More on online bin packing with two item sizes

Leah Epstein Asaf Levint

Abstract

We follow the work of [7] and study the online bin packing problem, where every item has one of
two possible sizes which are known in advance. We focus on the parametric case, where both item sizes
are bounded from above t%/for some natural numbér > 1. We show that for every possible pair of

item sizes, there is an algorithm with competitive ratio of at n}g%% We prove that this bound is
tight for everyk, and moreover, that it cannot be achieved if the two item sizes are not known in advance.

1 Introduction

Bin packing is a natural and well studied problem which has applications in problems of computer storage,
bandwidth allocation, stock cutting, transportation and many other important fields. In the standard online
problem, items of size if0, 1] arrive one by one to be assigned to unit size bins. Each bin may contain
items of total size at most 1, and the goal is to minimize the number of bins used. It is typically assumed
that items of any size may occur. However, in many applications, there is a small constant number of item
sizes, which are known in advance, but it is unknown how many items of each size will arrive, and in which
order.

The standard quality measure of algorithms for online bin packing iGahenptotic) competitive ratjo
which we now define. For a given input sequencelet A(o) (or A, if the sequence is clear from
the context) be the number of bins used by algoritdnon 0. Let OPT (o) (or OPT) be the cost of
an optimal offline algorithm which knows the complete sequence of items in advance, i.e., the minimum
possible number of bins used to pack items inThecompetitive raticof an algorithmA is defined to be

, Afo)
R(A) = h}lrisip sup { OPT(0) |OPT (o) = n} .

In this paper, we study the case where there are two possible item sizes. We focus on the parametric
case, where both item sizes are bounded from abov% foy some integek > 1. This problem in the
online setting was studied by Gutin, Jensen and Yeo [7]. They showed that the overall best competitive ratio
for this problem is%. This means that there exists a pair of sizes for which [7] have proved a lower bound of
% on the competitive ratio of any algorithm. Moreover, [7] designéd(mmpetitive algorithm for any pair
of sizes. Moreover, they found the exact best possible competitive ratio for the case where at least one size
is larger thar% (as a function of the two sizes).

The offline variant of the problem with two item sizes can be defined as follows. In this problem the
input is given by the values andj < «, and two non-negative integers which are the numbers szed

*Department of Mathematics, University of Haifa, 31905 Haifa, Ishegl@math.haifa.ac.il
fDepartment of Statistics, The Hebrew University, Jerusalem, Ideéhas@mscc.huji.ac.il.

items in the input and sized items in the input. Interestingly, even with this compact description of the
input, the problem can be solved in polynomial time using the algorithm of McCormick et al. [12].

Note that if the input for the online bin packing problem consists of items of two sizes only, but these
two sizes are not known in advance, it was shown by Gutin, Jensen and Yeo [6] that the competitive ratio
of any algorithm is at least.3871, therefore the advance knowledge of the sizes is crucial ferl. Note
also that the lower bound @ffor two known in advance sizes was already shown in [5], where the case of
two items sizes, > a > } and3 = 1 — a, was solved.

A natural question is how fast the competitive ratio decreases in the online problem, if the items are
relatively small. An analysis of a similar flavor was applied to specific algorithms for standard bin packing
as well as to other variants of bin packing (see e.qg. [8, 9, 1, 4]).

Our main result is finding the best overall competitive ratio as a functioh, Mhere% is an upper
bound on both item sizes. This problem is called “the parametric problem”, Biisc& parameter on which

the competitive ratio may depend. We show that this ratikéiiﬁl%. Our result extends and simplifies the
result of [7] fork = 1. The main difference is in the analysis of the algorithms for which we use weighting
functions (see [15, 10, 13, 14]).

We further show that, if there are two item sizes, but they are not known in advance, then even if we
know the parameter and one out of the two sizes, and the other size is one of two values, which are also

given in advance, already the earlier bounqgé}f,%_z1 cannot be achieved for any valuefof

To motivate further work on the subject, we show a pair of sizes for which tight bounds for this specific
pair of values can be achieved using an algorithm which we describe, which is different from our general
algorithm. Moreover, our general algorithm achieves a higher bound for this pair of sizes.

The classic online bin packing problem was first investigated by Ullman [15]. He showed that algorithm
FIRST FIT (FF) has competitive rati(%. This result was then published in [9]. Johnson [8] showed that
algorithm NExXT FIT (NF) has competitive ratio 2. The goal at this time was to find an algorithm which
performs better tharr. Yao [17] designed an algorithiREVISED FIRST FIT which is based omF with
some changes and showed that it has competitive ratio of at%nost

The further sequence of improvements became possible after Lee and Lee [10] introduteditaeNiC
algorithm, which is based on harmonic partitioning of the input items, together with a greedy packing of the
class of smallest items. This is actually a sequence of algorithms, whose competitive ratio tends to approxi-
mately1.69103. All algorithms which were designed after this are based on adaptations itk ONIC
algorithms. These algorithms try to combine selected items of different sizes to allow a better packing.
Such were the algorithmREFINED HARMONIC [10], MoDIFIED HARMONIC [13], and finally, the current
champion HARMONIC++, given by Seiden [14], which has an upper bound of 1.58889 on the competitive
ratio.

As for lower bounds, Yao [17] showed that no online algorithm has competitive ratio smalleg.than
Brown and Liang independently improved this lower bound to 1.53635 [2, 11]. This was subsequently
improved by van Vliet to 1.54014 [16]. Chandra [3] showed that the preceding lower bounds also apply to
randomized algorithms. The results of Gutin et al. [7] imply that the special case where there are only two
item sizes known in advance, is significantly easier than the general online bin packing problem.

2 Definitions, notation and methods

Throughout the paper, we denote the two item sizes layd 3, wherea > 3. We call items of sizex,
“larger items”, and items of siz@ “smaller items”. We use the notatian to denote the largest number of

smaller items that can fit into a bin witHarger items. That isy; is the maximum integer valuesuch that
ia+t4 <1,0rz; = [15%] . The valuer; is defined foi0 < < | 1]. Note thatrg = | 3.

A pattern is a pair of non-negative integérs b). It describes a packing of a single bin, which has
larger items and smaller items. It is valid ik + b5 < 1.

To analyze bin packing algorithms, we use the well known weighting method. The weighting technique
was originally introduced by Ullman [15]. The main idea of this method is to give an item a weight which
is roughly the amount of space it occupies in a bin. The weight of an item is typically related to its size and
for our purposes, the weight of an item is defined to be a function of its size. Since not all bins are fully
packed, the weight of an item is typically (but not always) larger than its size. Given a weight measure
thenw(s) is theweightof an item of sizes according taw.

If there exist several possible scenarios in a given algorithm, we can define a weight function for each
of them. Note that, if identical (or similar) items are packed in several different ways, we can assign equal
weights to all of them, which is the average amount of space that such an item occupies.

The weights for a given scenario are assigned so that the number of bins used is no larger than the total
weight assigned to all items (up to an additive constant). Given weights that satisfy this property, we use
the following theorem, see Seiden [14]. Note that this type of analysis was done also earlier for algorithms
which are adaptations of Harmonic, see [10, 13].

Lemma 1 Consider a bin packing algorithm denoted By.G. Letws,...,ws be s weight measures.
Assume that for every input sequemcédhere exists (1 < i < s) such that the number of bins used by the
algorithm ALG is at mostX; (o) + ¢ for some constant, where X; (o) is the sum of weights of all items
in the sequence according to,.. Denote byW; the supremum amount of weight that can be packed into a
single bin, according to measute, (1 < i < s). Then, the asymptotic competitive ratio of the algorithm is
at mostmax W;.

1<i<s
Proof. Given an input, let be the value that satisfies the assumptions of the theorem for this input. Clearly
OPT(0) > X2 We getALG < Xi(0) + ¢ < W; - OPT +c. m

3 Algorithms

For any pair ofa, 3, we use one of the following two algorithms. A similar approach of choosing one of
two algorithms was used in [7]. We generalize it, and our analysis is different. The basic idea, which is to
combine some fraction of relatively small items with larger items in the same bins, using specific patterns,
is based on algorithms in [10, 13, 14].

Letk = Léj be the maximum number of larger items that can fit into a common bin, andHet, be

the maximum number of smaller items that can fit into a common bin. We clearlychavé <, 1] and

B € (547, 1] We also lett = ..

S

The following algorithm is used i < =%

Algorithm Greedy. If k = s, useNF, that is, keep a single active bin. The active bin is closed and a new
open bin is opened once the active bin contains exacdiigms. Ifs > k, we keep two active bins, one for
each size. Each bin for smaller items, except for possibly the last bin, will confems. Each bin for
larger items, except for possibly the last bin, will contaitems.

The following algorithm is used if > ﬁ Note that this means that- 0 and therefore > k.
Algorithm Combine. The algorithm packs the larger items greedily, such that each bin, except for possibly
the last one, containsitems. Letd = ﬁ Clearly, sinced < t < s, we have) < § < 1. A ¢ fraction

3

of the smaller items is colored red and the remaining ones are colored blue. This can be implemented by
partitioning the smaller items into blocks &f — st +t? consecutive items (ignoring the larger items) in each
block (except perhaps the last block). Then, we color red thedastms out of every? — st + ¢ items
in the block, and all other items (the first — st in the block) are colored blue. The blue items are packed
s to a bin, whereas the red items are packéala bin. The goal is to combine the red items with the larger
items. Thus, when a larger item arrives, if some bin already has larger items, but lesssti@mitems, the
new item is packed there. Otherwise, if there exists a bin with red items only, the new item is packed there.
If none of these two conditions is satisfied, then a new bin is opened for the new item. Similarly, when a
smaller item is colored red, the algorithm first tries to pack it into a bin which contains beivarett — 1
smaller red items (this option exists only foe> 2), or if such a bin does not exist, the algorithm tries to
pack the new item into a bin with at least one larger item and no red items. Finally, if none of these two
conditions hold, i.e., such bins do not exist, a new bin is opened for red items.

The algorithm does not have more than one bin for larger items with lesg taager items. Similarly,
there is at most one bin for blue smaller items with less thi#ams, and at most one bin for red smaller
items with less tham red items. Note that by the definition of the algorithm, it is impossible to have at the
same time both a bin with larger items and no red items, and a bin witled items and no larger items.

Weight functions

To analyze the algorithms we define three weight functions. One weight funatiois defined for Greedy.
Two functions are defined for Combine, specifically, one weight function is suitable for the case where there
are no bins containing larger items, but no red items. The last weight function is designed for the case
where there are no bins containihged items, but no blue items. We call these functiensandws.

The functions are defined in Table 1.

X ‘ wr () wa(x) ws(x)
1 1
ﬁ 1 1-6 + 6 s2—st + 2 _ s 1-6 _ s—t
s x0 xr s(s?2—st+t?) t(s2—st+t2) — s2—st+t2 xo s2—st+t2

Table 1: The weight functions

Analysis

Theorem 2 Given two item size§ < a < % let p(k) = ,g‘j,jfl If é < ﬁ then the competitive

ratio of Greedy is at mosi(k). Otherwise, Combine has a competitive ratio of at mags?.

Proof. We need to show that the sum of weights according to each weight function is at least the number
of bins used by the algorithm, up to a constant additive factor. This constant factor is caused by bins that
do not receive the full number of items, and thus is equal to at 81086 we saw, for Greedy there are at
most two such bins. For Combine, there are at most three such bins. We will compute the weight of every
block of s> — st + t2 smaller items together. Thus, if the total number of such items is not divisible by

s? — st +t?, we assume that it is divisible and neglect the last at mbst st + 2 — 1 items, which may
contribute to the additive constant as well. That is, in this case the additive constant is a funcgianabf

%. (This situation can be avoided by keeping the ratio between the number of bins with blue smaller items,

4

and the number of bins with red smaller items as close-ta: : ¢ as possible at all times. In this case, the
additive constant becomes independent of the sizes.)

If s > k, then each full bin of Greedy has eithletarger items o smaller items, and thus has weight
1, according taw;. If s = k, then every bin of Greedy (except for possibly the last one)hass items,
and therefore has weight

For Combine, in the first scenario we need to check that the total weight of smaller items in all bins is
large enough. We do not need to consider bins that contain only larger items, since such bins do not exist in
this scenario. Every block of — st + t? smaller items creates exactly- ¢ bins of blue items and bins
of red items. The total weight of these items according4as s. In the second scenario, we need to only
consider bins of smaller blue items and bins of larger items. The weight of larger items in a bin, according
to ws, is exactlyl. In order to prove that the total weight of all items is large enough, it suffices to show that
the weight ofs? — st 4- t2 smaller items in a block covers the cost of the bins of blue items (of the block),
since red items are always combined with larger items. The total weight of these smaller items ésd
this is the number of bins with blue items (from the current block) that the algorithm creates.

Next, we need to find an upper bound on the total weight that can be packed into a single bin. There are
k + 1 valid patterns which we call dominant, according to the number of larger items in the bin, together
with a maximum number of smaller items. The weight of a non-dominant pattern is at most the weight of
some dominant pattern, thus it is enough to consider dominant patterns.

If s =k, then we use the Greedy algorithm and all items have w%ighté. A bin can contain at most
k items, and we are done. In the remainder of the proof we assumé.

For the pattern0, s), the weight forw; is simply 1. Sincews(3) < w2(3), the largest weight if
Combine is used, is caused fy. The weight of this bin with respect to all three functions is therefore at
most%. We are therefore interested in the functifiz) = ﬁ wherez = L. The derivative off
is given by f'(z) = % Therefore,f is monotonically increasing inif z < % (and monotonically
decreasing otherwise). We next find boundsgorSincel — ka < «, we conclude that < L%j. On the
other hands > ¢t + kL%J, and therefore > (k + 1)t. Hence

1
> — >
T k+1 7

®» |

DN | =

An upper bound on the weight is therefore given by using ﬁ Therefore, the total weight is at most
(k+1)2 14k
(k+1)2—(k+1)+1 k2 +k+1

Note that for any other pattern, the weight accordingutois lower than the weight ofvs for (0, s).
That is, for all feasible patterfu, b), we haveaws (o) + bwa(8) < swq(B), and therefore we do not need
to considerws for other patterns.

For the patterrik, t) we get that in Greedysw; (o) + tw1(8) = 1+ £ <1+ ﬁ where the last
inequality holds because Greedy is chosen. Otherwise, i.e., if the pattgrtjsand we chose Combine,
then the total weight is at mostus(«) + tws(8) = 1 + S;fs;fﬁ = SLS;HQ <1+ Wkkﬂ where the last
inequality follows by the analysis gf(z) above.

From now on, sincev; (z) > ws(z) for x = «, 3, it suffices to consider all remaining patterns with
respect tav; only, if we do not use the value céf(which determines which algorithm was used). We need
to consider patterng, ;) for 1 <i < k — 1. Thus, we need to find an upper boundiorr =,

We make a case analysis depending on the value dfirst suppose that > 2k + 2. Note that

) | . .)) . .
z; < 1;@ P = (SH)k(E“l 9 and we need to find a bound for 2 < 14 % =1+14
s+1

st —k(s+1) _ ¢ % + zﬁfl) Sinces > k, the worst case (i.e., the case which causes the expression

sk(k+1
to be ﬁn;x)imized) occurs far= k — 1 (i.e., the maximum value a). Therefore] + (k’l)gskf(,’jﬁ’;(k“) =
1+ ’fk(,jﬁ)’“ =1+ k(k—i—l) + (k+1) is an upper bound on the total weight in a bin.

Since the last expression is a monotonically decreasing functien(iafr posmve values of), and
sinces > 2k + 2, we substitute and get an upper bound on the total Weltho.k(kH) + (2k+2§(k+1) =
1+k(kj1+)’§. Since we havék?+k—1) (k2 +k+1) = k2(k+1)2—1 < k*(k+1)?, we getk(kjj)’;? <

which completes the proof for the case> 2k + 2.

Next, assume < 2k + 1, and letc = i + z; — k. A bin packed by a dominant pattern contains at least
k items, thuse; > k — i, and therefore > 0. We can determine the possible valuee ¢itat may violate
the competltlve ratio as follows. Sin¢e z;) is a valid pattern and: > k+1’ 8 > we conclude that

s+1’
ktc—i 1 s+1-k—c (k+1)(s+1—k—c)
w1+ e < 1. Thereforey <k+1 S+1> < FE 7=, From this we get < “——————. If the
PR +1)? iy kte—i _ k4 i(s—k) k-t (k+1)(s+1—k—c) _
competitive ratio is violated, we g T < Loy btem _ Bbe y DR g kde MHORTSTTY o

k2 +kct+ks+s+k+1—k?—k—kc—c __ ks+s+l—c
= =, Therefore,

ks
(k +1)%ks (k+ 1)k s(k+1) (2k+1)(k+1)
= 1+s(k+1) (1 - ———) =1 <1

pry e ARGy 2kl Eaiktl - Btktl

We therefore need to consider the cases0,1,2,3. Weletl < j=k—i<k—landl<d=s—k <
k+1.Thenx, =k+c—i=j+ec

; . P i k+1—i k2+k+k71
If ¢ <1,sinces > k+1andi < k—1, we conclude that +7+ < 7+ o < k2+k+1 o <

kffi;fl where the last inequality holds becasé+ k +k — 1)(k* + k+1) = k* +3k* + 2k + k-1 <
kY4 3K 4+ 3k% + k= (K + k) (k + 1),

If e =2, thent + & = k=i 12 _ g 4 lf(kkﬁj) We first argue that < jd + d — 2. To see this note

that otherwise if 2]d—|— d— 1, we get thak — j items larger thar;c% andj + 2 items larger thars%1 do
not fit into one bin, so the patte(a, z;) = (k — j, j + 2) is impossible. This is true since in order to have
Pt o < Lweneedity — o > 0010 < jd+jk+j+d+k+1—jk—2k—j-2 = jd+d—1-Fk,
and this is a contradiction to the assumptionkofTherefore, we can assume tha¥ jd + d — 2.

Recall thatd < k + 1. First assume thal < k. We conclude that + 2£=id < 1 4 ktd—2 _

k(k+d) k2+kd
1+E k(k+d) < 1+ 2 = 1Jr’“,€21 < 1+k2+k+1,where the firstinequality holds becausg jd+d—2,

the second mequallty holds becauke %, and the third inequality holds becauge— 1)(k* + k + 1) =

k3 —1 < k- k2. Next, assume that = k + 1. Then, forj > 2, 1 +]f(’“kfj) < 1. Therefore we need

to consider the case wheje= 1. In this case the competitive ratio is at mast

where the inequality holds becauge— 1)(k* + k + 1) = k3 — 1 < k?(2k + 1).

oz k—j g k—jd
If ¢ =3, thenwe gef, + % = *21 + 123 = 1+ 220

If k > 22 we get thats — j items larger thanl; and;j + 3 items larger thanl; do not fit into

one bin so the patterfi, z;) = (k — j,7 + 3) is impossible. In fact, in order to ha\,@ﬁ; + dﬂgil < 1lwe

need/tt — 252 > 0010 < jd+ jk+j+d+k+1— jk—3k—j—3=jd+d—2— 2k which gives

2k < jd +d — 2 ork < 294422 "and this is a contradiction. Therefore, we can assumekthat/“+4=2,
o | < dtd=3
Sk < TS

c < ks+s+1— < 4.

(2k+1) <1+ k:2+k:+1’

Using2k < jd + d — 3, we havel + ,f(kkjrjj) <1+ ,’j&i‘js =1+ — ppray- Recall thad < k + 1,
3k—jd 1 3 1 _ 2k—2
which givesl + k(k+]d) <1+ - "D <1l+4+z- m 1+ AR S 1+ k2+k+1,wherethe last

inequality follows from2(k — 1)(k? + k + 1) = 2k> — 2 < 2k® < 2k3 + k*. m

6

4 Lower bound

In this section we show that the upper bound as a functignaainnot be improved and prove the following
theorem.

Theorem 3 For everyk > 1, there exists an input whefe < o < % such that any online algorithm has
competitive ratio of at Ieaggﬁ%.

Proof. Lets > 0 be a small number such that< m We consider an input in which the item

sizes arey = 17 + ¢ and@ = 115 + e. Clearly, a bin can contain at mastarger items.

Let NV be a large enough integer. The input starts with a first step wkiers, smaller items arrive. Let
zp41 = 0. For0 < j < k, we denote by; the number of bins which contain at least;; + 1 items and at
mostz; items after the first step. Clearly, such a bin can accommodate atji@ger items. In the second
step,kN - x(larger items arrive. We denote Ippthe number of additional bins opened in this step. Denote
by opT; andoPT, the optimal costs after the two steps. Denoteabg; andALG5 the costs of the online
algorithm after the two steps. L& be the competitive ratio of the online algorithm. Thus#et 1,2 we
haveaLG; < RoOPT;. Thus we get the following inequalities.

k k

Y yi<Ropn and Y gty < ROPT. (1)
1=0 1=0

Next, using the quantities of items, we get the following inequalities.

k k

Z:}:i'yz‘ZNﬂUo and Zi-yi—i—ykZNk:Eo. (2)
i=0 =0

Next, we compute the values. Note that all items are larger th@é%, so a bin contains at most+ 1

items. Thereforer; < kK + 1 — . On the other hand, since > (3, ande < m we have

it (k+1-0)3 <ka+ 8= ghy + gy + (k+ 1) < EgZhiltl — 1 Thusz; = k+ 1 —i. Using
these values we can deduc®T; = N andoPT, = N - 29 = N(k + 1).

k
Adding the inequalities in (2), we gék + 1) >_ y; + ky > (k + 1)2N.
i=0

k
Using the sum of the inequalities in (1), where the second one is multipliédwg get(k +1) > y; +

=0
ky < Rk(k+1)N +RN = RN(k* + k + 1).
.. (1)2
Combining the last two inequalities implies a lower boune};@}fle onR.
Note that this proof holds for randomized algorithms as well as deterministic ones, since the variables
denoting numbers of bins can be seen as variables denoting the expected numbersmof bins.

5 Unknown item sizes

In this section we demonstrate that if the two item sizes are not known in advance, the resulting competitive
ratio is higher. We show that already a small lack of knowledge causes an increase of the competitive
ratio. Specifically, we show that if the siz¢is known in advance, and the sizecan be one of two

given sizes in the interval15, 1], which are both known in advance, then the competitive ratio is at

7

_ AKS+8k5410k*4+14k34+11k246k+3 _ 4k5 +6k3+2k%+2k+1 ; ;
leastQ(k) = “ s ort st oty = L T o rars l0rt s o 2k LIS easy to verify that
(4k> + 6k3 + 2% + 2k + 1) - (K2 + k + 1) = 4k7 + 4k5 + 10k5 + 8k* + 10k3 + 5k% + 3k + 1 >
kT + 4KS + 10k + 8k* + 9k + 4k? + 2k and thusQ(k) > 1 + %—. Our bound holds in the worst
case, and not for every triple of values (where the triple consisfs afd the two options at).
We state some values 6f(k) in Table 2.

k+1)2
e QW)
~ 1.28571 1.28899

~ 1.23077 1.23138
~ 1.19048 1.19065
~ 1.16129 1.16135

S SO O N e
28 NS |sls [~ie

Table 2: Comparison between the best competitive ratio with two known size3(@nd

Our construction is a generalization of the construction for a small number of sizes in [6] and reduces to
it for k = 1.
H 1 i _ 1
Letp > k be aninteger and let> 0 be a value such that< PRI We use the sizes = S

a1 = 57 8 00 = o+ e = sk We havens < ap < ¢
The first part of the input i$V items of size3, whereN is a large enough number, divisible pyp —
1)(k + 1). For convenience, we allow the algorithm to use a non-integer number of bins packed by each
pattern. We do not allow the offline algorithm to do so, therefore this can only reduce the competitive ratio.
Let 2/ be the maximum number of smaller items that can fit into a bin witlems of sizea;, for

0<i<k.

Claim4 Fori > 0,z} = p(k+1—1i)andz? = p(k+1—i) — 1. Moreoveraz},,; < z?forl <i <k-—1.
Proof. Usingi < k < p, we conclude that

p(k+1—1)

ion +p(k+1-0)F = et o D) —p(k+1—1i)e
= 1—-pk+De+ip+1De <1+ (k—ple<1,
1
i+ (plk+1—i)+1)8 = l—l-m—p(k-f—l)t?-f—i(p‘Fl)S—S
1 plk+1)+1
> 1+ - > 1,
p(k+1) p2k(k+1)3
. . 1 1 plk+1—i)—1
k+1-i)—-1)p =
oy + (pk+1-0) ~1)8 = i(g +)
1—k
_ 1—4)—1 1+ ———= <1
(p(k+1—1i)—1)e < ToRir) S
1 p(k+1)

iag+plk+1—-i)8>1 + —p(k+1)g>1+p > 1.

pk(k+1) k(k+1) p2k(k+1)3

Fori < k—1,we getz} , = p(k—i)andz? = p(k—i)+p—1> p(k—1i), thus the second claim follows.
[

Forz’ 0, clearlyz} = 23 = p(k + 1), since we havey(k + 1)3 < 1 and (p(k + 1) + 1) =
k
L+ gy — ok + 1) + e > 1+ sl — B > 1.
After the first part of the input, there are three cases. The input may stop, or be augmented @either

items of sizen; or |tems of sizeny. We find an optimal packing for each case, the cost of an optimal
packing for case |s denotedOPTl Clearly, in the first case, each bin contajii + 1) items of sizeg.
ThusorPT; = (k+1) In the second case, a bin can contain at nhois¢ms of sizea;. Indeed, we have
OPTy = %, since each such bin can recejvemaller items. In the third case, a bin can contain at rhost

items of sizeny. Indeed, we haverT; = I%, since each such bin can recejve- 1 smaller items.
Next, we consider the packing patterns of an online algorithm and we show the following.

Lemma 5 We may assume without loss of generality that after the first part of the input, a bin contains one
of the following three numbers of smaller itempgk + 1), p, p — 1. These are the values, = 23, z; and
22,
Proof. If the algorithm opens some bin which containsmaller items, where # x{ for all 4, 7, then let
¢’ be the smallest number such that> ¢ andq’ = x{ for some pairi, j. Then replacing each bin with
items by-<Z bins with ¢’ items (recall that we allow a fractional number of packed bins) does not harm the
packing of the second part of the input, and reduces the number of bins after the first part of the input.
Consider next a bin packed Wmlfi items, wherel < i < k. If j =1, x] = p(k+1—1), and we
replace this bin by’,;— bins withp items antﬁ bins withp(k + 1) items (the number of resulting bins may
be fractional). The number of smaller items remaiis+ (k —i)(k + 1)) = p(k —i + 1). If the second
part of the input consists of items of siag, before the transformation, there was space fitems. After
the transformation, there is space foitems in% bins and no room in the other resulting bins. Thus there
is no change.
If the second part of the input consists of items of size before the transformation, there was space

for i — 1 items. After the transformation, there is spaceior 1 items in% bins and no room in the other
resulting bins. We havé(kkél) =i— % > i — 1. Thus the transformation creates additional space.

fj =22 =pk+1—4)—1. Letpy = p}g,ﬁ;j). We haved < p < 1, andl —p = 2. We
replace this bin by — 4 bins withp — 1 items andu bins Withp(k + 1) items. The number of smaller items
remains®= 1)(1+p2);rp(k’ Op(k+l) _ p—14pi— pl+p2kki?kp +kp?—ip? (pk+1)(pk’+ip+p) _ p(k+1—i)—1.
Before the transformatlon there was spacei ﬂarger items, no matter WhICh larger items arrive. After the
transformation, there is space foitems in1 — y bins and no room in the other resulting bins. This gives
space of’% > 1. Thus the transformation creates additional space.

FinaIIy, we show the following lemma.

Lemma 6 For p = 2(k? + 1), the resulting lower bound i€ (k).

Proof. Letyr, yar andygs be the (possibly fractional) number of bins opened by the algorithm after the first
part of the input, withp(k+1), p andp— 1 items (respectively). We compute the cost of the packing for each
case, where the cost of the packing for casedenotedALG;. We havep(k + 1)y, + pyamr + (p — 1)ys =

N andALG: = yr + ym + ys. If the items of the second part are of sizg, then bins withp and

p — 1 items can receivé: additional items, and bins with(k + 1) items receive no further items. If
the items of the second part are of size the situation is similar, only bins witlh items can receive

only k — 1 further items. Since bins with(k + 1) smaller items cannot receive further items, and every
other bin (including new ones) can contain at medarger items, we haveLG, > yr + %. We next
compute a lower bound on the number of required bins in the last case. To this end, we show that the
existing bins cannot contain all larger items. This holds sifice- 1)y, + kys < ;z%yM + kYg and

p(k+ Vyr +pym + (p— 1)ys = N implies Z%yM + kys = 2. Therefore additional bins are opened,
kN
I EN — (k—1)ynr—ky
which implies,ALG3 > yr + yas +ys + 21— :yL+LIJ;J+I%_

We use(p — 1)ALG1 + (pk + 1 — k)ALG2 + kALG3 < R((p — 1)OPTy + (pk + 1 — k)OPT2 + kOPT3),
which implies

N N
N N N
<R((p—1)———+pPk+1—-k)— +k——).
(0= 1)y +) =)
Which gives

(p—1(pk+1—Fk)+kp
p(p—1)
p’k—pk+p—1+k
p(p—1)
(p—=1*+ (pk+1 - k) (p— D)(k + 1) + kp(k + 1))
plp—1)(k+1)

yr(p—1+pk+1—k+k)+yu(p—1+1)+ys(p—1)+ N

=yr-plk+1)+p-ym+ys-(p—1)+N

<R -N-

Usingp(k +)y + pypm + (p — 1)ys = N we have,

p’k—pk+p—1+k :Np2k—pk—1+k+p2
p(p—1) p(p—1)
(p—1+ (pk+1—k)(p—1)(k+ 1)+ kp(k +1))

plp—1D(k+1) '

N+ N

<R -N-

and finally,

. (k4 1)(p*k — pk — 1 + k + p?)
_p2—p+p2k‘2—pk2—|—/€2+p2/€.

It is possible to verify that the best choice fois p = 2(k% + 1), which implies the lower bound we
wanted to provem

6 Towards a complete solution
In this section we demonstrate that the approach above cannot lead to an optimal solution for all pairs of

« andg, as a direct function of these two values, even if we compute the resulting competitive ratio of the
algorithm we presented as a function of the exact sizes.

10

We consider a simple example where= % andg = % There are three possible dominant patterns
for these values, which afe, 0), (1, 2) and(0, 3). Clearly, the algorithm we used for these values is Greedy.
We can compute the competitive ratio using the weights accordimg tevhich are% andl, and get the
weightsl, %, 1 for these three patterns. This implies a competitive ratié.dﬂote that Combine cannot be
used here, since= 0.

We next describe an algorithm called CombineBoth of competitive %tifhis algorithm tries to pack
some of the items using the pattgrh 2), into bins that are called “red bins”. Thus, a fractipn= % of
the larger items is colored red, and a fractios: % of the smaller items is colored red. The blue items of
each size are packed using Greedy, into bins that are called “blue bins” (at each time, there is at most one
active bin per size). A red larger item is packed into a bin with at least one smaller red item, if there exists
such a bin that did not receive a larger item yet, and otherwise into a new red bin. A red smaller item is
packed into a red bin which contains exactly one red smaller item, if such a bin exists, otherwise into a red
bin containing only one item, which is a larger red item, and if such a bin does not exist either, we open a
new red bin for the item.

Using this method, there is at most one bin that contains exactly one red smaller item. Moreover, there
is at most one blue bin for each one of the two sizes that does not contain the full number of items (which
is two, for larger items, and three, for smaller items). Each additional red bin, with less than three items,
contains either a larger item, or two red items. Moreover, according to the algorithm, the output cannot
contain both.

We define two weight functions, where the first function can be used for the scenario where all red
bins (except possibly one) contain two red smaller items@ndan be used for the case where all red bins
contain a red larger item.

The functions are defined in Table 3.

wy(z) ws(7)

1— 3 1— 4

r=a| =7 g AY=3
— 1-46 6 _ 5 1-6 _ 2
v=0|F ts=u T =7

Table 3: The weight functions

For the analysis, we assume that the number of smaller items is divisilik dryd that the number of
larger items is divisible by. Otherwise, we neglect a constant number of items of each size. We compute
the weight of every seven large items together and of el¢gmaller items together.

In the first scenario, seven larger items create three bins of blue larger items and one bin of red items.
The required weight of red bins is covered by smaller items. Thus the total weight of these seven items is
3, which is exactly the number of blue bins these items create. In the second scenario, seven larger items
create the same bins as before, but now they need to have enough weight for four bins. The total weight of
these seven items isas required.

In the first scenariol4 smaller items create four blue bins of smaller items and one red bin. The total
weight of these 14 items is inde&dIn the second scenarit4 smaller items need to only cover the weight
of four blue bins, since larger items cover the cost of red bins. Their total weight is iddeed

We next compute the weight of each pattern according to the two weight functions. For the patterns
(2,0), (1,2) and(0, 3) we get totals of, 2 and 2 according tav, and of%, £, and¢ according tows. The
maximum of all these values %

11

Another interesting property is that unlike the lower bound of Section 4, a matching lower bound is
achieved here by using a sequence of larger items followed by smaller items and not smaller items followed
by larger items. An attempt to apply the latter results in a lower bound of%mly

We briefly describe the lower bound éf The input contain®n larger items, possibly followed by
4n smaller items. We denote byPT; and ALG; the costs of an optimal offline algorithm, and an online
algorithm after; parts of the inputy{ = 1,2). We haveopT; = n andoPT, = 2n. Lety; andy, be
the numbers of bins that contain one and two items respectively after the first part of the input. We have
y1 + 2yo = 2n. Note thaty, < n andy; < 2n.

For the algorithm, we haveLG1 = y1 +y». Each bin that is packed with two larger items cannot receive
further items. Each bin that has one larger item can receive two smaller items. The number of smaller items
that must be packed into new bins is thus— 2y; > 0. They can be packed at most three to a bin, and so
we haveaLGs > y1 +y2 + 4”’% = %1 + yo + %" Let R be the competitive ratio of the algorithm. We
getyr +y2 < Rnand% 4y + %” < 2Rn, ory; + 3y2 +4n < 6Rn. Taking the sum of these inequalities
we have2y; + 4y, + 4n < TRn. We usey; + 2y, = 2n to getR > &.

We have proved the following.

Proposition 7 For o« = 0.4 and 8 = 0.3, the best competitive ratio I% and it is achieved using Com-
bineBoth.

7 Concluding remarks

In this paper we found the best overall competitive ratios for bin packing with two (known in advance) items
sizes, where both sizes are at m%sﬂor an integerk. A natural open problem would be to find the best
competitive ratio as a function of the two sizes, either as a closed formula, or at least as a solution of a linear
program. It seems that for any pair of sizes, it is likely that the usage of four configurations may be enough
to achieve an algorithm of optimal competitive ratio. Moreover, it is likely that the lower bound for every
pair would contain a stream of items of one size, followed by items of the second size. Proving or disproving
these claims is left for future work.

We would like to point out that the best competitive ratio for a given pair of sizasd 5 depends only
on the finitely many dominant combinations of items which can be packed in a single bin. The set of all
pairs with the same set of combinations forms an equivalence class. Thus, for example, (Itfg, q@r
in Section 6 is equivalent, e.g., to the p(a%r, %). In particular, it is possible to assume that both sizes are
rational, and that there exists at least one combination of these items which fills exactly one bin.

Acknowledgment. The authors thank an anonymous referee for suggesting the last paragraph of Section 7.

References

[1] B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for Next-Fit-Decreasing bin-packing.
SIAM J. on Algebraic and Discrete Metho@$2):147-152, 1981.

[2] D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical Report
R-864, Coordinated Sci. Lab., Urbana, lllinois, 1979.

[3] B. Chandra. Does randomization help in online bin packihyf@rmation Processing Letterd3:15—
19, 1992.

12

[4] J. Csirik. The parametric behaviour of the First Fit decreasing bin-packing algoriflournal of
Algorithms 15:1-28, 1993.

[5] U. Faigle, W. Kern, and G. Tan. On the performance of online algorithms for partition problems.
Acta Cybernetica9:107-119, 1989.

[6] G. Gutin, T. Jensen, and A. Yeo. Batched bin packibigcrete Optimization2(1):71-82, 2005.

[7] G. Gutin, T. Jensen, and A. Yeo. On-line bin packing with two item sizdgorithmic Operations
Researchl(2), 2006.

[8] D.S.Johnson. Fast algorithms for bin packidgurnal of Computer and System Sciené&e272—-314,
1974.

[9] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithn®8AM Journal on Computing3:256-278,
1974.

[10] C.C. Lee and D. T. Lee. A simple online bin packing algorithtournal of the ACM32(3):562-572,
1985.

[11] F. M. Liang. A lower bound for online bin packingnformation Processing Letterd0:76—79, 1980.

[12] S.T. McCormick, S. R. Smallwood, and F. C. R. Spieksma. A polynomial algorithm for multiprocessor
scheduling with two job lengthsviathematics of Operations Researe:31-49, 2001.

[13] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear tim@nal of
Algorithms 10:305-326, 1989.

[14] S. S. Seiden. On the online bin packing problemurnal of the ACM49(5):640-671, 2002.

[15] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Princeton
University, Princeton, NJ, 1971.

[16] A. van Vliet. An improved lower bound for online bin packing algorithmsformation Processing
Letters 43(5):277-284, 1992.

[17] A.C. C. Yao. New algorithms for bin packingournal of the ACM27:207-227, 1980.

13

