, that is joined to a cluster on its left. The first cluster on its
right, sayC, already existed whenJ was joined. Just beforeJ was joined,J andC were not contained in
an interval of length 1.

Proof WhenJ was joined in Step 2, there was a clusterC ′ next to it thatJ does not get joined to.C ′ is
at most 1 away from the pointp that causedJ to be joined. Therefore, a future request pointp′ betweenC ′

andJ could be assigned toJ , since it is less than 1 away fromp which is the left endpoint ofJ . Since our
algorithm is thrifty, it does not open a new cluster forp′. ThereforeC ′ = C. The second statement follows
from Lemma 1. ¤

Lemma 6 There can be no optimal clusterX which serves requests from two single clustersC, E and a
joined clusterJ , unlessJ was joined in Step 1.

Proof Assume by contradiction thatX exists. By Lemma 1, these are three consecutive clusters.
We first prove thatJ is either to the left or to the right of the clustersC andE. Since online clusters do

not overlap, if this claim does not hold, then the cluster to whichJ is joined,J ′, as well asJ , are between
C andE. Since the distance betweenC andE is at most 1, we conclude thatJ andJ ′ are contained in an
interval of length 1, which contradicts Lemma 1.

Without loss of generality, we assume that the order of the three clusters from left to right isJ , C, E. J
was joined to a clusterJ ′ in Step 2, soC must have existed whenJ was joined by Lemma 5.

While E could have also existed already at this point, it could not yet have been within distance 1 of
J , since otherwise we would have three single clusters all intersecting an interval of length 1, contradicting
Lemma 2. Any request pointp′ that appears betweenJ andC can be assigned to eitherJ or C without
increasing the length of a cluster above 1. This holds forJ sinceC is of distance at most 1 from pointp
which is the left endpoint ofJ . This holds forC as the distance fromJ to E (or to the future left endpoint
of E, up to whichC would never be extended) is at most 1. Therefore, the conditions of Step 3 hold, and
hence pointp′ is assigned in Step 3 (sinceC remains single throughout the process considered here). The
pointp′ is not assigned toJ if this bringsJ within 1 of E.

Note that if a pointp′ appears betweenC andE, it can be assigned toC without increasing the length
of C above 1. Therefore such a pointp′ is not assigned in Step 1. Such a pointp′ is not assigned to a cluster
in Step 2(a) since otherwiseC andE would not be single. We have thatp′ is of distance of at most 1 from
J , so if p′ can be assigned toE, it is assigned toC in Step 2(b). Otherwise,p′ is assigned toC in Step 5.

Consider the leftmost pointp′′ in E. p′′ was not inE at the time whenJ was still single due to Lemma
2 (no matter whetherE existed at that time or not). By the above argument, sincep′′ is a new point between
C andE, it must be inserted toC and not toE. ¤

Lemma 7 Considerm ≥ 2 consecutive clusters, where the first and the last cluster are part of a short pair,
and the otherm− 2 clusters are single. If all these clusters are in one group, it takes at leastm− 1 optimal
clusters to serve all the requests of these clusters. Ifm = 2, two optimal clusters are needed.

Proof If m = 2, then if the two clusters are joined together as a short pair, we are done by Lemma 4.
If they are not joined together, let the left pair beA andB and the right pair beD andE. The names are
from left to right and we are interested in the optimal cost to serve the requests inB andD. SupposeA
andB were joined first. When they were joined, since this happened in Step 2,D already existed, but was
not contained in an interval of length 1 together withB by Lemma 5. Since all their endpoints were request
points beforeB was joined, this proves the lemma.

If m = 3, then just beforeD is joined toE (using the same notations for the joined clusters), the single
clusterC betweenB andD already exists by Lemma 5, and we can apply Lemma 6 toB and the single
clustersC andD.

13

Now considerm > 3. Denote the single clusters byC1, . . . , Cm−2. Again letA andB be the short pair
that was joined first. We know by Lemma 1 (ifm = 4) and Lemma 3 that at leastm − 3 optimal clusters
are needed to serve them− 2 single clusters. Since the single clusters are all in one group, there are in fact
m − 3 optimal clusters which serve requests from two single clusters, because this is the number of gaps
between the single clusters, and no optimal cluster can serve requests from three single clusters by Lemma
2. If any of thesem − 3 clusters also serves a request fromB or D, then since no two optimal clusters
overlap, it must be one of the outermost optimal clusters, contradicting Lemma 6. This proves the existence
of two additional optimal clusters, proving the lemma. ¤

Theorem 5 This algorithm has a competitive ratio of 5/3.

Proof We first show an upper bound of5/3. We partition the real line into intervals. The endpoints of the
intervals are shared endpoints of joined pairs. If there are two consecutive clusters that are not in the same
group, we also define an endpoint between them if there was not one already. There are two half-bounded
intervals on either side, and each group may begin and end with a single cluster.

We consider the competitive ratio of our algorithm on each of these intervals separately. Note that as
defined, each interval is entirely contained within one group. If there are no joined pairs within an interval,
we are done by Lemmas 1 and 3.

Next we consider intervals that have joined pairs at both ends. For long pairs we assign to both clusters
of the pair 3/2 optimal clusters for the calculations, using Lemma 4.

For our analysis, it is irrelevant where exactly the optimal clusters are that serve the requests of joined
pairs. This leaves us with only a few cases, depending on the types of the pairs that form the endpoints of
the current interval, and how many single clusters are between them.

First of all, if there are short pairs at both ends, we are done immediately by Lemma 7. If there is a long
pair at at least one end, then some requests fromtwosingle clusters at that end might be served by the same
optimal cluster. For additional single clusters after that, we have Lemma 3. Regarding an end with a short
pair, we know that whenJ (the half of the short pair which is inside the current interval) was joined, the
single clusterC immediately next to it already existed, andJ andC were not contained in an interval of
length 1 by Lemma 5. Moreover, there is no optimal cluster which serves requests fromJ , C and a third
single cluster by Lemma 6. Therefore, for the purposes of this analysis,J acts like a single interval.

Overall, we find the following results. The column Cost indicates upper bounds on the cost.
Left pair Right pair Number of single clusters Cost Optimal cost Proof

short short at most 1 3 2 Lemma 7
m ≥ 2 m + 2 m + 1 Lemma 7

short long 0 2 3/2 Assignment
1 or 2 4 5/2 Lemma 5
m ≥ 3 m + 2 m + 1/2 Lemmas 3, 6

long long 0 or 1 3 2 Note 1
2 or 3 5 3 Note 2
m ≥ 4 m + 2 m Note 3

Note 1: we assign3/2 from both ends to this interval, but we may count (at most) one optimal cluster
twice, thus we assign at least 2 in total.

Note 2: Now there is no double counting by Lemma 1.
Note 3: Them single clusters require at leastm − 1 optimal clusters by Lemma 3. Each long pair

contributes an additional1/2 cluster that does not serve points of single clusters (Lemma 4).
Finally we consider intervals that do not have a joined pair at both ends, but do not contain only single

clusters. If an interval contains only one (joined) cluster, this just adds 1 to the online and optimal cost of
the interval that contains the cluster with which it is joined, improving the competitive ratio on that interval.

14

If an interval contains more than one cluster, then w.l.o.g. let the rightmost clusterJ be joined. Consider
the offline cost to serve all requests in the group up to and includingJ . If J is part of a long pair, we find
a ratio of2/1.5 = 4/3 if there is only one single cluster, and the ratio decreases due to Lemmas 1 and 3 if
there are more. IfJ is in a short pair, the ratio is3/2 for one or two single clusters and decreases for more
in the same way. This completes the proof of the upper bound.

We now show a matching lower bound for this algorithm. Leti run from 1 toM for some large value
M . First we give requests at the points6i, 6i+1, 6i+2, 6i+3 for i = 1, . . . , M . The algorithm creates2M
clusters. Then we give requests at the points6i + 3/2 for i = 1, . . . , M , this causes Step 1 to be executed
M times. No new clusters are created in this phase.

We then give requests at points6i + 4, 6i + 5 for i = 1, . . . , M . The algorithm createsM additional
clusters. Finally we give requests at points6i + 10/3, 6i + 17/3 for i = 1, . . . , M . This generates2M
additional clusters for a total of5M clusters.

It is easy to see that all request points can be served by the set of clusters[i, i + 1] for all oddi between
5 and6M + 5. This is a set of6M/2 + 1 = 3M + 1 clusters. Thus for largeM , the ratio tends to5/3. ¤

6 Clustering with temporary points

In this variant of the problem, points arrive and depart online. Every event is either an arrival or a departure
of a point. At every time, a cluster can serve points that belong to an interval of length at most 1. The points
that need to be taken into account at every time are those that already arrived and did not depart yet. The
momentary cost of an algorithm (at a given time) is the number of clusters that are used to cover at least one
point at this time. The cost of an algorithm is its maximum momentary cost over time. Each arriving point
must be assigned to a cluster upon arrival and remains assigned to this cluster until its departure.

We can show a tight bound of 2 for this problem. The algorithm we use isGRID, where the algorithm
closes clusters which do not have points assigned to them due to departure of points.

Theorem 6 GRID has competitive ratio 2 for clustering with temporary points, and this is best possible.

Proof To prove the upper bound, we show in the sequel that at every time, the momentary cost ofGRID

is at most twice the momentary cost ofOPT. This would imply a ratio of at most 2 between the costs of the
two algorithms. Consider any timet during processing, and let the set of points existing at this time (live
points) beJt. Let x be the number of intervals of the form(a, a + 1] that contain at least one live point. At
this time,GRID hasx open clusters, its momentary cost isx. However, an optimal algorithm can serve by
each one of its clusters points from at most two clusters, thus the momentary cost ofOPT is at leastx2 , as we
claimed.

To prove a lower bound, we construct the sequence in phases. In each phase a set of three points arrives,
and then one point departs. Specifically, in phasei, the three points4i, 4i + 1, 4i + 2 arrive. These points
are too far from any previous point and thus new clusters must be opened for them. The algorithm must use
exactly two different clusters,A andB for the points4i and4i + 2. If the point4i + 1 is in the same cluster
as4i, then the point4i departs, and otherwise4i + 2 departs. An optimal algorithm uses one cluster for the
point that departs and another cluster for the points that remain.

For anyi = 1, . . ., the momentary cost ofOPT after the arrival of the points of phasei, and before the
departure of one point of this phase, isi + 1, since it opens two clusters for the new points of this phase.
However, after the departure of one point, the momentary cost ofOPT becomesi.

The algorithm will use at least2i clusters afteri phases, since the points of phasei enforce it to use at
least two new clusters, no matter if a point of this phase has departed already. Thus the lower bound will
follow from applyingM phases for an arbitrarily largeM , which gives a ratio of at least2M

M+1 → 2. ¤

15

7 Concluding remarks

In this paper we study variants of the online clustering problem. For most of these variants we present tight
bounds on the competitive ratio of any online algorithms. We note that one can study these variants of the
online covering problem as well. However, most of our results hold also for that model as discussed in the
following. The lower bounds (for all our variants) clearly hold also for the version of the online covering
problem. As for the upper bounds, we note that the algorithms based onGRID, or on CENTER fix the
position of the cluster once it is opened. Therefore, we conclude that the following upper bounds hold: the
upper bound of 3 for online covering with rejection (using the analysis ofRGRID), the upper bound of 2 for
online max covering (using the analysis ofGRID for the online max clustering problem), the upper bound of
2 for online cardinality constrained covering problem (using the analysis ofCGRID), an upper bound of 1
for the online covering with resource augmentation ofb ≥ 2 (using the analysis ofCENTER), and an upper
bound of 2 for online covering with temporary points (using the analysis ofGRID for the online clustering
with temporary points). For most of these variants this gives tight bounds as well.

References

[1] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line load balancing with
applications to machine scheduling and virtual circuit routing.Journal of the ACM, 44:486–504, 1997.

[2] Yossi Azar and Leah Epstein. On-line load balancing of temporary tasks on identical machines.SIAM
Journal on Discrete Mathematics, 18(2):347–352, 2004.

[3] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line bin-packing
problems with cardinality constraints.Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[4] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jiri Sgall, and Leen Stougie. Multi-
processor scheduling with rejection.SIAM Journal on Discrete Mathematics, 13:64–78, 2000.

[5] Timothy M. Chan and Hamid Zarrabi-Zadeh. A randomized algorithm for onine unit clustering. In
Proc. 4th Workshop on Approximation and Online Algorithms (WAOA 2006), volume 4368 ofLecture
Notes in Comput. Sci., pages 121–131. Springer, 2006.

[6] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering and
dynamic information retrieval.SIAM Journal on Computing, 33(6):1417–1440, 2004.

[7] György Dósa and Yong He. Bin packing problems with rejection penalties and their dual problems.
Information and Computation, 204(5):795–815, 2006.

[8] Leah Epstein. Bin packing with rejection revisited. InProc. of the 4th International Workshop on
Approximation and Online Algorithms (WAOA 2006), volume 4368 ofLecture Notes in Comput. Sci.,
pages 146–159. Springer, 2006. Also in Algorithmica, to appear.

[9] Leah Epstein. Online bin packing with cardinality constraints.SIAM Journal on Discrete Mathematics,
20(4):1015–1030, 2006.

[10] Leah Epstein and Asaf Levin. On the max coloring problem. InProc. 5th Workshop on Approximation
and Online Algorithms (WAOA 2007), volume 4927 ofLecture Notes in Comput. Sci., pages 142–155.
Springer, 2008.

16

[11] Leah Epstein, Asaf Levin, and Gerhard J. Woeginger. Graph coloring with rejection. InProc. of
the 14th Annual European Symposium on Algorithms (ESA2006), volume 4168 ofLecture Notes in
Comput. Sci., pages 364–375. Springer, 2006.

[12] Leah Epstein and Rob van Stee. On the online unit clustering problem. InProc. 5th Workshop on
Approximation and Online Algorithms (WAOA 2007), volume 4927 ofLecture Notes in Comput. Sci.,
pages 193–206. Springer, 2008.

[13] Michel X. Goemans and David P. Williamson. A general approximation technique for constrained
forest problems.SIAM Journal on Computing, 24(2):296–317, 1995.

[14] Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering.Journal of
Algorithms, 48(1):257–270, 2003.

[15] András Gýarfás and Jen̈o Lehel. On-line and first-fit colorings of graphs.J. Graph Theory, 12:217–
227, 1988.

[16] Edward G. Coffman Jr., Michael R. Garey, and David S. Johnson. Dynamic bin packing.SIAM Journal
on Computing, 12:227–258, 1983.

[17] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance.Journal of the ACM,
47(4):617–643, 2000.

[18] Hal A. Kierstead. Coloring graphs on-line. In Amos Fiat and Gergard J. Woeginger, editors,Online
Algorithms: The State of the Art, pages 281–305. Springer, 1998.

[19] Hal A. Kierstead and William T. Trotter. An extremal problem in recursive combinatorics.Congr.
Numer., 33:143–153, 1981.

[20] Lászĺo Lovász, Michael E. Saks, and W. T. Trotter. An on-line graph coloring algorithm with sublinear
performance ratio.Discrete Math., 75:319–325, 1989.

[21] Mohammad Mahdian, Yingyu Ye, and Jiawei Zhang. A 2-approximation algorithm for the soft-
capacitated facility location problem. InProc. of the 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX 2003), volume 2764 ofLecture Notes
in Comput. Sci., pages 129–140. Springer, 2003.

[22] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi R. Varadarajan. Buffer minimization using max-
coloring. InProc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pages
562–571, 2004.

[23] Hamid Zarrabi-Zadeh and Timothy M. Chan. An improved algorithm for online unit clustering. In
Proc. of the 13th Annual International Computing and Combinatorics Conference (COCOON 2007),
volume 4598 ofLecture Notes in Comput. Sci., pages 383–393. Springer, 2007.

17

