
Graph Based Vector Assignment Schemes

Leah Epstein∗ Tamir Tassa†

Abstract

We consider off-line vector assignment problems. The goal is to assign input vectors to ma-
chines so that a given target function is minimized. The target function usually gives some measure
of the quality of distribution of input vectors among machines. We deal with an asymmetric setting
where the cost functions per machine may be different for different machines, and design a PTAS
for a wide class of target functions. This is done by combining a graph-based technique and a new
technique of preprocessing the input vectors.

Keywords: scheduling, optimization, approximation schemes, layered graphs.

1 Introduction

A general framework for Vector Assignment Problems (VAPs) was presented in [8]. In a VAP one is
given a set of vectors,

I = {xi ∈ (R+)d : 1 ≤ i ≤ n} (1)

and aims at finding an assignment of those vectors tom machines,

A : {1, . . . , n} → {1, . . . ,m} (2)

such that the value of some target function is minimized. Typical target functions take the form

F (A) = f(g(l1), . . . , g(lm)) (3)

where

• lk, 1 ≤ k ≤ m, are the corresponding load vectors on each of the machines,

lk =
∑

A(i)=k

xi , 1 ≤ k ≤ m ; (4)

• g : (R+)d → R+ is a function that evaluates the cost per machine; and

• f : (R+)m → R+ is a function that evaluates the final cost over all machines.
∗School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.lea@idc.ac.il . Research supported in

part by the Israel Science Foundation, (grant no. 250/01)
†Department of Applied Mathematics, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israel.tassa@post.tau.ac.il .

1

Such problems are known to be strongly NP-hard. Hence, polynomial time approximation schemes
(PTAS) are sought. Such schemes produce, in polynomial time, a solution (i.e., an assignment (2))
whose cost is larger than that of an optimal solution by a factor of no more than(1 + Const· ε), where
ε > 0 is an arbitrary parameter. Namely, ifΦo is the optimal cost andε > 0 is a given parameter, the
scheme produces a solutionA that satisfies

F (A) ≤ (1 + Const· ε) · Φo , (5)

where the constant is independent of the input data (n,m andxi, 1 ≤ i ≤ n) andε.

This general framework encompasses most of the problems known in the art. In [8] we review some of
the problems that are covered by this framework,e.g., the makespan problem [9, 11], the`p minimiza-
tion problem [1, 2], the extensible bin packing problem [5, 6] and the vector scheduling problem [4].
The reader is referred to that paper for a discussion of related problems and additional corresponding
references. By considering the general setting (3), instead of the many private cases that were studied
previously, and by carefully analyzing the necessary properties of the cost functionsf andg, we were
able to obtain a PTAS for a wide class of cost functions, using standard dynamical programming and
linear programming methods. A novel idea introduced there enabled even a further generalization of
our results: by replacing the small input vectors inI with other vectors of larger magnitude such that
the impact on the value of the target function would be small, we were able to design a PTAS even
for the case where the inner cost functiong is not monotone (a similar preprocessing step was used in
[1]; however, the procedure there was much simpler since it was implemented for scalars). A typical
family of non-monotonic cost functions is that of the Sobolev norms; those norms take into account
also aǹ p measure of the differences of the vector components. As described in [8], some applications
necessitate such a non-monotonic measure.

However, the results of [8] strongly relied upon a symmetry assumption, i.e., the value of the target
function is invariant under interchanges between the machines. As this is not always the case, it is
desirable to extend the framework (3) to

F (A) = f(g1(l1), . . . , gm(lm)) . (6)

Namely, the per-machine cost evaluator,gk(·), may be different for each machine (for example, it
may depend on various machine parameters, such as capacity, speed or priority). Also, the outer cost
functionf need not be symmetric. We present here a graph-based approach that enables us to design
a PTAS in the non-symmetric setting as well. Graph based techniques were used in the literature in
[10, 3, 7]. All these papers, however, deal with the one-dimensional case. We generalize the method to
deal with vectors.

Notation agreements.Throughout this paper we adopt the following conventions:

• Small case letters denote scalars; bold face small case letters denote vectors.

• A superscript of a vector denotes the index of the vector; a subscript of a vector indicates a
component in that vector. E.g.,lkj denotes thejth component of the vectorlk.

• If γ(k) is any expression that depends onk, thenf(γ(k))1≤k≤m stands forf(γ(1), . . . , γ(m)).

• If x andy are vectors andc is a scalar, thenx ≤ y andx ≤ c mean that the inequality holds
component-wise.

2

2 The Cost Functions

Herein we list the assumptions that we make on the outer cost functionf(·) and the inner cost function
g(·).

Definition 1

1. A functionh : (R+)n → R+ is monotone if

h(x) ≤ h(y) ∀x,y ∈ (R+)n such thatx ≤ y . (7)

2. The functionh : (R+)n → R+ dominates the functioñh : (R+)n → R+ if there exists a
constantη such that

h̃(x) ≤ ηh(x) ∀x ∈ (R+)n . (8)

3. The functionh : (R+)n → R+ is Lipschitz continuous if there exists a constantM such that

|h(x)− h(y)| ≤M‖x− y‖∞ ∀x,y ∈ (R+)n . (9)

Assumption 1 The functionf : (R+)m → R+ is:

1. monotone;

2. linear with respect to scalar multiplications, i.e.,f(cx) = cf(x) for all c ∈ R+ and x ∈
(R+)m;

3. dominates the max norm with a domination factorηf that is independent ofm;

4. Lipschitz continuous with a constantMf that is independent ofm;

5. recursively computable (explained below).

Assumption 2 The functionsgk : (R+)d → R+ are:

1. dominating thè∞ and thè 1 norms with a domination factorηg that does not depend onm;

2. Lipschitz continuous with a constantMg that does not depend onm.

By assuming thatf is recursively computable we mean that there exists a family of functionsψk(·, ·),
1 ≤ k ≤ m, such that

f(g1, . . . , gk, 0, . . . , 0) = ψk
(
f(g1, . . . , gk−1, 0, . . . , 0), gk

)
(10)

(note thatf(0, . . . , 0) = 0 in view of Assumption 1-2). For example, iff is a weighted̀ p norm on
Rm, 1 ≤ p ≤ ∞, with weights(w1, . . . , wm), thenψk is the`p norm onR2 with weights(1, wk).

Next, we see what functions comply with the above assumptions. Assumption 1 dictates a quite narrow
class of outer cost functions.f = max is the most prominent member of that class (luckily, in many
applications this is the only relevant choice off). Other functionsf for which our results apply are
the `p norms taken on thet largest values in the argument vector, wheret = min(m0,m) for some
constantm0; e.g., the sum of the largest two components. Assumption 1 is not satisfied by any of the

3

usual`p norms forp <∞ because of the conjunction of conditions 3 and 4: no matter how we rescale
an`p norm,p <∞, one of the parametersηf (condition 3) orMf (condition 4) would depend onm.

As for gk, basically any norm onRd is allowed. The most interesting choices are the`p norms and the
Sobolev norms,‖l‖1,p := ‖l‖p + ‖∆l‖p where∆l ∈ Rd−1 and∆lj = lj+1 − lj , 1 ≤ j ≤ d − 1.
Another natural choice is the ”extensible bin” cost function,gk(lk) = ‖max{lk, ck}‖; hereck is a
constant vector reflecting the parameters of thekth machine and the outer norm may be any norm. In
[8] we described a problem that arises in video transmission and broadcasting, the so calledline up
problem, where the above described choices for the inner cost functions are meaningful.

It is interesting to note that the set of functions that comply with either Assumption 1 or 2 is closed under
positive linear combinations. For example, iff1 andf2 satisfy Assumption 1, so wouldc1f1 + c2f2 for
all c1, c2 > 0.

3 A Graph Based Scheme

3.1 Preprocessing the vectors by means of truncation

Let I be the original instance of the VAP, (1). As in [8], we start by modifyingI into another problem
instanceĪ where the vectors̄xi are defined by

x̄i
j =

{
xi

j if xi
j ≥ ε‖xi‖∞

0 otherwise
1 ≤ i ≤ n , 1 ≤ j ≤ d . (11)

Lemma 1 LetA be a solution toI and letĀ be the corresponding solution tōI. Then

(1− C1ε)F (Ā) ≤ F (A) ≤ (1 + C1ε)F (Ā) where C1 = Mgηg . (12)

Proof. Let lk andl̄k, 1 ≤ k ≤ m, denote the load vectors inA andĀ respectively. In view of (11),

l̄k ≤ lk ≤ l̄k + ε
∑

A(i)=k

‖xi‖∞ (13)

Since‖xi‖∞ = ‖x̄i‖∞ ≤ ‖x̄i‖1 we conclude that
∑

A(i)=k ‖xi‖∞ ≤ ‖̄lk‖1. Recalling Assumption
2-1 we get that ∑

A(i)=k

‖xi‖∞ ≤ ηgg
k (̄lk) . (14)

Therefore, by (13) and (14),
l̄k ≤ lk ≤ l̄k + εηgg

k (̄lk) . (15)

Next, by the uniform Lipschitz continuity ofgk we conclude that

(1− C1ε)gk (̄lk) ≤ gk(lk) ≤ (1 + C1ε)gk (̄lk) where C1 = Mgηg . (16)

Finally, we invoke the monotonicity off and its linear dependence on scalar multiplications to arrive
at (12).�

We assume henceforth that the input vectors have been subjected to the truncation procedure (11). To
avoid cumbersome notations we shall keep denoting the truncated vectors byxi and their collection by
I.

4

3.2 Large and small vectors

Let Φo denote the optimal cost, letAo be an optimal solution,F (Ao) = Φo, and letlk, 1 ≤ k ≤ m, be
the load vectors in that solution. Then, in view of Assumption 1-3 and Assumption 2-1,

lk ≤ ηfηgΦo 1 ≤ k ≤ m . (17)

Consequently, we conclude that all input vectors satisfy the same bound,

xi ≤ ηfηgΦo 1 ≤ i ≤ n . (18)

Hence, we get the following lower bound for the optimal cost:

Φo ≥ Φ :=
max1≤i≤n ‖xi‖∞

ηfηg
. (19)

This lower bound induces a decomposition of the set of input vectors (1) into two subsets of large and
small vectors as follows:

L = {xi : ‖xi‖∞ ≥ Φε2d+1, 1 ≤ i ≤ n} , (20)

S = {xi : ‖xi‖∞ < Φε2d+1, 1 ≤ i ≤ n} . (21)

We present below a technique to replaceS with another set of vectors̃S = {z1, . . . , zν̃} where

ν̃ = |S̃| ≤ ν = |S| and ‖zi‖∞ = Φε2d+1 1 ≤ i ≤ ν̃ . (22)

In other words, all vectors iñS are large.

Let x ∈ S. Then, in view of the truncation procedure (11),

ε ≤ xj

‖x‖∞
≤ 1 ∀xj > 0 , 1 ≤ j ≤ d . (23)

Next, we define a geometric mesh on the interval[ε, 1]:

ξ0 = ε ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=
⌈

− lg ε
lg(1 + ε)

⌉
. (24)

In view of the above, every nonzero component ofx/‖x‖∞ lies in an interval[ξi−1, ξi] for some
1 ≤ i ≤ q. Next, we define

x′ = ‖x‖∞H
(

x
‖x‖∞

)
, (25)

where the operatorH retains components that are 0 or 1 and replaces every other component by the left
end point of the interval[ξi−1, ξi] where it lies. Hence, the vectorx′ may be in one of

s = (q + 2)d − 1 (26)

linear subspaces of dimension 1 inRd; we denote those subspaces byW σ, 1 ≤ σ ≤ s. In view of the
above, we define the set

S ′ = {x′ : x ∈ S} . (27)

5

Next, we define for each type1 ≤ σ ≤ s

wσ =
∑

{x′ : x′ ∈ S ′ ∩W σ} 1 ≤ σ ≤ s ; (28)

namely,wσ aggregates all vectorsx′ of typeσ. We now slice this vector into large identical ”slices”,
where each of those slices and their number are given by:

w̃σ =
wσ

‖wσ‖∞
· Φε2d+1 and κσ =

⌈
‖wσ‖∞
Φε2d+1

⌉
. (29)

Finally, we define the set̃S as follows:

S̃ = ∪s
σ=1{zσ,k = w̃σ : 1 ≤ k ≤ κσ} . (30)

Namely, the new set̃S includes for each typeσ the ”slice”-vectorw̃σ, (29), repeatedκσ times. As
implied by (29), all vectors iñS have a max norm ofΦε2d+1, in accord with (22). Also, the number of
vectors inS̃, ν̃ =

∑s
σ=1 κσ, is obviously no more thanν as the construction of the new vectors implies

thatκσ ≤ |S ′ ∩W σ| (recall that‖x′‖∞ < Φε2d+1 for all x′ ∈ S ′).
So we have modified the original problem instanceI, havingn input vectorsL∪S, into an intermediate
problem instanceI ′ = L ∪ S ′, see (27), and then to a new problem instance,

Ĩ = L ∪ S̃ , (31)

see (28)-(30), that has̃n = n − ν + ν̃ input vectors. The following theorem states that those problem
instances are close in the sense that interests us (this theorem is a modified version of Theorem 3 in
[8]).

Theorem 1 For each solutionA ∈ {1, . . . ,m}{1,...,n} of I there exists a solution
Ã ∈ {1, . . . ,m}{1,...,ñ} of Ĩ such that

(1− C1ε) ·
(
F (Ã)− C2Φε

)
≤ F (A) ≤ (1 + C1ε) ·

(
F (Ã) + C2Φε

)
, (32)

whereC1 is given in (12) and
C2 = MfMg . (33)

Conversely, for each solutioñA ∈ {1, . . . ,m}{1,...,ñ} of Ĩ there exists a solution
A ∈ {1, . . . ,m}{1,...,n} of I that satisfies (32).

Proof. Let A be a solution ofI andA′ be its counterpart solution ofI ′. Let lk andl′k, 1 ≤ k ≤ m,
denote the load vectors inA andA′, respectively. By (25),1 ≤ lk/l′k ≤ 1 + ε. Hence, by Assumption
2-1,

‖lk − l′k‖∞ ≤ εηgg
k(l′k) . (34)

Therefore, by the uniform Lipschitz continuity ofgk,

(1− C1ε)gk(l′k) ≤ gk(lk) ≤ (1 + C1ε)gk(l′k) 1 ≤ k ≤ m (35)

whereC1 is as in (12). Applyingf on (35) and using Assumptions 1-1 and 1-2, we get that

(1− C1ε)F (A′) ≤ F (A) ≤ (1 + C1ε)F (A′) . (36)

6

Next, given a solutionA′ of I ′, we construct a solutioñA of Ĩ such that

F (Ã)− C2Φε ≤ F (A′) ≤ F (Ã) + C2Φε , (37)

with C2 as in (33). Showing this will enable us to construct for any solutionA of I a solutionÃ of Ĩ
for which, in view of (36) and (37), (32) holds. Then, in order to complete the proof, we shall show
how from a given solutioñA of Ĩ, we are able to construct a solutionA′ of I ′ for which (37) holds.

To this end, we fix1 ≤ σ ≤ s and define for every machinek the following vector:

yσ,k =
∑

{x′i : x′i ∈ S ′ ∩W σ , A′(i) = k} ; (38)

i.e., yσ,k is the sum of small vectors of typeσ in I ′ that are assigned to thekth machine. Recalling
(29), S̃ includes the vector̃wσ repeatedκσ times, where

κσ =

⌈
m∑

k=1

‖yσ,k‖∞
Φε2d+1

⌉
. (39)

We may now select for eachk an integertσ,k such that∣∣∣∣tσ,k −
‖yσ,k‖∞
Φε2d+1

∣∣∣∣ ≤ 1 (40)

and
m∑

k=1

tσ,k = κσ . (41)

The integerstσ,k can be found in the following manner: we define

tlow
σ,k = b‖yσ,k‖∞/Φε2d+1c and thigh

σ,k = d‖yσ,k‖∞/Φε2d+1e .

Clearly,
m∑

k=1

tlow
σ,k ≤ κσ and

m∑
k=1

thigh
σ,k ≥ κσ .

Sincethigh
σ,k − tlow

σ,k ≤ 1 for all 1 ≤ k ≤ m, there exists an integer number0 ≤ x ≤ m such that

m∑
k=1

tlow
σ,k = κσ − x .

Finally, we set

tσ,k =


thigh
σ,k 1 ≤ k ≤ x

tlow
σ,k x < k ≤ m

.

With this, the solutionÃ is that which assigns to thekth machine,1 ≤ k ≤ m, tσ,k vectorsw̃σ for all
1 ≤ σ ≤ s (and coincides withA′ for all large vectors inL). In view of (40) and the definition of̃wσ,
see (29),

‖tσ,k · w̃σ − yσ,k‖∞ ≤ Φε2d+1 . (42)

7

Therefore, summing (42) over1 ≤ σ ≤ s, we conclude that̃lk andl′k – the loads on thekth machine
in Ã andA′ respectively – are close,

‖̃lk − l′k‖∞ ≤ sΦε2d+1 . (43)

However, as (24) and (26) imply that

s ≤ ε−2d for all 0 < ε ≤ 1 (44)

we conclude by (43) and (44) that
‖̃lk − l′k‖∞ ≤ Φε . (45)

Finally, the Lipschitz continuity of bothg andf imply that (37) holds withC2 as in (33).

Next, we show how to construct from a solutioñA of Ĩ, a solutionA′ of I ′ for which (37) holds. The
two assignments will coincide for the large vectorsL. As for the small vectors, let us fix one vector
type1 ≤ σ ≤ s, wheres is the number of types (26).̃S includes the vector̃wσ repeatedκσ times,
(29)-(30). Lettσ,k be the number of those vectors thatÃ assigns to thekth machine. The counterstσ,k

satisfy (41). We now assign the vectorsx′ ∈ S ′∩W σ, see (28), to themmachines so that thè∞-norm
of their sum in thekth machine is greater than(tσ,k − 1)Φε2d+1 but no more than(tσ,k + 1)Φε2d+1.
In view of (28) and (29), it is easy to see that such an assignment exists: Assign the jobs one by one
greedily, in order to obtain in thekth machine,1 ≤ k ≤ m, a load with aǹ ∞-norm of at least
(tσ,k − 1)Φε2d+1. Since thè ∞-norm of the sum of all small jobs is at least(

∑m
k=1 tσ,k − 1)Φε2d+1,

this goal can be achieved. Also, as the size of each of those jobs is no more thanΦε2d+1, we may
perform this assignment in a manner that keeps the load in each machine belowtσ,kΦε2d+1. After
achieving that goal in all machines, we assign the remaining jobs so that the total load in each machine
is bounded by(tσ,k + 1)Φε2d+1. This is possible given the small size of the jobs and the size of their
sum (at most(

∑m
k=1 tσ,k)Φε2d+1). Clearly, if we letyσ,k denote the sum of vectorsx′ of typeσ thus

assigned to thekth machine, thenyσ,k satisfies (42). As we saw before, this implies thatÃ andA′

satisfy (37). This completes the proof.�

3.3 The scheme

In view of the previous two subsections, we assume that the original set of input vectorsI was subjected
to the truncation procedure, along the lines of§3.1, and then modified into a problem instanceĨ where
all vectors are large, using the procedure described in§3.2. For convenience, we shall keep denoting
the number of input vectors iñI by n and the input vectors byxi, 1 ≤ i ≤ n. Hence, all vectors iñI
satisfy

‖xi‖∞ ≥ Φε2d+1 1 ≤ i ≤ n .

This, together with (11) on one hand and (19) on the other hand, yield the following lower and upper
bounds:

ε2d+2 ≤
xi

j

Φ
≤ ηfηg for 1 ≤ i ≤ n, 1 ≤ j ≤ d and xi

j 6= 0 . (46)

Next, we define a geometric mesh on the interval given in (46):

ξ0 = ε2d+2 ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=

⌈
lg(ηfηgε

−2(d+1))
lg(1 + ε)

⌉
. (47)

8

In view of the above, every nonzero component ofxi/Φ, 1 ≤ i ≤ n, lies in an interval[ξi−1, ξi] for
some1 ≤ i ≤ q. We use this in order to define a new set of vectors,

Î =
{
x̂i = ΦH

(
xi

Φ

)
: xi ∈ Ĩ

}
, (48)

where the operatorH replaces each nonzero component in the vector on which it operates by the left
end point of the interval[ξi−1, ξi] where it lies.

Theorem 2 Let Ã be a solution of̃I and letÂ be the corresponding solution ofÎ. Then

(1− C1ε)F (Â) ≤ F (Ã) ≤ (1 + C1ε)F (Â) , (49)

whereC1 is given in (12).

Proof. Let l̃k andl̂k, 1 ≤ k ≤ m, be the load vectors iñA andÂ. Then

l̂k ≤ l̃k ≤ (1 + ε)̂lk 1 ≤ k ≤ m .

Hence,‖̃lk − l̂k‖∞ ≤ ε‖̂lk‖∞; using Assumptions 2-2 and 2-1 we get that

|gk (̃lk)− gk (̂lk)| ≤ εMgηgg
k (̂lk) 1 ≤ k ≤ m ,

or, equivalently,

(1− C1ε)gk (̂lk) ≤ gk (̃lk) ≤ (1 + C1ε)gk (̂lk) 1 ≤ k ≤ m where C1 = Mgηg .

These inequalities, together with the monotonicity off and its linearity with respect to scalar multipli-
cations (Assumptions 1-1 and 1-2) imply (49).�

The vectors in̂I belong to the set

W = X d where X = {0, ξ0, . . . , ξq−1} . (50)

As the size ofW is s = (q + 1)d, it may be ordered:

W = {w1, . . . ,ws} . (51)

With this, the set of modified vectorŝI may be identified by a configuration vector

z = (z1, . . . , zs) where zi = #{x̂ ∈ Î : x̂ = wi} , 1 ≤ i ≤ s . (52)

Next, we may describe all possible assignments of vectors fromÎ to them machines using a layered
graphG = (V,E). To that end, assume that̂A : Î → {1, . . . ,m} is such an assignment. We letÎk

denote the subset of̂I consisting of those vectors that were assigned to one of the firstk machines,

Îk = {x̂ ∈ Î : Â(x̂) ≤ k} 1 ≤ k ≤ m .

Furthermore, we define the correspondingstate vector

zk = (zk
1, . . . , z

k
s) 1 ≤ k ≤ m where zk

i = #{x̂ ∈ Îk : x̂ = wi} , 1 ≤ i ≤ s .

9

We note that
∅ = Î0 ⊆ Î1 ⊆ . . . ⊆ Îm−1 ⊆ Îm = Î (53)

and
0 = z0 ≤ z1 ≤ . . . ≤ zm−1 ≤ zm = z , (54)

wherez is given in (52). In addition, when0 < k < m, Îk may be any subset of̂I while zk may be
any vector in

Z = {y : 0 ≤ y ≤ z} . (55)

With this, we define the graphG = (V,E) as follows:

• The set of vertices consists ofm + 1 layers,V = ∪m
k=0V

k. If v ∈ V is a vertex in thekth
layer,V k, then it represents one of the possible state vectors after assigning vectors to the first
k machines. HenceV 0 = {0}, V m = {z} and the intermediate layers areV k = Z, see (55),
0 < k < m.

• The set of edges consists ofm subsets:

E = ∪m
k=1E

k where Ek = {(u,v) : u ∈ V k−1 , v ∈ V k , u ≤ v} . (56)

In other words, there is an edge connecting two vertices in adjacent layers,u ∈ V k−1 and
v ∈ V k, if and only if there exists an assignment to thekth machine that would change the state
vector fromu to v.

Note that all intermediate layers,V k, 0 < k < m, are composed of the same number of vertices,t,
given by the number of sub-vectors thatz has:

t = |Z| =
s∏

i=1

(zi + 1) ≤ (n+ 1)s . (57)

Next, we turn the graph into a weighted graph, using a weight functionw : E → R+ that computes
the cost that the given edge implies on the corresponding machine: Lete = (u,v) ∈ Ek. Then the
differencev − u tells us how many vectors of each of thes types are assigned by this edge to thekth
machine. The weight of this edge is therefore defined as

w(e) = gk(T (v − u)) where T (v − u) =
s∑

i=1

(vi − ui)wi , (58)

wi are as in (51). We continue to define a cost function on the vertices,r : V → R+. The cost function
is defined recursively according to the layer of the vertex, using Assumption 1-5:

r(v) = 0 , v ∈ V 0 ; (59)

r(v) = min
{
ψk(r(u), w(e)) : u ∈ V k−1, e = (u, v) ∈ Ek

}
, v ∈ V k (60)

(the functionsψk are as in (10)). This cost function coincides with the cost function of the VAP, (6).
More specifically, ifv ∈ V k and it represents a subset of vectorsÎk ⊆ Î, thenr(v) equals the value of
an optimal assignment of the vectors inÎk to the firstk machines. Hence, the cost of the end vertex,
r(v), v ∈ V m, equals the value of an optimal solution of the VAP forÎ.

10

The goal is to find the shortest path fromV 0 to V m that achieves this minimal cost. Namely, we look
for a sequence of verticesvk ∈ V k, 0 ≤ k ≤ m, such that

ek := (vk−1, vk) ∈ Ek 1 ≤ k ≤ m (61)

and
f(w(e1), . . . , w(em)) = r(vm) . (62)

We may apply a standard algorithm to find this minimal path withinO(|V |+ |E|) steps. As

|V | ≤ 2 + (m− 1) · (n+ 1)s (63)

and

|E| =
m∑

k=1

|Ek| ≤ m · (n+ 1)2s (64)

the running time would be polynomial inn andm.

The shortest path thus found represents an assignment of the vectors of the modified setÎ,

Â : Î = {x̂1, . . . , x̂n} → {1, . . . ,m} . (65)

We need to translate this assignment into an assignment of the original vectors,

A : I = {x1, . . . ,xn} → {1, . . . ,m} . (66)

To that end, let us review all the problem modifications that we performed:

• First modification:I to Ī, see (11) and Lemma 1.

• Second modification:̄I to Ĩ, see (28)-(31) and Theorem 1.

• Third modification:Ĩ to Î, see (48) and Theorem 2.

In view of the above, we translate the solution that we found,Â, into a solutionÃ of Ĩ, then – along
the lines of Theorem 1 – we translate it into a solutionĀ of Ī and finally we take the corresponding
solutionA of I.

Theorem 3 Let Φo be the optimal cost of the original problem instanceI. LetA be the solution ofI
that is obtained using the above scheme. ThenA satisfies (5) with a constant that depends only onηg,
Mg andMf .

Proof. Let Φ̂o denote the optimal cost of̂I. Then, using the left inequalities in Lemma 1, Theorem 1
and Theorem 2, together with (19), we conclude that

Φ̂o ≤ 1
1− C1ε

·
(

1
(1− C1ε)2

+ C2ε

)
Φo ≤ (1 + Tε)Φo , (67)

for an appropriate choice ofT that depends only onC1 andC2. However,Φ̂o is no other than the
cost of the shortest path that we found in the graph, namely, the cost of the solutionÂ that we found

11

for Î. AsA is the solution ofI that is obtained fromÂ, we may upper bound its cost using the right
inequalities in Lemma 1, Theorem 1 and Theorem 2:

F (A) ≤ (1 + C1ε)2 ·
(
(1 + C1ε)Φ̂o + C2Φoε

)
. (68)

The Inequalities (67) and (68) imply that

F (A) ≤ (1 + C1ε)2 · ((1 + C1ε)(1 + Tε) + C2ε) Φo ≤ (1 + Const· ε)Φo ,

where the constant depends only onC1 = Mgηg andC2 = MfMg. �

References

[1] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling. InProc.
8th ACM-SIAM Symp. on Discrete Algorithms (SODA’97), pages 493–500, 1997.

[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel
machines.Journal of Scheduling, 1:1:55–66, 1998.

[3] Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on related ma-
chines. In1st Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX98), pages 39–47, 1998.

[4] C. Chekuri and S. Khanna. On multi-dimensional packing problems. InProceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pages 185–194, 1999.

[5] E. G. Coffman, Jr. and G. S. Lueker. Approximation algorithms for extensible bin packing. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01),
pages 586–588, 2001.

[6] P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Zs. Tuza. A13/12 approximation algorithm for
bin packing with extendable bins.Information Processing Letters, 65(5):229–233, 1998.

[7] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machines. In7th Annual European Symposium on Algorithms (ESA’99), pages 151–162,
1999.

[8] L. Epstein and T. Tassa. Vector assignment problems: A general framework. manuscript, 2002.

[9] R. L. Graham. Bounds for certain multiprocessor anomalies.Bell System Technical Journal,
45:1563–1581, 1966.

[10] D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation approach.SIAM Journal on Computing, 17(3):539–551,
1988.

[11] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling prob-
lems: theoretical and practical results.Journal of the ACM, 34(1):144–162, 1987.

12

