
More on online bin packing with two item sizes

Leah Epstein∗ Asaf Levin†

Abstract

We follow the work of [7] and study the online bin packing problem, where every item has one of
two possible sizes which are known in advance. We focus on the parametric case, where both item sizes
are bounded from above by1k for some natural numberk ≥ 1. We show that for every possible pair of

item sizes, there is an algorithm with competitive ratio of at most(k+1)2

k2+k+1 . We prove that this bound is
tight for everyk, and moreover, that it cannot be achieved if the two item sizes are not known in advance.

1 Introduction

Bin packing is a natural and well studied problem which has applications in problems of computer storage,
bandwidth allocation, stock cutting, transportation and many other important fields. In the standard online
problem, items of size in(0, 1] arrive one by one to be assigned to unit size bins. Each bin may contain
items of total size at most 1, and the goal is to minimize the number of bins used. It is typically assumed
that items of any size may occur. However, in many applications, there is a small constant number of item
sizes, which are known in advance, but it is unknown how many items of each size will arrive, and in which
order.

The standard quality measure of algorithms for online bin packing is the(asymptotic) competitive ratio,
which we now define. For a given input sequenceσ, let A(σ) (or A, if the sequenceσ is clear from
the context) be the number of bins used by algorithmA on σ. Let OPT (σ) (or OPT) be the cost of
an optimal offline algorithm which knows the complete sequence of items in advance, i.e., the minimum
possible number of bins used to pack items inσ. Thecompetitive ratioof an algorithmA is defined to be

R(A) = lim sup
n→∞

sup
σ

{ A(σ)
OPT (σ)

|OPT (σ) = n

}
.

In this paper, we study the case where there are two possible item sizes. We focus on the parametric
case, where both item sizes are bounded from above by1

k for some integerk ≥ 1. This problem in the
online setting was studied by Gutin, Jensen and Yeo [7]. They showed that the overall best competitive ratio
for this problem is43 . This means that there exists a pair of sizes for which [7] have proved a lower bound of
4
3 on the competitive ratio of any algorithm. Moreover, [7] designed a4

3 -competitive algorithm for any pair
of sizes. Moreover, they found the exact best possible competitive ratio for the case where at least one size
is larger than1

2 (as a function of the two sizes).
The offline variant of the problem with two item sizes can be defined as follows. In this problem the

input is given by the valuesα andβ ≤ α, and two non-negative integers which are the numbers ofα sized

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il .
†Department of Statistics, The Hebrew University, Jerusalem, Israel.levinas@mscc.huji.ac.il.

1

items in the input andβ sized items in the input. Interestingly, even with this compact description of the
input, the problem can be solved in polynomial time using the algorithm of McCormick et al. [12].

Note that if the input for the online bin packing problem consists of items of two sizes only, but these
two sizes are not known in advance, it was shown by Gutin, Jensen and Yeo [6] that the competitive ratio
of any algorithm is at least1.3871, therefore the advance knowledge of the sizes is crucial fork = 1. Note
also that the lower bound of43 for two known in advance sizes was already shown in [5], where the case of
two items sizes23 > α > 1

2 andβ = 1− α, was solved.
A natural question is how fast the competitive ratio decreases in the online problem, if the items are

relatively small. An analysis of a similar flavor was applied to specific algorithms for standard bin packing
as well as to other variants of bin packing (see e.g. [8, 9, 1, 4]).

Our main result is finding the best overall competitive ratio as a function ofk, where 1
k is an upper

bound on both item sizes. This problem is called “the parametric problem”, sincek is a parameter on which

the competitive ratio may depend. We show that this ratio is(k+1)2

k2+k+1
. Our result extends and simplifies the

result of [7] fork = 1. The main difference is in the analysis of the algorithms for which we use weighting
functions (see [15, 10, 13, 14]).

We further show that, if there are two item sizes, but they are not known in advance, then even if we
know the parameterk and one out of the two sizes, and the other size is one of two values, which are also

given in advance, already the earlier bound of(k+1)2

k2+k+1
cannot be achieved for any value ofk.

To motivate further work on the subject, we show a pair of sizes for which tight bounds for this specific
pair of values can be achieved using an algorithm which we describe, which is different from our general
algorithm. Moreover, our general algorithm achieves a higher bound for this pair of sizes.

The classic online bin packing problem was first investigated by Ullman [15]. He showed that algorithm
FIRST FIT (FF) has competitive ratio17

10 . This result was then published in [9]. Johnson [8] showed that
algorithmNEXT FIT (NF) has competitive ratio 2. The goal at this time was to find an algorithm which
performs better thanFF. Yao [17] designed an algorithmREVISED FIRST FIT which is based onFF with
some changes and showed that it has competitive ratio of at most5

3 .
The further sequence of improvements became possible after Lee and Lee [10] introduced theHARMONIC

algorithm, which is based on harmonic partitioning of the input items, together with a greedy packing of the
class of smallest items. This is actually a sequence of algorithms, whose competitive ratio tends to approxi-
mately1.69103. All algorithms which were designed after this are based on adaptations of theHARMONIC

algorithms. These algorithms try to combine selected items of different sizes to allow a better packing.
Such were the algorithmsREFINED HARMONIC [10], MODIFIED HARMONIC [13], and finally, the current
champion,HARMONIC++, given by Seiden [14], which has an upper bound of 1.58889 on the competitive
ratio.

As for lower bounds, Yao [17] showed that no online algorithm has competitive ratio smaller than3
2 .

Brown and Liang independently improved this lower bound to 1.53635 [2, 11]. This was subsequently
improved by van Vliet to 1.54014 [16]. Chandra [3] showed that the preceding lower bounds also apply to
randomized algorithms. The results of Gutin et al. [7] imply that the special case where there are only two
item sizes known in advance, is significantly easier than the general online bin packing problem.

2 Definitions, notation and methods

Throughout the paper, we denote the two item sizes byα andβ, whereα ≥ β. We call items of sizeα,
“larger items”, and items of sizeβ “smaller items”. We use the notationxi to denote the largest number of

2

smaller items that can fit into a bin withi larger items. That is,xi is the maximum integer valuet such that
iα + tβ ≤ 1, or xi = b1−iα

β c . The valuexi is defined for0 ≤ i ≤ b 1
αc. Note thatx0 = b 1

β c.
A pattern is a pair of non-negative integers(a, b). It describes a packing of a single bin, which hasa

larger items andb smaller items. It is valid ifaα + bβ ≤ 1.
To analyze bin packing algorithms, we use the well known weighting method. The weighting technique

was originally introduced by Ullman [15]. The main idea of this method is to give an item a weight which
is roughly the amount of space it occupies in a bin. The weight of an item is typically related to its size and
for our purposes, the weight of an item is defined to be a function of its size. Since not all bins are fully
packed, the weight of an item is typically (but not always) larger than its size. Given a weight measurew,
thenw(s) is theweightof an item of sizes according tow.

If there exist several possible scenarios in a given algorithm, we can define a weight function for each
of them. Note that, if identical (or similar) items are packed in several different ways, we can assign equal
weights to all of them, which is the average amount of space that such an item occupies.

The weights for a given scenario are assigned so that the number of bins used is no larger than the total
weight assigned to all items (up to an additive constant). Given weights that satisfy this property, we use
the following theorem, see Seiden [14]. Note that this type of analysis was done also earlier for algorithms
which are adaptations of Harmonic, see [10, 13].

Lemma 1 Consider a bin packing algorithm denoted byALG. Let w1, . . . , ws be s weight measures.
Assume that for every input sequenceσ, there existsi (1 ≤ i ≤ s) such that the number of bins used by the
algorithmALG is at mostXi(σ) + c for some constantc, whereXi(σ) is the sum of weights of all items
in the sequence according towi. Denote byWi the supremum amount of weight that can be packed into a
single bin, according to measurewi (1 ≤ i ≤ s). Then, the asymptotic competitive ratio of the algorithm is
at mostmax

1≤i≤s
Wi.

Proof. Given an input, leti be the value that satisfies the assumptions of the theorem for this input. Clearly
OPT (σ) ≥ Xi(σ)

Wi
. We getALG ≤ Xi(σ) + c ≤ Wi ·OPT + c.

3 Algorithms

For any pair ofα, β, we use one of the following two algorithms. A similar approach of choosing one of
two algorithms was used in [7]. We generalize it, and our analysis is different. The basic idea, which is to
combine some fraction of relatively small items with larger items in the same bins, using specific patterns,
is based on algorithms in [10, 13, 14].

Let k = b 1
αc be the maximum number of larger items that can fit into a common bin, and lets = x0 be

the maximum number of smaller items that can fit into a common bin. We clearly haveα ∈ (1
k+1 , 1

k] and
β ∈ (1

s+1 , 1
s]. We also lett = xk.

The following algorithm is used ifts ≤ k
k2+k+1

.
Algorithm Greedy . If k = s, useNF, that is, keep a single active bin. The active bin is closed and a new
open bin is opened once the active bin contains exactlyk items. Ifs > k, we keep two active bins, one for
each size. Each bin for smaller items, except for possibly the last bin, will contains items. Each bin for
larger items, except for possibly the last bin, will containk items.

The following algorithm is used ifts > k
k2+k+1

. Note that this means thatt > 0 and therefores > k.
Algorithm Combine . The algorithm packs the larger items greedily, such that each bin, except for possibly
the last one, containsk items. Letδ = t2

s2−st+t2
. Clearly, since0 < t < s, we have0 < δ < 1. A δ fraction

3

of the smaller items is colored red and the remaining ones are colored blue. This can be implemented by
partitioning the smaller items into blocks ofs2−st+t2 consecutive items (ignoring the larger items) in each
block (except perhaps the last block). Then, we color red the lastt2 items out of everys2 − st + t2 items
in the block, and all other items (the firsts2 − st in the block) are colored blue. The blue items are packed
s to a bin, whereas the red items are packedt to a bin. The goal is to combine the red items with the larger
items. Thus, when a larger item arrives, if some bin already has larger items, but less thank such items, the
new item is packed there. Otherwise, if there exists a bin with red items only, the new item is packed there.
If none of these two conditions is satisfied, then a new bin is opened for the new item. Similarly, when a
smaller item is colored red, the algorithm first tries to pack it into a bin which contains between1 andt− 1
smaller red items (this option exists only fort ≥ 2), or if such a bin does not exist, the algorithm tries to
pack the new item into a bin with at least one larger item and no red items. Finally, if none of these two
conditions hold, i.e., such bins do not exist, a new bin is opened for red items.

The algorithm does not have more than one bin for larger items with less thank larger items. Similarly,
there is at most one bin for blue smaller items with less thans items, and at most one bin for red smaller
items with less thant red items. Note that by the definition of the algorithm, it is impossible to have at the
same time both a bin withk larger items and no red items, and a bin witht red items and no larger items.

Weight functions

To analyze the algorithms we define three weight functions. One weight function,w1, is defined for Greedy.
Two functions are defined for Combine, specifically, one weight function is suitable for the case where there
are no bins containingk larger items, but no red items. The last weight function is designed for the case
where there are no bins containingt red items, but no blue items. We call these functionsw2 andw3.

The functions are defined in Table 1.

x w1(x) w2(x) w3(x)

α 1
k 0 1

k

β 1
s

1−δ
x0

+ δ
xk

= s2−st
s(s2−st+t2)

+ t2

t(s2−st+t2)
= s

s2−st+t2
1−δ
x0

= s−t
s2−st+t2

Table 1: The weight functions

Analysis

Theorem 2 Given two item sizesβ ≤ α ≤ 1
k , let ρ(k) = (k+1)2

k2+k+1
. If t

s ≤ k
k2+k+1

, then the competitive
ratio of Greedy is at mostρ(k). Otherwise, Combine has a competitive ratio of at mostρ(k).

Proof. We need to show that the sum of weights according to each weight function is at least the number
of bins used by the algorithm, up to a constant additive factor. This constant factor is caused by bins that
do not receive the full number of items, and thus is equal to at most3; As we saw, for Greedy there are at
most two such bins. For Combine, there are at most three such bins. We will compute the weight of every
block of s2 − st + t2 smaller items together. Thus, if the total number of such items is not divisible by
s2 − st + t2, we assume that it is divisible and neglect the last at mosts2 − st + t2 − 1 items, which may
contribute to the additive constant as well. That is, in this case the additive constant is a function of1

α and
1
β . (This situation can be avoided by keeping the ratio between the number of bins with blue smaller items,

4

and the number of bins with red smaller items as close tos − t : t as possible at all times. In this case, the
additive constant becomes independent of the sizes.)

If s > k, then each full bin of Greedy has eitherk larger items ors smaller items, and thus has weight
1, according tow1. If s = k, then every bin of Greedy (except for possibly the last one) hask = s items,
and therefore has weight1.

For Combine, in the first scenario we need to check that the total weight of smaller items in all bins is
large enough. We do not need to consider bins that contain only larger items, since such bins do not exist in
this scenario. Every block ofs2 − st + t2 smaller items creates exactlys − t bins of blue items andt bins
of red items. The total weight of these items according tow2 is s. In the second scenario, we need to only
consider bins of smaller blue items and bins of larger items. The weight of larger items in a bin, according
to w3, is exactly1. In order to prove that the total weight of all items is large enough, it suffices to show that
the weight ofs2 − st + t2 smaller items in a block covers the cost of the bins of blue items (of the block),
since red items are always combined with larger items. The total weight of these smaller items iss− t and
this is the number of bins with blue items (from the current block) that the algorithm creates.

Next, we need to find an upper bound on the total weight that can be packed into a single bin. There are
k + 1 valid patterns which we call dominant, according to the number of larger items in the bin, together
with a maximum number of smaller items. The weight of a non-dominant pattern is at most the weight of
some dominant pattern, thus it is enough to consider dominant patterns.

If s = k, then we use the Greedy algorithm and all items have weight1
k = 1

s . A bin can contain at most
k items, and we are done. In the remainder of the proof we assumes > k.

For the pattern(0, s), the weight forw1 is simply 1. Sincew3(β) < w2(β), the largest weight if
Combine is used, is caused byw2. The weight of this bin with respect to all three functions is therefore at
most s2

s2−st+t2
. We are therefore interested in the functionf(z) = 1

z2−z+1
wherez = t

s . The derivative off

is given byf ′(z) = −(2z−1)
(z2−z+1)2

. Therefore,f is monotonically increasing inz if z ≤ 1
2 (and monotonically

decreasing otherwise). We next find bounds ont
s . Since1 − kα < α, we conclude thatt ≤ bα

β c. On the
other hands ≥ t + kbα

β c, and therefores ≥ (k + 1)t. Hence

1
2
≥ 1

k + 1
≥ t

s
.

An upper bound on the weight is therefore given by usingz = 1
k+1 . Therefore, the total weight is at most

(k+1)2

(k+1)2−(k+1)+1
= 1 + k

k2+k+1
.

Note that for any other pattern, the weight according tow2 is lower than the weight ofw2 for (0, s).
That is, for all feasible pattern(a, b), we haveaw2(α) + bw2(β) ≤ sw2(β), and therefore we do not need
to considerw2 for other patterns.

For the pattern(k, t) we get that in Greedy,kw1(α) + tw1(β) = 1 + t
s ≤ 1 + k

k2+k+1
, where the last

inequality holds because Greedy is chosen. Otherwise, i.e., if the pattern is(k, t) and we chose Combine,
then the total weight is at mostkw3(α) + tw3(β) = 1 + t(s−t)

s2−st+t2
= s2

s2−st+t2
≤ 1 + k

k2+k+1
where the last

inequality follows by the analysis off(z) above.
From now on, sincew1(x) ≥ w3(x) for x = α, β, it suffices to consider all remaining patterns with

respect tow1 only, if we do not use the value ofts (which determines which algorithm was used). We need
to consider patterns(i, xi) for 1 ≤ i ≤ k − 1. Thus, we need to find an upper bound oni

k + xi
s .

We make a case analysis depending on the value ofs. First suppose thats ≥ 2k + 2. Note that

xi ≤ 1−iα
β <

1− i
k+1
1

s+1

= (s+1)(k+1−i)
k+1 and we need to find a bound fori

k + xi
s ≤ i

k + (s+1)(k+1−i)
s(k+1) = 1+ 1

s +

5

i s(k+1)−k(s+1)
sk(k+1) = 1 + 1

s + i s−k
sk(k+1) . Sinces > k, the worst case (i.e., the case which causes the expression

to be maximized) occurs fori = k − 1 (i.e., the maximum value ofi). Therefore,1 + (k−1)(s−k)+k(k+1)
sk(k+1) =

1 + ks−s+2k
sk(k+1) = 1 + k−1

k(k+1) + 2
s(k+1) is an upper bound on the total weight in a bin.

Since the last expression is a monotonically decreasing function ofs (for positive values ofs), and
sinces ≥ 2k + 2, we substitute and get an upper bound on the total weight of1 + k−1

k(k+1) + 2
(2k+2)(k+1) =

1+ k2−1+k
k(k+1)2

. Since we have(k2+k−1)(k2+k+1) = k2(k+1)2−1 < k2(k+1)2, we getk
2−1+k

k(k+1)2
< k

k2+k+1
,

which completes the proof for the cases ≥ 2k + 2.
Next, assumes ≤ 2k + 1, and letc = i + xi − k. A bin packed by a dominant pattern contains at least

k items, thusxi ≥ k − i, and thereforec ≥ 0. We can determine the possible values ofc that may violate
the competitive ratio as follows. Since(i, xi) is a valid pattern andα > 1

k+1 , β > 1
s+1 , we conclude that

i
k+1 + k+c−i

s+1 < 1. Therefore,i
(

1
k+1 − 1

s+1

)
< s+1−k−c

s+1 . From this we geti < (k+1)(s+1−k−c)
s−k . If the

competitive ratio is violated, we get(k+1)2

k2+k+1
< i

k + k+c−i
s = k+c

s + i(s−k)
ks < k+c

s + (k+1)(s+1−k−c)
ks =

k2+kc+ks+s+k+1−k2−k−kc−c
ks = ks+s+1−c

ks . Therefore,

c < ks+s+1−(k + 1)2ks

k2 + k + 1
= 1+s(k+1)·

(
1− (k + 1)k

k2 + k + 1

)
= 1+

s(k + 1)
k2 + k + 1

≤ 1+
(2k + 1)(k + 1)

k2 + k + 1
< 4.

We therefore need to consider the casesc = 0, 1, 2, 3. We let1 ≤ j = k − i ≤ k − 1 and1 ≤ d = s− k ≤
k + 1. Then,xi = k + c− i = j + c.

If c ≤ 1, sinces ≥ k+1 andi ≤ k−1, we conclude thatik + xi
s ≤ i

k + k+1−i
k+1 ≤ i

k2+k
+1 ≤ k2+k+k−1

k2+k
<

(k+1)2

k2+k+1
, where the last inequality holds because(k2 + k + k− 1)(k2 + k +1) = k4 +3k3 +2k2 + k− 1 <

k4 + 3k3 + 3k2 + k = (k2 + k)(k + 1)2.
If c = 2, then i

k + xi
s = k−j

k + j+2
k+d = 1 + 2k−jd

k(k+d) . We first argue thatk ≤ jd + d− 2. To see this note

that otherwise ifk ≥ jd + d− 1, we get thatk− j items larger than 1
k+1 andj + 2 items larger than 1

s+1 do
not fit into one bin, so the pattern(i, xi) = (k − j, j + 2) is impossible. This is true since in order to have
k−j
k+1 + j+2

d+k+1 < 1 we needj+1
k+1− j+2

d+k+1 > 0 or 0 < jd+jk+j+d+k+1−jk−2k−j−2 = jd+d−1−k,
and this is a contradiction to the assumption onk. Therefore, we can assume thatk ≤ jd + d− 2.

Recall thatd ≤ k + 1. First assume thatd ≤ k. We conclude that1 + 2k−jd
k(k+d) ≤ 1 + k+d−2

k2+kd
=

1+ 1
k− 2

k(k+d) ≤ 1+ k
k2− 1

k2 = 1+ k−1
k2 ≤ 1+ k

k2+k+1
, where the first inequality holds becausek ≤ jd+d−2,

the second inequality holds becaused ≤ k, and the third inequality holds because(k − 1)(k2 + k + 1) =
k3 − 1 < k · k2. Next, assume thatd = k + 1. Then, forj ≥ 2, 1 + 2k−jd

k(k+d) < 1. Therefore, we need

to consider the case wherej = 1. In this case the competitive ratio is at most1 + k−1
k(2k+1) < 1 + k

k2+k+1
,

where the inequality holds because(k − 1)(k2 + k + 1) = k3 − 1 < k2(2k + 1).
If c = 3, then we getik + xi

s = k−j
k + j+3

k+d = 1 + 3k−jd
k(k+d) .

If k ≥ jd+d−2
2 , we get thatk − j items larger than 1

k+1 andj + 3 items larger than 1
s+1 do not fit into

one bin so the pattern(i, xi) = (k − j, j + 3) is impossible. In fact, in order to havek−j
k+1 + j+3

d+k+1 < 1 we

needj+1
k+1 − j+3

d+k+1 > 0 or 0 < jd + jk + j + d + k + 1− jk− 3k− j − 3 = jd + d− 2− 2k which gives

2k < jd + d − 2 or k < jd+d−2
2 , and this is a contradiction. Therefore, we can assume thatk < jd+d−2

2 ,

i.e.,k ≤ jd+d−3
2 .

Using2k ≤ jd + d − 3, we have1 + 3k−jd
k(k+d) ≤ 1 + k+d−3

k(k+d) = 1 + 1
k − 3

k(k+d) . Recall thatd ≤ k + 1,

which gives1 + 3k−jd
k(k+d) ≤ 1 + 1

k − 3
k(k+d) ≤ 1 + 1

k − 3
k(2k+1) = 1 + 2k−2

2k2+k
≤ 1 + k

k2+k+1
, where the last

inequality follows from2(k − 1)(k2 + k + 1) = 2k3 − 2 < 2k3 < 2k3 + k2.

6

4 Lower bound

In this section we show that the upper bound as a function ofk cannot be improved and prove the following
theorem.

Theorem 3 For everyk ≥ 1, there exists an input whereβ ≤ α ≤ 1
k , such that any online algorithm has

competitive ratio of at least(k+1)2

k2+k+1
.

Proof. Let ε > 0 be a small number such thatε ≤ 1
(k+1)2(k+2)

. We consider an input in which the item

sizes areα = 1
k+1 + ε andβ = 1

k+2 + ε. Clearly, a bin can contain at mostk larger items.
Let N be a large enough integer. The input starts with a first step whereN · x0 smaller items arrive. Let

xk+1 = 0. For0 ≤ j ≤ k, we denote byyj the number of bins which contain at leastxj+1 + 1 items and at
mostxj items after the first step. Clearly, such a bin can accommodate at mostj larger items. In the second
step,kN · x0 larger items arrive. We denote byy the number of additional bins opened in this step. Denote
by OPT1 andOPT2 the optimal costs after the two steps. Denote byALG1 andALG2 the costs of the online
algorithm after the two steps. LetR be the competitive ratio of the online algorithm. Thus fori = 1, 2 we
haveALGi ≤ ROPTi. Thus we get the following inequalities.

k∑

i=0

yi ≤ ROPT1 and
k∑

i=0

yi + y ≤ ROPT2. (1)

Next, using the quantities of items, we get the following inequalities.

k∑

i=0

xi · yi ≥ Nx0 and
k∑

i=0

i · yi + yk ≥ Nkx0. (2)

Next, we compute the valuesxi. Note that all items are larger than1k+2 , so a bin contains at mostk + 1
items. Thereforexi ≤ k + 1 − i. On the other hand, sinceα > β, andε ≤ 1

(k+1)2(k+2)
, we have

iα + (k + 1− i)β ≤ kα + β = k
k+1 + 1

k+2 + (k + 1)ε ≤ k2+2k+k+1+1
(k+1)(k+2) = 1. Thusxi = k + 1− i. Using

these values we can deduce,OPT1 = N andOPT2 = N · x0 = N(k + 1).

Adding the inequalities in (2), we get(k + 1)
k∑

i=0
yi + ky ≥ (k + 1)2N .

Using the sum of the inequalities in (1), where the second one is multiplied byk, we get(k +1)
k∑

i=0
yi +

ky ≤ Rk(k + 1)N +RN = RN(k2 + k + 1).
Combining the last two inequalities implies a lower bound of(k+1)2

k2+k+1
onR.

Note that this proof holds for randomized algorithms as well as deterministic ones, since the variables
denoting numbers of bins can be seen as variables denoting the expected numbers of bins.

5 Unknown item sizes

In this section we demonstrate that if the two item sizes are not known in advance, the resulting competitive
ratio is higher. We show that already a small lack of knowledge causes an increase of the competitive
ratio. Specifically, we show that if the sizeβ is known in advance, and the sizeα can be one of two
given sizes in the interval(1

k+1 , 1
k], which are both known in advance, then the competitive ratio is at

7

leastQ(k) = 4k6+8k5+10k4+14k3+11k2+6k+3
4k6+4k5+10k4+8k3+9k2+4k+2

= 1 + 4k5+6k3+2k2+2k+1
4k6+4k5+10k4+8k3+9k2+4k+2

. It is easy to verify that
(4k5 + 6k3 + 2k2 + 2k + 1) · (k2 + k + 1) = 4k7 + 4k6 + 10k5 + 8k4 + 10k3 + 5k2 + 3k + 1 >
4k7 + 4k6 + 10k5 + 8k4 + 9k3 + 4k2 + 2k and thusQ(k) > 1 + k

k2+k+1
. Our bound holds in the worst

case, and not for every triple of values (where the triple consists ofβ, and the two options ofα).
We state some values ofQ(k) in Table 2.

k (k+1)2

k2+k+1
Q(k)

2 9
7 ≈ 1.28571 1.28899

3 16
13 ≈ 1.23077 1.23138

4 25
21 ≈ 1.19048 1.19065

5 36
31 ≈ 1.16129 1.16135

Table 2: Comparison between the best competitive ratio with two known sizes andQ(k)

Our construction is a generalization of the construction for a small number of sizes in [6] and reduces to
it for k = 1.

Letp > k be an integer and letε > 0 be a value such thatε < 1
p2k(k+1)3

. We use the sizesβ = 1
p(k+1)−ε,

α1 = 1
k+1 + ε, α2 = 1

k+1 + 1
pk(k+1) = pk+1

pk(k+1) . We haveα1 < α2 < 1
k .

The first part of the input isN items of sizeβ, whereN is a large enough number, divisible byp(p −
1)(k + 1). For convenience, we allow the algorithm to use a non-integer number of bins packed by each
pattern. We do not allow the offline algorithm to do so, therefore this can only reduce the competitive ratio.

Let xj
i be the maximum number of smaller items that can fit into a bin withi items of sizeαj , for

0 ≤ i ≤ k.

Claim 4 For i > 0, x1
i = p(k + 1− i) andx2

i = p(k + 1− i)− 1. Moreover,x1
i+1 < x2

i for 1 ≤ i ≤ k− 1.

Proof. Usingi ≤ k < p, we conclude that

iα1 + p(k + 1− i)β =
i

k + 1
+ iε +

p(k + 1− i)
p(k + 1)

− p(k + 1− i)ε

= 1− p(k + 1)ε + i(p + 1)ε ≤ 1 + (k − p)ε < 1,

iα1 + (p(k + 1− i) + 1)β = 1 +
1

p(k + 1)
− p(k + 1)ε + i(p + 1)ε− ε

> 1 +
1

p(k + 1)
− p(k + 1) + 1

p2k(k + 1)3
> 1,

iα2 + (p(k + 1− i)− 1)β = i(
1

k + 1
+

1
pk(k + 1)

) +
p(k + 1− i)− 1

p(k + 1)

− (p(k + 1− i)− 1)ε < 1 +
i− k

pk(k + 1)
≤ 1,

iα2 + p(k + 1− i)β > 1 +
i

pk(k + 1)
− p(k + 1)ε > 1 +

1
pk(k + 1)

− p(k + 1)
p2k(k + 1)3

> 1.

8

For i ≤ k−1, we getx1
i+1 = p(k− i) andx2

i = p(k− i)+p−1 > p(k− i), thus the second claim follows.

For i = 0, clearly x1
0 = x2

0 = p(k + 1), since we havep(k + 1)β < 1 and (p(k + 1) + 1)β =
1 + 1

p(k+1) − (p(k + 1) + 1)ε > 1 + 1
p(k+1) −

p(k+1)+1
p2k(k+1)3

> 1.

After the first part of the input, there are three cases. The input may stop, or be augmented by eitherkN
p

items of sizeα1 or kN
p−1 items of sizeα2. We find an optimal packing for each case, the cost of an optimal

packing for casei is denotedOPTi. Clearly, in the first case, each bin containsp(k + 1) items of sizeβ.
ThusOPT1 = N

p(k+1) . In the second case, a bin can contain at mostk items of sizeα1. Indeed, we have

OPT2 = N
p , since each such bin can receivep smaller items. In the third case, a bin can contain at mostk

items of sizeα2. Indeed, we haveOPT3 = N
p−1 , since each such bin can receivep− 1 smaller items.

Next, we consider the packing patterns of an online algorithm and we show the following.

Lemma 5 We may assume without loss of generality that after the first part of the input, a bin contains one
of the following three numbers of smaller items;p(k + 1), p, p − 1. These are the valuesx1

0 = x2
0, x1

k and
x2

k.

Proof. If the algorithm opens some bin which containsq smaller items, whereq 6= xj
i for all i, j, then let

q′ be the smallest number such thatq′ > q andq′ = xj
i for some pairi, j. Then replacing each bin withq

items by q
q′ bins withq′ items (recall that we allow a fractional number of packed bins) does not harm the

packing of the second part of the input, and reduces the number of bins after the first part of the input.
Consider next a bin packed withxj

i items, where1 < i < k. If j = 1, xj
i = p(k + 1 − i), and we

replace this bin byik bins withp items andk−i
k bins withp(k + 1) items (the number of resulting bins may

be fractional). The number of smaller items remainsp
k (i + (k − i)(k + 1)) = p(k − i + 1). If the second

part of the input consists of items of sizeα1, before the transformation, there was space fori items. After
the transformation, there is space fork items in i

k bins and no room in the other resulting bins. Thus there
is no change.

If the second part of the input consists of items of sizeα2, before the transformation, there was space
for i − 1 items. After the transformation, there is space fork − 1 items in i

k bins and no room in the other

resulting bins. We havei(k−1)
k = i− i

k > i− 1. Thus the transformation creates additional space.

If j = 2, xj
i = p(k + 1 − i) − 1. Let µ = p(k−i)

pk+1 . We have0 < µ < 1, and1 − µ = 1+pi
pk+1 . We

replace this bin by1−µ bins withp− 1 items andµ bins withp(k +1) items. The number of smaller items

remains(p−1)(1+pi)+p(k−i)p(k+1)
pk+1 = p−1+p2i−pi+p2k2−ikp2+kp2−ip2

pk+1 = (pk+1)(pk−ip+p−1)
pk+1 = p(k+1−i)−1.

Before the transformation, there was space fori larger items, no matter which larger items arrive. After the
transformation, there is space fork items in1 − µ bins and no room in the other resulting bins. This gives
space ofk+pik

pk+1 > i. Thus the transformation creates additional space.
Finally, we show the following lemma.

Lemma 6 For p = 2(k2 + 1), the resulting lower bound isQ(k).

Proof. Let yL, yM andyS be the (possibly fractional) number of bins opened by the algorithm after the first
part of the input, withp(k+1), p andp−1 items (respectively). We compute the cost of the packing for each
case, where the cost of the packing for casei is denotedALGi. We havep(k + 1)yL + pyM + (p− 1)yS =
N and ALG1 = yL + yM + yS . If the items of the second part are of sizeα1, then bins withp and
p − 1 items can receivek additional items, and bins withp(k + 1) items receive no further items. If
the items of the second part are of sizeα2 the situation is similar, only bins withp items can receive

9

only k − 1 further items. Since bins withp(k + 1) smaller items cannot receive further items, and every
other bin (including new ones) can contain at mostk larger items, we haveALG2 ≥ yL + N

p . We next
compute a lower bound on the number of required bins in the last case. To this end, we show that the
existing bins cannot contain all larger items. This holds since(k − 1)yM + kyS < kp

p−1yM + kYS and

p(k + 1)yL + pyM + (p− 1)yS = N implies kp
p−1yM + kyS = kN

p−1 . Therefore additional bins are opened,

which implies,ALG3 ≥ yL + yM + ys +
kN
p−1

−(k−1)yM−kyS

k = yL + yM
k + N

p−1 .
We use(p− 1)ALG1 + (pk + 1− k)ALG2 + kALG3 ≤ R((p− 1)OPT1 + (pk + 1− k)OPT2 + kOPT3),

which implies

(p− 1)(yL + yM + yS) + (pk + 1− k)(yL +
N

p
) + k(yL +

yM

k
+

N

p− 1
)

≤ R((p− 1)
N

p(k + 1)
+ (pk + 1− k)

N

p
+ k

N

p− 1
) .

Which gives

yL(p− 1 + pk + 1− k + k) + yM (p− 1 + 1) + yS(p− 1) + N
(p− 1)(pk + 1− k) + kp

p(p− 1)

= yL · p(k + 1) + p · yM + yS · (p− 1) + N
p2k − pk + p− 1 + k

p(p− 1)

≤ R ·N · ((p− 1)2 + (pk + 1− k)(p− 1)(k + 1) + kp(k + 1))
p(p− 1)(k + 1)

.

Usingp(k + 1)yL + pyM + (p− 1)yS = N we have,

N + N
p2k − pk + p− 1 + k

p(p− 1)
= N

p2k − pk − 1 + k + p2

p(p− 1)

≤ R ·N · ((p− 1)2 + (pk + 1− k)(p− 1)(k + 1) + kp(k + 1))
p(p− 1)(k + 1)

.

and finally,

R ≥ (k + 1)(p2k − pk − 1 + k + p2)
p2 − p + p2k2 − pk2 + k2 + p2k

.

It is possible to verify that the best choice forp is p = 2(k2 + 1), which implies the lower bound we
wanted to prove.

6 Towards a complete solution

In this section we demonstrate that the approach above cannot lead to an optimal solution for all pairs of
α andβ, as a direct function of these two values, even if we compute the resulting competitive ratio of the
algorithm we presented as a function of the exact sizes.

10

We consider a simple example whereα = 4
10 andβ = 3

10 . There are three possible dominant patterns
for these values, which are(2, 0), (1, 2) and(0, 3). Clearly, the algorithm we used for these values is Greedy.
We can compute the competitive ratio using the weights according tow1, which are1

2 and 1
3 , and get the

weights1, 7
6 , 1 for these three patterns. This implies a competitive ratio of7

6 . Note that Combine cannot be
used here, sincet = 0.

We next describe an algorithm called CombineBoth of competitive ratio8
7 . This algorithm tries to pack

some of the items using the pattern(1, 2), into bins that are called “red bins”. Thus, a fractionγ = 1
7 of

the larger items is colored red, and a fractionδ = 1
7 of the smaller items is colored red. The blue items of

each size are packed using Greedy, into bins that are called “blue bins” (at each time, there is at most one
active bin per size). A red larger item is packed into a bin with at least one smaller red item, if there exists
such a bin that did not receive a larger item yet, and otherwise into a new red bin. A red smaller item is
packed into a red bin which contains exactly one red smaller item, if such a bin exists, otherwise into a red
bin containing only one item, which is a larger red item, and if such a bin does not exist either, we open a
new red bin for the item.

Using this method, there is at most one bin that contains exactly one red smaller item. Moreover, there
is at most one blue bin for each one of the two sizes that does not contain the full number of items (which
is two, for larger items, and three, for smaller items). Each additional red bin, with less than three items,
contains either a larger item, or two red items. Moreover, according to the algorithm, the output cannot
contain both.

We define two weight functions, where the first functionw4 can be used for the scenario where all red
bins (except possibly one) contain two red smaller items, andw5 can be used for the case where all red bins
contain a red larger item.

The functions are defined in Table 3.

w4(x) w5(x)

x = α 1−γ
2 = 3

7
1−γ

2 + γ = 4
7

x = β 1−δ
3 + δ

2 = 5
14

1−δ
3 = 2

7

Table 3: The weight functions

For the analysis, we assume that the number of smaller items is divisible by14 and that the number of
larger items is divisible by7. Otherwise, we neglect a constant number of items of each size. We compute
the weight of every seven large items together and of every14 smaller items together.

In the first scenario, seven larger items create three bins of blue larger items and one bin of red items.
The required weight of red bins is covered by smaller items. Thus the total weight of these seven items is
3, which is exactly the number of blue bins these items create. In the second scenario, seven larger items
create the same bins as before, but now they need to have enough weight for four bins. The total weight of
these seven items is4 as required.

In the first scenario,14 smaller items create four blue bins of smaller items and one red bin. The total
weight of these 14 items is indeed5. In the second scenario,14 smaller items need to only cover the weight
of four blue bins, since larger items cover the cost of red bins. Their total weight is indeed4.

We next compute the weight of each pattern according to the two weight functions. For the patterns
(2, 0), (1, 2) and(0, 3) we get totals of67 , 8

7 and 15
14 according tow4 and of8

7 , 8
7 , and6

7 according tow5. The
maximum of all these values is87 .

11

Another interesting property is that unlike the lower bound of Section 4, a matching lower bound is
achieved here by using a sequence of larger items followed by smaller items and not smaller items followed
by larger items. An attempt to apply the latter results in a lower bound of only9

8 .
We briefly describe the lower bound of8

7 . The input contains2n larger items, possibly followed by
4n smaller items. We denote byOPTi and ALGi the costs of an optimal offline algorithm, and an online
algorithm afteri parts of the input (i = 1, 2). We haveOPT1 = n and OPT2 = 2n. Let y1 andy2 be
the numbers of bins that contain one and two items respectively after the first part of the input. We have
y1 + 2y2 = 2n. Note thaty2 ≤ n andy1 ≤ 2n.

For the algorithm, we haveALG1 = y1+y2. Each bin that is packed with two larger items cannot receive
further items. Each bin that has one larger item can receive two smaller items. The number of smaller items
that must be packed into new bins is thus4n− 2y1 ≥ 0. They can be packed at most three to a bin, and so
we haveALG2 ≥ y1 + y2 + 4n−2y1

3 = y1

3 + y2 + 4n
3 . LetR be the competitive ratio of the algorithm. We

gety1 + y2 ≤ Rn and y1

3 + y2 + 4n
3 ≤ 2Rn, or y1 +3y2 +4n ≤ 6Rn. Taking the sum of these inequalities

we have2y1 + 4y2 + 4n ≤ 7Rn. We usey1 + 2y2 = 2n to getR ≥ 8
7 .

We have proved the following.

Proposition 7 For α = 0.4 and β = 0.3, the best competitive ratio is87 , and it is achieved using Com-
bineBoth.

7 Concluding remarks

In this paper we found the best overall competitive ratios for bin packing with two (known in advance) items
sizes, where both sizes are at most1

k for an integerk. A natural open problem would be to find the best
competitive ratio as a function of the two sizes, either as a closed formula, or at least as a solution of a linear
program. It seems that for any pair of sizes, it is likely that the usage of four configurations may be enough
to achieve an algorithm of optimal competitive ratio. Moreover, it is likely that the lower bound for every
pair would contain a stream of items of one size, followed by items of the second size. Proving or disproving
these claims is left for future work.

We would like to point out that the best competitive ratio for a given pair of sizesα andβ depends only
on the finitely many dominant combinations of items which can be packed in a single bin. The set of all
pairs with the same set of combinations forms an equivalence class. Thus, for example, the pair(4

10 , 3
10)

in Section 6 is equivalent, e.g., to the pair(3
7 , 2

7). In particular, it is possible to assume that both sizes are
rational, and that there exists at least one combination of these items which fills exactly one bin.

Acknowledgment.The authors thank an anonymous referee for suggesting the last paragraph of Section 7.

References

[1] B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for Next-Fit-Decreasing bin-packing.
SIAM J. on Algebraic and Discrete Methods, 2(2):147–152, 1981.

[2] D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical Report
R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

[3] B. Chandra. Does randomization help in online bin packing?Information Processing Letters, 43:15–
19, 1992.

12

[4] J. Csirik. The parametric behaviour of the First Fit decreasing bin-packing algorithm.Journal of
Algorithms, 15:1–28, 1993.

[5] U. Faigle, W. Kern, and G. Turán. On the performance of online algorithms for partition problems.
Acta Cybernetica, 9:107–119, 1989.

[6] G. Gutin, T. Jensen, and A. Yeo. Batched bin packing.Discrete Optimization, 2(1):71–82, 2005.

[7] G. Gutin, T. Jensen, and A. Yeo. On-line bin packing with two item sizes.Algorithmic Operations
Research, 1(2), 2006.

[8] D. S. Johnson. Fast algorithms for bin packing.Journal of Computer and System Sciences, 8:272–314,
1974.

[9] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithms.SIAM Journal on Computing, 3:256–278,
1974.

[10] C. C. Lee and D. T. Lee. A simple online bin packing algorithm.Journal of the ACM, 32(3):562–572,
1985.

[11] F. M. Liang. A lower bound for online bin packing.Information Processing Letters, 10:76–79, 1980.

[12] S. T. McCormick, S. R. Smallwood, and F. C. R. Spieksma. A polynomial algorithm for multiprocessor
scheduling with two job lengths.Mathematics of Operations Research, 26:31–49, 2001.

[13] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.Journal of
Algorithms, 10:305–326, 1989.

[14] S. S. Seiden. On the online bin packing problem.Journal of the ACM, 49(5):640–671, 2002.

[15] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Princeton
University, Princeton, NJ, 1971.

[16] A. van Vliet. An improved lower bound for online bin packing algorithms.Information Processing
Letters, 43(5):277–284, 1992.

[17] A. C. C. Yao. New algorithms for bin packing.Journal of the ACM, 27:207–227, 1980.

13

