
Variable Sized Online Interval Coloring with

Bandwidth

Leah Epstein1, Thomas Erlebach2, and Asaf Levin3

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
lea@math.haifa.ac.il

2 Department of Computer Science, University of Leicester, University Road,
Leicester LE1 7RH, United Kingdom. te17@mcs.le.ac.uk

3 Department of Statistics, The Hebrew University, Jerusalem, Israel.
levinas@mscc.huji.ac.il

Abstract. We consider online coloring of intervals with bandwidth in
a setting where colors have variable capacities. Whenever the algorithm
opens a new color, it must choose the capacity for that color and cannot
change it later. The goal is to minimize the total capacity of all the
colors used. We consider the bounded model, where all capacities must be
chosen in the range (0, 1], and the unbounded model, where the algorithm
may use colors of any positive capacity. For the absolute competitive
ratio, we give an upper bound of 14 and a lower bound of 4.59 for the
bounded model, and an upper bound of 4 and a matching lower bound of
4 for the unbounded model. We also consider the offline version of these
problems and show that the unbounded model is polynomially solvable,
while the bounded model is NP-hard in the strong sense and admits a
3.6-approximation algorithm.

1 Introduction

Online interval coloring has received much attention recently. In the basic prob-
lem, the nodes of an interval graph arrive online, one by one, together with the
interval representation. The goal is to find a proper vertex coloring (i.e., each
pair of adjacent vertices, i.e. intersecting intervals, are assigned distinct colors)
with a minimum number of colors. The coloring has to be determined online,
i.e., each new interval must be assigned a color upon arrival.

This standard problem was studied by Kierstead and Trotter [14]. They con-
structed an online algorithm that uses at most 3ω − 2 colors where ω is the
maximum clique size of the interval graph. They also presented a matching
lower bound of 3ω − 2 on the number of colors in a coloring of an arbitrary
online algorithm. Note that the chromatic number of interval graphs equals the
size of a maximum clique, which is equivalent in the case of interval graphs to
the largest number of intervals that intersect any point (see [11]). Many papers
studied the competitive ratio of First-Fit for this problem [12, 13, 17, 4]. The lat-
ter reference shows that the competitive ratio of First-Fit is strictly worse than
the competitive ratio of the algorithm from [14].

Adamy and Erlebach [1] introduced the interval coloring with bandwidth
problem and presented a 195-competitive algorithm. In this problem each in-
terval has a bandwidth requirement in (0, 1]. The intervals are to be colored so
that at each point, the sum of bandwidths of intervals colored by a certain color
does not exceed 1. This problem was also studied in [16], giving an improved
competitive ratio of 10, and in [8], showing a lower bound of 3.2609.

We study a variant of this problem, where colors are not necessarily of ca-
pacity 1 as in [1]. The input arrives as in this model, but an algorithm may use
colors of arbitrary capacity. In an online environment, the capacity of a color is
determined when the color is first used. The coloring is valid if for every color a
that is used with capacity Ca, at each point the sum of bandwidths of intervals
colored by a does not exceed Ca. The cost of a coloring is the sum of the capaci-
ties of the colors used. We study the unbounded model, with no restriction on the
capacities of colors, and the bounded model, where capacities cannot exceed 1.

The interval coloring problem with bandwidth of [1] is a generalization of
the well known bin packing problem (see e.g. [7, 5, 19]). Our problem is related
to variable sized bin packing (see [15, 10, 6, 18, 20]), but does not generalize it.
In the bin packing problem, allowing the usage of bins of any size (even if the
sizes are bounded by 1) leads to a simple 1-competitive algorithm, which assigns
every item a bin of the same size. In the variable sized bin packing problem, a
set of allowed bin sizes is set in advance.

As mentioned in [1], the interval coloring problem with bandwidth arises in
many applications, often from the field of communication networks. Consider a
network with a line topology that consists of links, where each link has channels
of constant capacity. A connection request is from one network node a to another
node b and has a bandwidth associated with it. The set of requests assigned to
a channel must not exceed the capacity of the channel on any of the links on
the path [a, b]. The goal is to minimize the number of channels (colors) used. In
our problem, we can choose the capacity of the channel, and therefore we pay a
cost proportional to the capacity of the channel, rather than a fixed cost as in
the case of unit capacity channels. A connection request from a to b corresponds
to an interval [a, b] with the respective bandwidth requirement and the goal is
to minimize the sum of capacities of the channels used to serve all requests. We
allow different capacities since not all channels are necessarily identical.

Another important application comes from scheduling. A requested job has a
starting time, a duration, and a resource requirement during its execution. Jobs
(intervals) arrive online and must be assigned to a machine (color) immediately.
It is possible to pick a machine of any capability, which is fixed when the machine
is ordered. The cost of the machine is proportional to its resource capacity. The
objective is to minimize the sum of the costs of the machines used.

For an algorithm A, we denote its cost by A as well. The cost of an optimal
offline algorithm that knows the complete sequence of intervals is denoted by
OPT. We consider the absolute competitive ratio and the absolute approxima-
tion ratio criteria. For an online algorithm we use the term competitive ratio
whereas for an offline algorithm we use the term approximation ratio. The com-

petitive ratio of A is the infimum R such that for any input, A ≤ R · OPT.
If the competitive ratio of an online algorithm is at most C we say that it is
C-competitive. The approximation ratio of a polynomial time offline algorithm
is defined similarly to be the infimum R such that for any input, A ≤ R ·OPT.
If the approximation ratio of a polynomial time offline algorithm is at most R
we say that it is an R-approximation algorithm.

We first consider the online problem. We give tight bounds for the unbounded
model, showing that the competitive ratio achieved by applying doubling is 4,
and this is best possible. For the bounded model, we show that an adaptation of
the algorithm in [16] combined with doubling is 14-competitive. We prove that
no algorithm has competitive ratio better than 4.59.

We further show that the offline unbounded problem can be solved optimally
using a simple polynomial algorithm, while the bounded problem is NP-hard in
the strong sense. For that problem we design an approximation algorithm with
ratio 18

5 = 3.6. Some proofs are omitted due to space restrictions.

2 Preliminaries

The following KT`b algorithm for the online interval coloring with bandwidth
problem was studied by Epstein and Levy [8, 9] (see also [16]). We are given
an upper bound b on the maximum bandwidth request and a parameter `. The
algorithm partitions the requests into classes and then colors each class using
the First-Fit algorithm. The partition of the requests is performed online so that
a request j is allocated to class m, where m is the minimum value so that the
maximum load of the requests that were allocated to classes 1, 2, . . . ,m with the
additional new request is at most m`. For an interval vi that was allocated to
class m a critical point of vi is a point q in vi so that the set of all the intervals
that were allocated to classes 1, 2, . . . ,m − 1 prior to the arrival of vi, together
with vi, has total load strictly larger than (m − 1)` in q (i.e., q prevents the
allocation of vi to class m − 1). They proved the following lemmas.

Lemma 1. Given an interval vi that was allocated class m. For the set Am of

intervals that were allocated to class m, and for every critical point q of vi the

total load of Am in q is at most b + `. If all intervals have the same bandwidth

b, and ` is divisible by b, this total load is at most `.

Lemma 2. For every m, the set Am of intervals that were allocated to class m
has a maximum load of at most 2(b+`). If all intervals have the same bandwidth,

b, and ` is divisible by b, the set Am of intervals that were allocated to class m
has a maximum load of at most 2`.

Lemma 3. The number of classes used by the algorithm is at most dω∗

`
e, where

ω∗ is the maximum load.

3 Online Algorithms

3.1 The Unbounded Model

Our algorithm for the unbounded model simply uses standard doubling (see
[3, 2]). I.e., we keep a current “guess” of the maximum load of the complete
sequence, which is actually a lower bound on the load, and a single active color.
On the arrival of the first interval, we initialize the guess to be the smallest
(negative) power of 2 that is not larger than the bandwidth requirement of the
interval. We open the first color with capacity which is twice the guess. Each
time an interval arrives we color it with the active (i.e., last opened) color if
possible. If a new interval arrives that cannot be colored with the active color,
this means that the maximum load is at least twice larger than the current guess.
We therefore update the guess to equal twice the current guess, and open a new
color with its capacity equal to twice the new value of the guess. Repeat this
process until the interval can be colored with the most recently opened color.
This color becomes active.

Theorem 1. The competitive ratio of the above algorithm is 4.

Proof. If there is a single color used by the algorithm, then its capacity is at most
twice the largest load, and the competitive ratio is bounded by 2. Otherwise,
consider the last time a new color was opened by the algorithm. The value L
that is the current guess of the maximum load at this time is a lower bound on
OPT. The new color has capacity 2L, and since each time a new color is opened
its capacity is at least twice the previous capacity, we conclude that the total
cost of the algorithm is at most 2L + L + L

2 + · · · + L
2i + · · · ≤ 4L ≤ 4OPT. ut

Given a non-negative small value 0 < ε < 1
6 , we next describe a modified

procedure whose asymptotic competitive ratio is 2 + ε. The algorithm runs the
KT`b algorithm with “unit” capacity that is set to 1

ε
. In order to use the algo-

rithm with unit capacities, we multiply the bandwidth of all input intervals by
ε. In this way we get b = ε and therefore we can use ` = 1

2 − ε, so that each class
of the algorithm can be packed using one color. Using Lemma 3, we can show
that the algorithm has the following performance guarantee:

Theorem 2. There is an online algorithm that for each input sequence provides

a solution with cost at most (2 + ε)OPT + O(1
ε
).

3.2 The Bounded Model

Our algorithm for this case is the following adaptation of the algorithm of
Narayanaswamy [16] for the online interval coloring problem with bandwidth.
We partition the requests into three groups. Large requests are requests with
bandwidth in the interval

(

1
2 , 1
]

, medium requests are requests with bandwidth

in the interval
(

1
4 , 1

2

]

, and small requests are requests with bandwidth at most
1
4 . We use disjoint colors for coloring requests of distinct groups. Our algorithm

is different from the algorithm of [16] mainly in the procedure for coloring the
small requests.

For packing large requests we use unit capacity colors, and pack these requests
using Kierstead and Trotter’s algorithm [14] for online interval coloring (without
bandwidth). This is equivalent to using the algorithm in Section 2 with ` = 1
and ignoring bandwidth requirements. In this case the total load of a class is at
most two requests at each point, and as explained in [14], each class requires at
most three colors.

Lemma 4. The total cost of the colors used for large requests is at most 6·OPT.

For packing medium requests we again use unit capacity colors, and pack these
requests using the algorithm in Section 2, giving each interval bandwidth of 1

2 .
This is similar to using Kierstead and Trotter’s algorithm for online interval
coloring (without bandwidth). Each class is packed using one color (and not
three colors). This packing of each class is feasible by Lemma 2, since we use
b = ` = 1

2

Lemma 5. The total cost of the colors for medium requests is at most 4 ·OPT.

It remains to describe the packing of the small requests. We partition the
small requests into type 1 requests and type 2 requests. A type 1 request is a
request such that upon its arrival, for each point within the request the total
load of previously presented type 1 requests, plus the load of the new request,
is at most 1

2 . A type 2 (small) request is a small request that is not a type 1
request.

We use separate sets of colors for type 1 small requests and type 2 small
requests. The type 1 small requests are packed using the doubling procedure
(described in the unbounded model). Recall that in that procedure, the capacity
of each color that we use is an integer power of 2. Therefore, the last opened
color that we use for small requests of type 1 has a capacity of at most 1

2 .
The packing of type 2 small requests uses only colors with unit capacity and

is carried out by applying algorithm KT`b for ` = 1
4 and b = 1

4 . More precisely,
we apply algorithm KT`b to all small requests, but the requests that are assigned
to the first two classes by KT`b are actually the type 1 small requests that are
handled as explained above.

The purpose of this partition into types is that if the load caused by the
small intervals is very low, then opening a color of capacity 1 right away might
be an overkill for the small intervals. Specifically, we want to show an absolute
competitive ratio of 4, which would be impossible if a unit capacity color was
opened immediately.

Lemma 6. The total cost of the colors used for small requests is at most 4·OPT.

Proof. If there is no type 2 small request, then the claim holds since the doubling
procedure is a 4-competitive algorithm. Thus, we can assume that there is at
least one type 2 small request. Note that in this case all colors that we use to

color type 1 small requests have a total cost that is at most 1. Consider the
execution of the algorithm KT`b for ` = 1

4 and b = 1
4 on the complete input

(i.e., already starting at the first interval). All intervals of the first two classes
that would have been opened by KT`b are colored in our algorithm by the set of
colors which are given capacities smaller than 1. To see this last property note
that by the definition of KT`b, the first two classes of the algorithm contain only
intervals whose total load is at most 2` = 1

2 . All these intervals are by definition
type 1 small requests. Therefore, if we denote by ω∗ the maximum total load
of the small requests, then OPT ≥ ω∗ and the number of unit capacity colors
that the algorithm uses in order to pack the type 2 small requests is at most
⌈

ω∗

`

⌉

−2 ≤ 4ω∗+1−2 = 4ω∗−1. Since the total cost of the type 1 small requests

is 1, we conclude that the algorithm packs the small requests using colors with
total cost that is at most 4ω∗ ≤ 4 · OPT. ut

Using Lemmas 4, 5 and 6, we establish the following theorem.

Theorem 3. There is a 14-competitive online algorithm for the bounded model.

4 Lower Bounds

4.1 The Unbounded Model

We next show that the competitive ratio of our algorithm for the unbounded
model is best possible. In the proof we again apply methods similar to [3].

Theorem 4. Any online algorithm for the unbounded model has a competitive

ratio of at least 4.

Proof. Before we construct the lower bound we note that we assume for ease of
presentation that bandwidth requirements can be numbers larger than 1. Clearly,
the unbounded model is equivalent to any model where the bandwidths are
bounded by some constant (not necessarily 1). Before presenting the sequence,
we can compute a bound on the largest bandwidth needed for the proof, and
thus our lower bound satisfies the model.

Our construction of the lower bound for the unbounded model is based on
instances in which OPT equals the maximum load, whereas the algorithm tries to
guess an upper bound on the maximum load, and pays the sum of all its guesses.
We consider input sequences with the following structure. The first interval is
[0, 1] with a unit bandwidth request. Given an arbitrary prefix of intervals for
which the algorithm opened the set of colors with capacities c1 ≤ c2 ≤ · · · ≤ ck

the next interval is disjoint to all the previous intervals with bandwidth request
ck+ε for a sufficiently small value of ε. Then, the algorithm needs to open another
color with capacity at least ck+1 ≥ ck + ε. Note that at this step OPT = ck + ε
as all the intervals are disjoint and therefore they all fit into a common color
with capacity ck + ε, whereas the algorithm pays

∑k+1
j=1 cj .

Given a fixed value of ρ that is strictly smaller than 4, we will show that if
our input sequence is long enough an online algorithm cannot pay at each step k

at most ρ times the cost of OPT at this step (the sequence can be stopped at any
point, preventing all future intervals from arriving). Assume that this does not
hold, and that there is a ρ-competitive online algorithm with ρ = 4− δ for some
δ > 0. Denote this algorithm by A. Assume that given the above input sequence
for the value of ε that satisfies 1

1+ε
= 1 − δ2, A opens colors with capacities

c1 < c2 < · · · < ck < · · ·. Then, since A is ρ-competitive, the inequalities c1 ≤ ρ

and
∑k+1

j=1 cj ≤ ρ(ck + ε) must hold. Let rk+1 = 4 − δ −

∑

k

j=1
cj

ck+ε
, for k ≥ 1. The

inequality above implies ck+1

ck+ε
≤ rk+1. Note that if rk+1 < 1, A cannot open a

color of sufficient capacity in step k + 1 without violating the assumption that
its competitive ratio is ρ. We will show that the values rk+1 for k = 1, 2, . . . form
a decreasing sequence so that rk+1 must be strictly less than 1 for some large
enough value of k (depending only on ε). This is a contradiction to rk+1 ≥ 1 and
shows that such a sequence of ck’s cannot exist, hence no algorithm can achieve
competitive ratio 4 − δ for any δ > 0.

First, we observe that r2 = 4 − δ − c1

c1+ε
≤ 4 − δ. Next, we will show that

rk+2 ≤ rk+1/(1+γ) for all k ≥ 1 (as long as rk+1 ≥ 1), where γ > 0 is a constant
chosen in such a way that 4

1+γ
≥ 4− δ2 is satisfied. Assuming that rk+1 ≤ 4− δ

was shown by induction, we can use elementary calculations to bound rk+2 as
follows:

rk+2 = 4 − δ −

∑k+1
j=1 cj

ck+1 + ε
≤ 5 − δ −

1

1 + ε
−

4 − δ

rk+1(1 + ε)

This expression can be shown to be bounded by rk+1/(1 + γ). ut

4.2 The Bounded Model

In order to construct the lower bound, we use as a black box the lower bound
of Kierstead and Trotter [14] given originally for the standard online interval
coloring problem. They designed for any integer k a lower bound sequence where
the clique size is at most k, whereas any online algorithm is forced to use 3k− 2
colors. In [8] it was shown that this construction can be adapted to the case
where the value k or bounds on it are known in advance to the algorithm.

Theorem 5. Any online algorithm for the bounded model has a competitive

ratio of at least 4.5.

Proof. Let k be a large enough integer. We are going to have at most two such
constructions, where there is no overlap between the intervals of the two con-
structions. Let ε > 0 be a small value, such that P = 1

2ε
is an integer. We start

with such a construction where all intervals have bandwidth 1
2 + ε. Since the

largest possible capacity of a color is 1, no two overlapping intervals can receive
the same color, and therefore the algorithm is forced to use 3k−2 colors, whereas
an optimal offline algorithm can use at most k colors, each of capacity 1

2 + ε.
The second construction will use intervals of bandwidth 1

2 + jε for some
2 ≤ j ≤ P . In this construction as well the algorithm is forced to use 3k − 2
colors of capacity at least 1

2 + jε, whereas the construction is k-colorable. An

optimal offline algorithm uses k colors of capacity 1
2 + jε each, and these colors

are used to color all intervals of the first construction as well. Consider the 3k−2
colors with largest capacity opened by the algorithm for the first construction.
Let s be the number of colors out of these colors whose capacity is strictly smaller
than 1

2 + jε. The algorithm has to open at least s new colors of capacity 1
2 + jε.

Already in the first construction, the algorithm only needs to open colors
whose capacities are in the set { 1

2 + ε, 1
2 + 2ε, . . . , 1

2 + Pε = 1}. Consider only
the 3k − 2 colors of largest capacities that are opened for the first construction.
Let Xj for 1 ≤ j ≤ P be the number of colors of capacity 1

2 + jε.
Let C be the competitive ratio. The cost of the algorithm for the first con-

struction is at least
∑P

j=1(
1
2 + jε)Xj . Note that according to the definition of

the values Xj ,
∑P

j=1 Xj = 3k − 2, therefore we can write this lower bound on

the cost as 3k
2 − 1 + ε

∑P
j=1 jXj . Since the optimal cost is (1

2 + ε)k, we get
3k
2 − 1 + ε

∑P
j=1 jXj ≤ C(1

2 + ε)k. This is equivalent to

P
∑

j=1

jXj ≤ CP (1 + 2ε)k − 3kP + 2P . (1)

For every 2 ≤ j ≤ P we get a lower bound on the cost of the algorithm
for the second construction of

∑P
i=1(

1
2 + iε)Xi + (3k − 2 −

∑P
i=j Xi)(

1
2 + jε) =

(3k− 2)(1+ jε)+ ε
∑j−1

i=1 iXi + ε
∑P

i=j(i− j)Xi −
1
2

∑P
i=j Xi. As this value must

be at most Ck(1
2 + jε), we get

j−1
∑

i=1

iXi +
P
∑

i=j

(i − j)Xi − P
P
∑

i=j

Xi ≤ P (C − 6)k + 4P + j(C − 3)k + 2j . (2)

For each 1 ≤ j ≤ P , we multiply the inequality for j by aj , and add up the
resulting inequalities. The coefficients are a1 = P+1

2 (for equation (1)), and for
j > 1, aj = 1. Next, we compute the coefficient of each value Xi, 1 ≤ i ≤ P , in
the resulting inequality. Given a value Xi, its coefficient in the inequality (1) is
i. Its coefficient in the inequality (2) for j > i is i and for j ≤ i is i − j − P .
Thus, we get

P + 1

2
i +

i
∑

j=2

(i − j − P) +

P
∑

j=i+1

i = i

(

3P − 1

2

)

− P (i − 1) −

(

i(i + 1)

2
− 1

)

=
iP

2
+

i

2
+ iP − i − Pi + P −

i2

2
−

i

2
+ 1 ≥ (P − i) ·

i + 2

2
≥ 0 .

Therefore the left hand side of the resulting inequality is non-negative. Next,
consider the right hand side. It is equal to P+1

2 (CP (1 + 2ε)k − 3kP + 2P) +
∑P

j=2(P (C − 6)k + 4P + j(C − 3)k + 2j) = P+1
2 (CP (1 + 2ε)k − 3kP + 2P) +

(P −1)(P (C−6)k+4P)+((C −3)k+2)(P (P+1)
2 −1). Letting k tend to infinity,

we get the following inequality on C.

0 ≤ (P 2 + P)(C(
1

2
+ ε) −

3

2
) + (P 2 − P)(C − 6) + (C − 3)

P 2 + P − 2

2

Next, we let P tend to infinity and get 0 ≤ C−3
2 +(C − 6)+ C−3

2 = 2C − 9. This
gives a lower bound of 4.5 on C. ut

Remark 1. Running a linear program using Matlab for P = 400 we can get a
lower bound of 4.591 on C.

5 Offline Problems

5.1 The Unbounded Model

The offline problem is clearly polynomially solvable for the unbounded model.
The algorithm computes the maximum load, and then opens a single color with
capacity equal to the maximum load. Clearly all the intervals can be colored
using this color, and we obtain a feasible solution whose cost equals the maximum
load, which is a lower bound on the optimal cost. Hence, we can conclude the
following.

Proposition 1. The offline problem of the unbounded model is polynomially

solvable.

5.2 The Bounded Model

First, we can show that the resulting offline problem for the bounded model is
NP-hard, using a reduction from the 3-Partition problem.

Theorem 6. The offline problem of the bounded model is NP-hard in the strong

sense.

Because of the fact that the bounded model problem is NP-hard, we turn
our focus to designing an approximation algorithm for this problem. We define
a small request to be a request with bandwidth that is at most 1

2 , and a large

request to be a request whose bandwidth is strictly larger than 1
2 . Our algorithm

uses disjoint sets of colors to color the small requests and the large requests.
For small requests we sort the intervals in non-decreasing order of their left

end-point. Then, we use colors with maximum capacity 1 and color the intervals
according to the First-Fit algorithm. After we color all the small requests, we
compute the maximum load of the last color that is opened and we change its
capacity to be this value of the maximum load.

Lemma 7. The cost of colors that our algorithm uses to color the small requests

is at most 2 · OPT.

It remains to consider the large requests. Before presenting our algorithm, we
consider the following algorithm. We sort the large requests in non-decreasing
order of their left end-point. Then, we use colors with capacity 1 and color
the intervals according to the First-Fit algorithm. We note that using First-Fit
minimizes the number of colors that are used to color the large requests (when

the intervals are sorted) and since the capacity of each color is 1 whereas in the
optimal solution the capacity of each color is at least 1

2 , we conclude that this
algorithm uses colors with total cost of at most 2 · OPT.

Let ε > 0 be a given constant such that k = 1
2ε
−1 is an integer to be selected

afterwards. Our algorithm for the large requests computes k + 1 solutions and
picks the cheapest solution among these. The first solution is to pack all the large
requests with a minimum number of unit capacity colors (using First-Fit on the
sorted list of large requests). For each j = 1, 2, . . . , k we define aj = 1

2 + jε and
our (j + 1)-th solution is constructed as follows. We partition the large requests
into two classes: the first class consists of all large requests with bandwidth at
most aj , and the second class consists of all the remaining large requests. Each
class is packed separately using its own set of colors. The capacity of the colors
that are used for the first class is aj , whereas the capacity of the colors that are
used for the second class is 1. Each class is packed optimally using the minimum
number of colors (using First-Fit on the sorted list of intervals from this class).
We next show that the cheapest solution among the k + 1 solutions has a cost
of at most

(

8
5 + O(ε)

)

· OPT.

Lemma 8. The cheapest solution among the k + 1 solutions has a cost of at

most
(

8
5−2ε

)

· OPT.

Proof. We prove that the algorithm colors the large requests with total cost of
at most 8

5−2ε
· OPT and the approximation ratio of the algorithm is at most

8
5−2ε

. Let a0 = 1
2 and ak+1 = 1. Let ρ be the competitive ratio of the algorithm,

we prove that ρ ≤ 8
5−2ε

. Denote by Xj the number of colors that OPT opens
with capacity in the interval (aj , aj+1], for j = 0, 1, 2, . . . , k. Then, OPT ≥
∑k

j=0 aj · Xj . We assume that the cheapest solution among the k + 1 solutions
costs at least ρ · OPT.

Since two intersecting large requests cannot be colored by the same color in
any solution, we can compute upper bounds on the number of colors of each
capacity used by the algorithm in each one of the cases. Note that our first solu-
tion can pack all the large requests using at most

∑k
j=0 Xj colors, and therefore

the cost of this solution is at most
∑k

j=0 Xj . Since we assume that the cheap-
est solution among the k + 1 solutions costs at least ρ · OPT, we conclude that
∑k

j=0 Xj ≥ ρ·OPT. Next, consider the (j+1)-th solution for j ≥ 1. The intervals

of the first class can be colored using at most
∑k

i=0 Xi colors each with capacity
aj (since this amount of colors suffices to color all the large requests). The inter-

vals of the second class can be colored using at most
∑k

i=j Xi unit capacity colors.

Therefore, the cost of the (j+1)-th solution is at most aj ·
(

∑k
i=0 Xi

)

+
∑k

i=j Xi.

Since we assume that the cheapest solution among the k + 1 solutions costs at

least ρ · OPT, we conclude that aj ·
(

∑k
i=0 Xi

)

+
∑k

i=j Xi ≥ ρ · OPT.

We next consider the following set of inequalities (these inequalities hold by
our assumption):

OPT ≥

k
∑

j=0

aj · Xj (3)

k
∑

j=0

Xj ≥ ρ · OPT (4)

aj ·

(

k
∑

i=0

Xi

)

+
k
∑

i=j

Xi ≥ ρ · OPT ∀j = 1, 2, . . . , k. (5)

We construct the following inequality: we multiply (4) by y0 = a0 −
∑k

i=1(ai −
ai−1) · ai, and for each j = 1, 2, . . . , k we multiply the j-th constraint of (5) by
yj = aj − aj−1 = ε, and we add up all the resulting inequalities. The left hand

side of the resulting inequality is exactly
∑k

j=0 aj · Xj . This is so because the

coefficient of Xj in the resulting inequality is y0+
∑j

i=1 yi(ai+1)+
∑k

i=j+1 yiai =

a0−
∑k

i=1(ai −ai−1) ·ai +
∑k

i=1(ai −ai−1)ai +
∑j

i=1(ai −ai−1) = aj . By (3), we
conclude that the left hand side of the resulting inequality is at most OPT. The
right hand side of the resulting inequality is ρ ·OPT ·

∑k
i=0 yi. We note also that

the coefficients yj are non-negative. To see this last claim note that for j ≥ 1,

yj = ε > 0 and for j = 0, y0 = a0−
∑k

i=1(ai−ai−1) ·ai = 1
2 −
∑k

i=1 ε ·
(

1
2 + iε

)

=
1−kε

2 − ε2
∑k

i=1 i = 1−kε
2 − ε2 · k(k+1)

2 ≥
1− 1

2ε
ε

2 − ε2 · 1
8ε2 = 1

8 > 0. Therefore, the

inequality OPT ≥
∑k

j=0 aj · Xj ≥ ρ · OPT ·
∑k

i=0 yi holds and we get

ρ ≤
1

∑k
i=0 yi

=
1

1−kε
2 − ε2 · k(k+1)

2 + kε
=

8

5 − 2ε
.

This completes the proof. ut

By Lemma 8, we obtain a solution for the large requests with colors of total
cost at most

(

8
5 + O(ε)

)

· OPT. We would like to argue that by picking ε as an
infinitesimally small positive number we obtain an 8

5 approximation algorithm.
However, picking such a value of ε will increase dramatically the time complexity
of our algorithm. To avoid these bad consequences we note the following lemma.

Lemma 9. There is a polynomial time algorithm that emulates the solution

returned by our previous algorithm for infinitesimally small value of ε.

The following corollary is a direct consequence of Lemmas 8 and 9.

Corollary 1. There is a polynomial time algorithm that colors the large requests

with colors of total cost that is at most 8
5 · OPT.

Finally we combine the results for small requests and large requests.

Theorem 7. There is an approximation algorithm with ratio 18
5 = 3.6 for the

variable sized interval coloring problem in the bounded model.

References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In
Proceedings of the First International Workshop on Approximation and Online
Algorithms (WAOA’03), LNCS 2909, pages 1–12, 2003.

2. J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of
the ACM, 44(3):486–504, 1997.

3. S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier,
D. Shasha, and F. Wang. On the competitiveness of on-line real-time task schedul-
ing. Real-Time Systems, 4(2):125–144, 1992.

4. M. Chrobak and M. Ślusarek. On some packing problems relating to dynami-
cal storage allocation. RAIRO Journal on Information Theory and Applications,
22:487–499, 1988.

5. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS
Publishing Company, 1997.

6. J. Csirik. An online algorithm for variable-sized bin packing. Acta Informatica,
26:697–709, 1989.

7. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, Online Algorithms: The State of the Art, LNCS
1442, pages 147–177, 1998.

8. L. Epstein and M. Levy. Online interval coloring and variants. In Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming
(ICALP’05), LNCS 3580, pages 602–613, 2005.

9. L. Epstein and M. Levy. Online interval coloring with packing constraints. In
Proceedings of the 30th International Symposium on Mathematical Foundations of
Computer Science (MFCS’05), LNCS 3618, pages 295–307, 2005.

10. D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J. Comput.,
15:222–230, 1986.

11. T. R. Jensen and B. Toft. Graph coloring problems. Wiley, 1995.
12. H. A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal

on Discrete Mathematics, 1(4):526–530, 1988.
13. H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM Journal

on Discrete Mathematics, 8:47–57, 1995.
14. H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combina-

torics. Congressus Numerantium, 33:143–153, 1981.
15. F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing.

SIAM J. Comput., 16(1):149–161, 1987.
16. N. S. Narayanaswamy. Dynamic storage allocation and online colouring interval

graphs. In Proceedings of the 10th Annual International Conference on Computing
and Combinatorics (COCOON’04), LNCS 3106, pages 329–338, 2004.

17. S. V. Pemmaraju, R. Raman, and K. R. Varadarajan. Buffer minimization us-
ing max-coloring. In Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’04), pages 562–571, 2004.

18. S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin
packing. SIAM Journal on Discrete Mathematics, 14(4):458–470, 2001.

19. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–
671, 2002.

20. S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online
bin packing. SIAM Journal on Computing, 32(2):455–469, 2003.

