Graph Based Vector Assignment Schemes

Leah Epsteinh Tamir Tassd

Abstract

We consider off-line vector assignment problems. The goal is to assign input vectors to ma-
chines so that a given target function is minimized. The target function usually gives some measure
of the quality of distribution of input vectors among machines. We deal with an asymmetric setting
where the cost functions per machine may be different for different machines, and design a PTAS
for a wide class of target functions. This is done by combining a graph-based technique and a new
technique of preprocessing the input vectors.

Keywords: scheduling, optimization, approximation schemes, layered graphs.

1 Introduction

A general framework for Vector Assignment Problems (VAPs) was presented in [8]. In a VAP one is

given a set of vectors, '
I={x'e (R4 :1<i<n} (1)

and aims at finding an assignment of those vectors taachines,
A:{l,...,n} —={1,...,m} (2)
such that the value of some target function is minimized. Typical target functions take the form
F(A) = f(g(1),....g(I™)) 3)
where

e 1,1 < k < m, are the corresponding load vectors on each of the machines,

lk:in , 1<k<m; 4)

e g: (RT)? — R+ is afunction that evaluates the cost per machine; and

e f:(RT)™ — RT is afunction that evaluates the final cost over all machines.

*School of Computer Science, The Interdisciplinary Center, Herzliya, |dess®idc.ac.il . Research supported in
part by the Israel Science Foundation, (grant no. 250/01)
TDepartment of Applied Mathematics, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israa@tsa@post.tau.ac.il

Such problems are known to be strongly NP-hard. Hence, polynomial time approximation schemes
(PTAS) are sought. Such schemes produce, in polynomial time, a solution (i.e., an assignment (2))
whose cost is larger than that of an optimal solution by a factor of no moregtharConst: €), where

€ > 0 is an arbitrary parameter. Namely, @ is the optimal cost and > 0 is a given parameter, the
scheme produces a solutignthat satisfies

F(A) <(1+Const-¢) -9, (5)

where the constant is independent of the input data{andx’, 1 < i < n) ande.

This general framework encompasses most of the problems known in the art. In [8] we review some of
the problems that are covered by this framewetl, the makespan problem [9, 11], theminimiza-

tion problem [1, 2], the extensible bin packing problem [5, 6] and the vector scheduling problem [4].
The reader is referred to that paper for a discussion of related problems and additional corresponding
references. By considering the general setting (3), instead of the many private cases that were studied
previously, and by carefully analyzing the necessary properties of the cost fungtaoty, we were

able to obtain a PTAS for a wide class of cost functions, using standard dynamical programming and
linear programming methods. A novel idea introduced there enabled even a further generalization of
our results: by replacing the small input vectord iwith other vectors of larger magnitude such that

the impact on the value of the target function would be small, we were able to design a PTAS even
for the case where the inner cost functipis not monotone (a similar preprocessing step was used in
[1]; however, the procedure there was much simpler since it was implemented for scalars). A typical
family of non-monotonic cost functions is that of the Sobolev norms; those norms take into account
also an/,, measure of the differences of the vector components. As described in [8], some applications
necessitate such a non-monotonic measure.

However, the results of [8] strongly relied upon a symmetry assumption, i.e., the value of the target
function is invariant under interchanges between the machines. As this is not always the case, it is
desirable to extend the framework (3) to

F(A) = f(g'(M),...,g"m (™). (6)

Namely, the per-machine cost evaluatgh(-), may be different for each machine (for example, it

may depend on various machine parameters, such as capacity, speed or priority). Also, the outer cost
function f need not be symmetric. We present here a graph-based approach that enables us to design
a PTAS in the non-symmetric setting as well. Graph based techniques were used in the literature in
[10, 3, 7]. All these papers, however, deal with the one-dimensional case. We generalize the method to
deal with vectors.

Notation agreements.Throughout this paper we adopt the following conventions:
e Small case letters denote scalars; bold face small case letters denote vectors.

e A superscript of a vector denotes the index of the vector; a subscript of a vector indicates a
component in that vector. E.g;?, denotes thgth component of the vectadf.

e If v(k) is any expression that depends/arthen f (v (k))1<k<m stands forf(y(1),...,vy(m)).

e If x andy are vectors and is a scalar, thex < y andx < ¢ mean that the inequality holds
component-wise.

2 The Cost Functions

Herein we list the assumptions that we make on the outer cost funftipand the inner cost function
9().
Definition 1
1. Afunctionh : (RT)" — R is monotone if
h(x) < h(y) Vx,y € (RT)" suchthatx <y . (7)
2. The functionh : (Rt)" — R* dominates the functioh : (R*)* — R* if there exists a

constant; such that .
h(x) < nh(x) vxe (RH™. (8)

3. The functiorh : (R*)™ — R is Lipschitz continuous if there exists a constahtsuch that

Ih(x) = h(y)| < M|x -yl Vx,y € (RT)". 9)

Assumption 1 The functionf : (RT)™ — RT is:
1. monotone;

2. linear with respect to scalar multiplications, i.ef{cx) = cf(x) for all c € R andx €
(RT)™

3. dominates the max norm with a domination facjpthat is independent of;;
4. Lipschitz continuous with a constahi; that is independent of;;
5. recursively computable (explained below).
Assumption 2 The functiong/® : (RT)? — R+ are:
1. dominating thé., and the/; norms with a domination factay, that does not depend on,;

2. Lipschitz continuous with a constabf, that does not depend on.

By assuming thaf is recursively computable we mean that there exists a family of functibts-),
1 < k < m, such that

f(gl7"'7gk707"'70) :¢k (f(gl?"'79’671707"'70)79’{) (10)

(note thatf(0,...,0) = 0 in view of Assumption 1-2). For example, ffis a weighted/, norm on
R™, 1 < p < oo, with weights(wy, . . ., wy,), theny¥ is thes, norm onR? with weights(1, wy).

Next, we see what functions comply with the above assumptions. Assumption 1 dictates a quite narrow
class of outer cost functiong. = max is the most prominent member of that class (luckily, in many
applications this is the only relevant choice §f Other functionsf for which our results apply are

the ¢, norms taken on thé largest values in the argument vector, where min(mg, m) for some
constantng; e.g., the sum of the largest two components. Assumption 1 is not satisfied by any of the

3

usual/,, norms forp < oo because of the conjunction of conditions 3 and 4: no matter how we rescale
an/, norm,p < oo, one of the parameterg (condition 3) orM (condition 4) would depend om.

As for g*, basically any norm oR? is allowed. The most interesting choices are#haorms and the
Sobolev norms|1||;, := |1, + ||Al||, whereAl € R¥~1 andAl; = 1,4, —1;,1 < j <d- 1.
Another natural choice is the "extensible bin” cost functigh(1*) = | max{1*,c*}||; herec* is a
constant vector reflecting the parameters of#tiemachine and the outer norm may be any norm. In
[8] we described a problem that arises in video transmission and broadcasting, the sdireallgd
problem where the above described choices for the inner cost functions are meaningful.

Itis interesting to note that the set of functions that comply with either Assumption 1 or 2 is closed under
positive linear combinations. For examplefifand f> satisfy Assumption 1, so would f; + ¢ f> for

all c1,c0 > 0.

3 A Graph Based Scheme

3.1 Preprocessing the vectors by means of truncation

Let I be the original instance of the VAP, (1). As in [8], we start by modifyingto another problem
instancel where the vectorg’ are defined by

B { xh i x5 > e[x]|oo

- : 1<i< 1<i<d. 11
0 otherwise Sisn,lsj<d (11)

i
J
Lemma 1 Let A be a solution ta and letA be the corresponding solution fo Then

(1—Cie)F(A) < F(A) < (1+ Cie)F(A) where Cy = M, . (12)

Proof. Let1* andl*, 1 < k < m, denote the load vectors i and A respectively. In view of (11),

FlF<lFie > ¥ (13)
A(i)=k

Since||x’[loc = [|X'[loc < [X'[l1 we conclude tha}~ , ;) [Ix*[l < [[1¥]l1. Recalling Assumption
2-1 we get that

D X loo < mgg" (1) . (14)
A(i)=k
Therefore, by (13) and (14),
I <15 <TF 4 enggh(1h) . (15)

Next, by the uniform Lipschitz continuity af* we conclude that
(1—Cre)g* (%) < g*(1%) < (1 + Cre)g"(1%) where C1 = Mgn, . (16)
Finally, we invoke the monotonicity of and its linear dependence on scalar multiplications to arrive
at (12).00
We assume henceforth that the input vectors have been subjected to the truncation procedure (11). To

avoid cumbersome notations we shall keep denoting the truncated vectoraiy their collection by
I

3.2 Large and small vectors

Let ®° denote the optimal cost, let° be an optimal solutiont’(A°) = ®°, and letl*, 1 < k& < m, be
the load vectors in that solution. Then, in view of Assumption 1-3 and Assumption 2-1,

1 <nm,® 1<k<m. (17)
Consequently, we conclude that all input vectors satisfy the same bound,
x! < nmg®° 1<i<n. (18)

Hence, we get the following lower bound for the optimal cost:

maxi<i<n ||X[|oo

NfTg

0> = (19)

This lower bound induces a decomposition of the set of input vectors (1) into two subsets of large and
small vectors as follows:

L=1{x":|x"o > P 1<i<n}, (20)
S={x":||xo < P¥H 1<i<n}. (21)

We present below a technique to replateith another set of vectors = {z',...,2"} where
=S| <v=|S| and |zi]e =P 1<i<p. (22)

In other words, all vectors i are large.

Letx € S. Then, in view of the truncation procedure (11),

e < X
1%l

<1 Vx;>0,1<j5<d. (23)
Next, we define a geometric mesh on the intefwal]:

~1
fo=¢; &LG=04+¢e)&, 1<i<q; q:= Lg(lii)w (24)

In view of the above, every nonzero componentxgf|x| . lies in an intervall;_1,&;] for some
1 <i < ¢g. Next, we define

x':||XHOOH(x) (25)

[1%[loo

where the operatdt retains components that are 0 or 1 and replaces every other component by the left
end point of the intervak;_1, &;] where it lies. Hence, the vectaf may be in one of

s=(qg+2)9¢-1 (26)

linear subspaces of dimension 17{; we denote those subspacesiby, 1 < o < s. In view of the
above, we define the set
S={x': xeS8}. (27)

Next, we define for each type< o < s
WU:Z{X/: x' e S NW?} 1<o<s; (28)

namely,w? aggregates all vectoss of typeo. We now slice this vector into large identical "slices”,
where each of those slices and their number are given by:

o W 2d+1 _ w7l
W — ™ol . be and k, = {@EMH . (29)

Finally, we define the s as follows:
S=U_{z7"=w" : 1<k<ko}. (30)

Namely, the new sef includes for each type the "slice™vectorw?, (29), repeated, times. As
implied by (29), all vectors i have a max norm ob<24+1 | in accord with (22). Also, the number of
vectors inS, 7 = 3% _, k,, is obviously no more than as the construction of the new vectors implies
thatk, < |S’ N W7| (recall that]|x'|| . < ®2¢*! forall X’ € S').

So we have modified the original problem instadichavingn input vectorsCUS, into an intermediate
problem instancé’ = £ U S’, see (27), and then to a new problem instance,

I=LUS, (31)

see (28)-(30), that has = n — v + © input vectors. The following theorem states that those problem
instances are close in the sense that interests us (this theorem is a modified version of Theorem 3 in

[81)-

Theorem 1 For each solutiod € {1,...,m}{!--"} of I there exists a solution
Aec{1,...,m}yL7t of I such that
(1= Cie)- (F(A) = Goe) < F(4) < (14 Cre) - (F(A) + Coe) | (32)
where(1 is given in (12) and
Cy = MM, . (33)
Conversely, for each solutia € {1,...,m}{!"} of I there exists a solution

Ae{1,...,m}Lnt of I that satisfies (32).

Proof. Let A be a solution off and A’ be its counterpart solution df. Let 1¥andl%, 1 < k < m,
denote the load vectors ith and A’, respectively. By (25)]1 < 1’“/1"C < 1+ e. Hence, by Assumption
2-1,

IF = 15| < engg™(1%) . (34)

Therefore, by the uniform Lipschitz continuity gf,
(1 —Cre)g" (%) < g"(1F) < (1 + C1e)g* (%) 1<k <m (35)
where(is as in (12). Applyingf on (35) and using Assumptions 1-1 and 1-2, we get that
(1-Cie)F(A) < F(A) < (1+Cie)F(A). (36)

6

Next, given a solutiond’ of I’, we construct a solutiod of I such that
F(A) — Cy®e < F(A') < F(A) 4 Cy®e , (37)

with Cs as in (33). Showing this will enable us to construct for any solutioof I a solutionA of I
for which, in view of (36) and (37), (32) holds. Then, in order to complete the proof, we shall show
how from a given solution of 7, we are able to construct a solutigh of I’ for which (37) holds.

To this end, we fixl < o < s and define for every machiriethe following vector:
=3 {x': XTeSnWT, A) =k} ; (38)

i.e., yf’k is the sum of small vectors of typein I’ that are assigned to thigh machine. Recalling
(29), S includes the vectow? repeatedk, times, where

{Z by } - (39)

We may now select for eachan integet, ;, such that

|y "l
ok — “pe2dtl <1 (40)
and
m
D tok =t (41)
k=1
The integers,, ,, can be found in the following manner: we define
high
ty = LIy " lloo/®* | and 7" = [lly7*[loo /@1 .
Clearly,
m m .
ot <k, and D hh >
k=1 k=1
Slncet'”gh tf;’}g < 1forall 1 <k < m, there exists an integer numhbeK = < m such that

Ztlo}f =Ky — T .

Finally, we set

high
tg}k 1<k<=x

tcr,k: =
low
ta,k r<k<m

With this, the solutiond is that which assigns to theth machinel < k < m, t, vectorsw? for all
1 < o < s (and coincides withd’ for all large vectors irC). In view of (40) and the definition of7,
see (29),

o,k

Hta,k : VNVU A

Therefore, summing (42) ovér< o < s, we conclude thal* andl’* — the loads on théth machine
in A and A’ respectively — are close,

¥ — 1] < BT (43)
However, as (24) and (26) imply that
s<e 2 forall 0<e<1 (44)

we conclude by (43) and (44) that)
[TF — 1% < e (45)

Finally, the Lipschitz continuity of botl and f imply that (37) holds withCs as in (33).

Next, we show how to construct from a solutidnof I, a solutionA’ of I’ for which (37) holds. The

two assignments will coincide for the large vectdrs As for the small vectors, let us fix one vector
typel < o < s, wheres is the number of types (26)S includes the vectow? repeated:, times,
(29)-(30). Lett, s, be the number of those vectors thhassigns to théth machine. The countets .

satisfy (41). We now assign the vecterse S'NW7, see (28), to the: machines so that thig,-norm

of their sum in thekth machine is greater tha, , — 1)®<2¢! but no more tharft, j + 1)®e24+1,

In view of (28) and (29), it is easy to see that such an assignment exists: Assign the jobs one by one
greedily, in order to obtain in théth machine,1 < k < m, a load with an/,,-norm of at least

(tor — 1)@e2@+L. Since thels-norm of the sum of all small jobs is at legd$t) | t, . — 1) P24+,

this goal can be achieved. Also, as the size of each of those jobs is no morétan, we may
perform this assignment in a manner that keeps the load in each machinetpgl@m‘r’“? After
achieving that goal in all machines, we assign the remaining jobs so that the total load in each machine
is bounded by, + 1)®<24¢*L. This is possible given the small size of the jobs and the size of their
sum (at most> ;" t,,,k)@»s?d“). Clearly, if we lety®* denote the sum of vectosg of type o thus
assigned to théth machine, thery®* satisfies (42). As we saw before, this implies thaand 4’

satisfy (37). This completes the prdaf.

3.3 The scheme

In view of the previous two subsections, we assume that the original set of input vEuotasssubjected
to the truncation procedure, along the line$®fl, and then modified into a problem instadoghere
all vectors are large, using the procedure describé@ip. For convenience, we shall keep denoting
the number of input vectors iﬁbyn and the input vectors by, 1 < i < n. Hence, all vectors i
satisfy

%' |loo > @2 1<i<n.

This, together with (11) on one hand and (19) on the other hand, yield the following lower and upper
bounds:

52‘”233{377% for 1<i<n,1<j<dandaz}+#0. (46)

Next, we define a geometric mesh on the interval given in (46):

—2(d+1)
€0 = g2d+2 =0 +e),, 1<i<q; q:= {L‘%(??f??ga)w) (47)

lg(1+¢)

In view of the above, every nonzero componenkdf®, 1 < i < n, lies in an interval¢; 4, ;] for
somel < i < q. We use this in order to define a new set of vectors,

I= {ﬁ':qm (’;) : xief} , (48)

where the operatdk replaces each nonzero component in the vector on which it operates by the left
end point of the intervdk;_1, ;] where it lies.

Theorem 2 Let A be a solution of and letA be the corresponding solution 6f Then
(1 - Cie)F(A) < F(A) < (1+ Cie)F(A), (49)

where(is given in (12).

Proof. Let ¥ and1*, 1 < k < m, be the load vectors id andA. Then
F<lP<@+el? 1<k<m.
Hence,||1F — 1¥||, < ¢||1¥||o; using Assumptions 2-2 and 2-1 we get that
9" (%) — g" (") < eMynyg"(1*) 1<k<m,
or, equivalently,
(1—Cre)g"(1F) < ¢*(@*) < (14 Cre)g*(1F) 1<k <m where C; = Mgn, .

These inequalities, together with the monotonicityf&nd its linearity with respect to scalar multipli-
cations (Assumptions 1-1 and 1-2) imply (49).

The vectors inf belong to the set
W =2x? where X ={0,&,...,& 1} . (50)
As the size oV is s = (¢ + 1)¢, it may be ordered:
W ={w! ..., w'}. (51)
With this, the set of modified vectodsmay be identified by a configuration vector
z=(2z1,...,2s) Where z;=#{xel: x=w'}, 1<i<s. (52)

Next, we may describe all possible assignments of vectors freonthe m machines using a layered
graphG = (V, E). To that end, assume thdt: I — {1,...,m} is such an assignment. We Bt
denote the subset dfconsisting of those vectors that were assigned to one of thé finstchines,

IF={xel: AX)<k} 1<k<m.
Furthermore, we define the correspondatgte vector

zF = (zF,...,2") 1<k<m where zF =#{xecl*: x=w'}, 1<i<s.

» s

9

We note that X X A X A
p=1°cltc...cimtcim=1] (53)

and
0=z'<z'<.. . <z"l<zm=17z, (54)

wherez is given in (52). In addition, whefi < k < m, I* may be any subset dfwhile z* may be
any vector in

Z={y :0<y<z}. (55)
With this, we define the grap& = (V, E) as follows:

e The set of vertices consists of + 1 layers,V = U V*. If v € V is a vertex in thekth
layer, V¥, then it represents one of the possible state vectors after assigning vectors to the first
k machines. Henc&® = {0}, V™ = {z} and the intermediate layers a¥&¢ = Z, see (55),
0<k<m.

e The set of edges consistsafsubsets:
E=U",E* where E¥={(u,v) : ueV* ! veVvF u<vl}. (56)

In other words, there is an edge connecting two vertices in adjacent layegs,V*~! and
v € V*, if and only if there exists an assignment to #ik machine that would change the state
vector fromu to v.

Note that all intermediate layer¥;*, 0 < k& < m, are composed of the same number of verti¢es,
given by the number of sub-vectors thatas:

s

t=1Z]=]J(z+1) < (n+1)*. (57)
=1

Next, we turn the graph into a weighted graph, using a weight funetion® — R ™ that computes
the cost that the given edge implies on the corresponding machine: £etu,v) € E*. Then the
differencev — u tells us how many vectors of each of théypes are assigned by this edge to khie

machine. The weight of this edge is therefore defined as

w(e) = g"(T(v—u)) where T(v—u)=> (vi—u)w’, (58)
i=1

w' are as in (51). We continue to define a cost function on the verticelg, — R*. The cost function
is defined recursively according to the layer of the vertex, using Assumption 1-5:

r(v)=0 , veV%; (59)
r(v) = min {wk(r(u),w(e)) cue VTl e=(u,v) e Ek} ., o veVk (60)

(the functionsy* are as in (10)). This cost function coincides with the cost function of the VAP, (6).
More specifically, ifv € V¥ and it represents a subset of vectdfsC I, thenr(v) equals the value of

an optimal assignment of the vectorsiifhto the firstk machines. Hence, the cost of the end vertex,
r(v), v € V™, equals the value of an optimal solution of the VAP for

10

The goal is to find the shortest path frdi¥ to V™ that achieves this minimal cost. Namely, we look
for a sequence of verticed € V*, 0 < k < m, such that

¥ = (WL b)) e EF 1<k<m (61)
and
flw(eh),...,w(e™) =r@™). (62)
We may apply a standard algorithm to find this minimal path withiny’| + |E|) steps. As
V<24 (m-1)-(n+1)° (63)
and .
Bl=) |E* <m-(n+1)* (64)
k=1

the running time would be polynomial mandm.

The shortest path thus found represents an assignment of the vectors of the modified set
A:T={%1,...,%,} = {1,...,m}. (65)

We need to translate this assignment into an assignment of the original vectors,
A:T={xy,...,x,} — {1,...,m}. (66)

To that end, let us review all the problem modifications that we performed:

e First modification: to I, see (11) and Lemma 1.

e Second modificationf to I, see (28)-(31) and Theorem 1.

e Third modification:] to I, see (48) and Theorem 2.

In view of the above, we translate the solution that we foyﬂ],dinto a solutionA of I, then — along
the lines of Theorem 1 — we translate it into a solutibrof / and finally we take the corresponding
solution A of .

Theorem 3 Let ®° be the optimal cost of the original problem instancelet A be the solution of
that is obtained using the above scheme. Thesatisfies (5) with a constant that depends onlygn
M, and M;-.

Proof. Let $° denote the optimal cost df Then, using the left inequalities in Lemma 1, Theorem 1
and Theorem 2, together with (19), we conclude that

) 1 1
P < : $° < (14 Te)d° 7
1 Che ((1—015)2+C2€> < (L+Te)e, (67)

for an appropriate choice dF that depends only of; andC,. However,®° is no other than the
cost of the shortest path that we found in the graph, namely, the cost of the soluttiat we found

11

for I. As A is the solution off that is obtained fromi, we may upper bound its cost using the right
inequalities in Lemma 1, Theorem 1 and Theorem 2;

F(A) < (14 Cre)? - (14 Cre)d° + Crdoe) (68)
The Inequalities (67) and (68) imply that
F(A) < (14 C1e)*- (14 C1e)(1 + Te) + Cae) ° < (1 + Const £)®° ,

where the constant depends only@n= Myn, andCy = M M,. [

References

[1] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for schedulingrdao.
8th ACM-SIAM Symp. on Discrete Algorithms (SODA ®8ges 493-500, 1997.

[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel
machinesJournal of Schedulingl:1:55-66, 1998.

[3] Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on related ma-
chines. Inlst Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX98)pages 39-47, 1998.

[4] C. Chekuriand S. Khanna. On multi-dimensional packing problemBrdceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODAR&)es 185-194, 1999.

[5] E. G. Coffman, Jr. and G. S. Lueker. Approximation algorithms for extensible bin packing. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'01)
pages 586-588, 2001.

[6] P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Zs. Tuzal#/12 approximation algorithm for
bin packing with extendable bintnformation Processing Letters5(5):229-233, 1998.

[7] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machines. Iiith Annual European Symposium on Algorithms (ESAB&jyes 151-162,
1999.

[8] L. Epstein and T. Tassa. Vector assignment problems: A general framework. manuscript, 2002.

[9] R. L. Graham. Bounds for certain multiprocessor anomaliBgll System Technical Journal
45:1563-1581, 1966.

[10] D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation appro&thiM Journal on Computindg.7(3):539-551,
1988.

[11] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling prob-
lems: theoretical and practical resul#®urnal of the ACM34(1):144-162, 1987.

12

