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Abstract

We design an algorithm of the best possible competitive ratio for preemptive and

non-preemptive scheduling of unit size jobs with rejection on three identical machines.

The algorithm does not use preemption even for the preemptive variant, and it has the

interesting feature that one of its parameters is not fixed in advance, and it is defined

based on the properties of the first input job having a sufficiently large rejection penalty.
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1 Introduction

We deal with the problem of online scheduling with rejection of jobs of processing time 1

on three identical machines. Such jobs are called unit jobs. Jobs are presented to an online

algorithm one by one. There is a set J of arriving jobs, where the j-th job in the input

sequence is denoted by j. Each job j ∈ J is characterized by a value wj ≥ 0, where wj is the

rejection penalty of j (and the processing time of j is equal to 1). For each arriving job, the

algorithm decides whether it will be rejected or accepted. If it is rejected, then its rejection

penalty will be added to the cost of the algorithm. If it is accepted, then it is assigned to be

processed by the machines. The makespan (the last completion time) of the final schedule

will be added to the cost of the algorithm at termination. Each machine can run at most one

job at each time. In the non-preemptive variant, each accepted job must be assigned to run

during a specific continuous time slot on one machine. In the preemptive variant, a job can

be split between several time slots (possibly on different machines), under the restriction that

the parts of one job cannot be run in parallel on different machines.

Multiprocessor scheduling with rejection was first introduced by Bartal et al. [1]. Non-

preemptive and preemptive online models for minimizing the makespan plus the total rejection

penalty have been studied since then [12, 8, 2, 5, 6, 4]. The non-preemptive scheduling problem
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of unit jobs without rejection is trivial even as an online problem (jobs are scheduled in a

round-robin manner, and the makespan is ⌈ n
m⌉ for m machines and n jobs). In the case of

preemptive scheduling, the cost of an optimal solution is max{1, n
m} [9]. For the preemptive

case, the best possible competitive ratio was analyzed for all numbers of machines m ≥ 2

by Seiden, Sgall, and Woeginger [13] (for m = 3 the competitive ratio is equal to 5
4). In the

variants with rejection (and in particular, variants with unit jobs), a suitable rejection policy

is a crucial part of the algorithm, and it is often the case that the scheduling algorithm of the

accepted jobs is not very advanced [1, 8, 2, 5, 7].

While the non-preemptive scheduling problem of unit jobs without rejection is simple,

the same problem with rejection is a non-trivial problem [1, 4]. Bartal at al. [1] presented

a sequence of lower bounds on the optimal competitive ratio for fixed values of m, where

this monotonically increasing sequence of lower bounds on the competitive ratios tends to 2

for large values of m. These lower bounds were proved using unit jobs, and they are valid

for non-preemptive and preemptive algorithms. For m = 2, the value of this lower bound is

ϕ =
√
5+1
2 ≈ 1.61803, and an algorithm whose competitive ratio is ϕ (for jobs of arbitrary

processing times) was also presented in [1]. For m = 3, the value of the lower bound of

[1] is approximately R = 1.83929, and two algorithms whose competitive ratios are at most

2 (for m = 3) were designed in [1]. The precise value of R is defined as follows. First, let

z = (17+3
√
33)1/3. We let R = 3z

z2−z−2
, and it can be easily seen that 1

R = z−1
3 − 2

3z ≈ 0.54369.

We will use a parameter α = 1
R in our algorithm. In the same paper [1], the case of arbitrary

values of m was studied, and tight bounds of 1 + ϕ ≈ 2.61803 on the competitive ratio were

given (this value is known to be tight in the overall sense, but not for specific values of m).

We studied several models for scheduling unit jobs with rejection [7, 6, 4]. In particular,

the cases where the rejection penalties of jobs are either non-increasing or non-decreasing

were analyzed completely [7]. In the case of non-decreasing penalties, there are two models,

depending on whether the number of jobs is known in advance. The best possible competitive

ratios for the three models and three machines are ϕ (for non-increasing penalties), and

approximately 1.5133 and 1.7801 (for the case where the number of jobs is known in advance,

and the case where it is not given in advance, respectively, and non-decreasing penalties).

The algorithms are based on thresholds. Roughly speaking, for each index of a job there is

a threshold that determines (by comparing the sum of the rejection penalty of the job and

previously rejected jobs to the threshold) whether the job will be accepted.

In this paper, we present an optimal algorithm with competitive ratio approximately

1.839287, a value which matches the special case of the lower bound (for m = 3) that was

proven by using a sequence of jobs of unit size for the general problem (arbitrary job sizes with

or without preemption) of online scheduling with rejection on three identical machines [1].

The algorithm is non-preemptive, but we will show that it has the best possible competitive

ratio not only for non-preemptive algorithms but also among preemptive algorithms.
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2 The algorithm

In the algorithm, we will use a constant parameter α, such that 0 < α < 1. The value of α was

defined earlier, and we will also state it again later. We will show that the competitive ratio of

the algorithm does not exceed R, also defined earlier, and mentioned again later. Moreover,

during its execution, the algorithm will define a parameter β satisfying α2 < β < α based on

its input.

Our online algorithm consists of a rejection strategy and a scheduling algorithm for the

accepted jobs. The scheduling algorithm simply assigns accepted jobs to machines using

a round-robin policy. Thus, even in the preemptive variant, the algorithm does not use

preemption. The rejection strategy for deciding which jobs are rejected and which jobs are

accepted is more complicated. In particular, the threshold β that is used for such decisions

in the second stage of the algorithm is defined in the first stage of the algorithm, based on

the input. The special job will be defined as the first input job j∗ such that wj∗ ≥ α2 (if

such a job exists), and the value of β is based on wj∗ . After this job arrives (and it is either

rejected or scheduled), the algorithm moves to a second stage and stays there until the input

is terminated. The algorithm is called MSR3, which is an abbreviation of Multiprocessor

Scheduling with Rejection on three machines.

Algorithm MSR3(α)

• Let j = 1.

Stage 1

• If the input job j exists, act as follows (and otherwise halt).

• If wj < α2, then reject j, let j = j + 1, and go to stage 1.

• Otherwise, define j∗ = j, that is, define j to be the special job.

• If wj∗ < α, reject j∗, and let β = α− (1− α)wj∗ .

• Otherwise, accept j∗, schedule it on the machine of smallest current completion time of

the minimum index (that is, on machine 1, as no jobs were scheduled so far), and let

β = 1
3 .

• Let j = j + 1, and go to stage 2.

Stage 2

• If the input job j exists, act as follows (and otherwise halt).

• If wj ≤ β, reject j.

3



• Otherwise, schedule it on the machine of smallest current completion time of the mini-

mum index.

• Let j = j + 1 and go to stage 2.

We choose α ≈ 0.54369, which is the solution of the following equation with the variable

x: x3 + x2 + x = 1. Note that α2 ≈ 0.29560. Let R = α2 + α+ 1 = 1
α ≈ 1.83929. In the case

where β was not defined by the algorithm, in what follows we let β = 1
3 .

Claim 1. We have α2 < β < α, and β ≤ 1− 2α2 ≈ 0.40880.

Proof. If β = 1
3 , then the claim holds by the value of α. Otherwise, j∗ exists, wj∗ ≥ α2 holds

by the choice of j∗, and since the algorithm defined β such that β ̸= 1
3 , wj∗ < α holds as

well. We find β = α − (1 − α)wj∗ ≤ α − α2 + α3 = 1 − 2α2 ≈ 0.40880 since wj∗ ≥ α2, and

by the value of α. We get β > α2 as β = α − (1 − α)wj∗ and wj∗ < α. Finally, we get

β ≤ 1− 2α2 < α, by α3 + α = 1− α2 and α < 1.

Let C = {j ̸= j∗ : wj ≤ β} and E = {j ̸= j∗ : wj > β}, and we call the jobs in the sets C

and E cheap and expensive jobs, respectively.

Claim 2. The algorithm accepts all expensive jobs and it rejects all cheap jobs.

Proof. The claim holds for all jobs that were considered in stage 2 by the definition of the

algorithm. Moreover, any job j considered in stage 1 (excluding j∗) satisfies wj < α2 < β.

3 Analysis

Theorem 3. The competitive ratio of the above algorithm is at most R, both for the preemp-

tive variant, and for the non-preemptive variant.

Proof. We consider both variants together, as the lower bounds that we will use on optimal

solutions are valid both for preemptive and non-preemptive algorithms.

We will prove that the competitive ratio is no larger than R via negation. For any input

J̃ , let opt(J̃) be a specific optimal solution for J̃ . We denote the cost of the algorithm for the

input J̃ by alg(J̃). Assume by contradiction that there exists an input J for which alg(J) >

R · opt(J). We assume without loss of generality that J is a minimal counterexample with

respect to its cardinality (the number of input jobs), and n is the number of jobs in J . Note

that the jobs arriving before the special job are considered independently of each other by the

algorithm, and the jobs arriving after the special job are considered independently of each

other by the algorithm as well. In particular, if a cheap job j ̸= j∗ is removed from J , and the

algorithm is executed again without this job, then the cost of the algorithm is decreased by

wj . The corresponding property for opt(J) is that if we remove a job j rejected by opt(J),

4



then the cost is reduced by wj , so for J ′ = J \ {j}, opt(J ′) ≤ opt(J) − wj (the resulting

solution is not necessarily optimal for the modified input).

Claim 4. There exists a special job in J .

Proof. Assume that there is no special job. In this case, all jobs are rejected, and each job

has a rejection penalty strictly smaller than α2. We will show that the algorithm produces an

optimal solution by showing that opt(J) also rejects all jobs, and the outputs of the algorithm

and of opt(J) are identical. Assume by contradiction that opt(J) schedules N > 0 jobs.

Modify this solution such that it will reject all jobs. The completion time for any schedule of

N jobs is at least N
3 (as the total size of jobs is N), while the cost of rejecting these jobs is

smaller than α2 ·N < N
3 . Therefore, the cost strictly decreases as a result, contradicting the

optimality of opt(J).

In what follows we assume that j∗ exists.

Claim 5. For the input J , opt(J) does not reject any cheap jobs.

Proof. Assume by contradiction that opt(J) rejects at least one cheap job j1. Let J ′ =

J \ {j1}. Since j1 is rejected by opt(J), opt(J ′) ≤ opt(J) − wj1 . For the algorithm we

find alg(J ′) = alg(J) − wj1 . Using the fact that J is a counterexample we find alg(J ′) =

alg(J) − wj1 > R · opt(J) − wj1 ≥ R · opt(J ′) + R · wj1 − wj1 > R · opt(J ′), as R > 1.

Thus, alg(J ′) > R · opt(J ′) holds, contradicting the minimality of the counterexample, as

|J ′| < |J |.

Claim 6. If there exists at least one cheap job, then opt(J) schedules all jobs, possibly except

for j∗.

Proof. If there are no expensive jobs, then we are done by Claim 5. Otherwise, there is at

least one cheap job and at least one expensive job. Recall that opt(J) schedules all cheap

jobs, and assume by contradiction that opt(J) rejects an expensive job j1. Let j2 be a cheap

job (which opt(J) schedules). Swapping the roles of these jobs in the optimal solution we get

an alternative solution whose cost is smaller by wj1 − wj2 > 0, since wj1 > β while wj2 ≤ β

(as j1 is expensive and j2 is cheap). This contradicts the optimality of opt(J).

Claim 7. The input J contains at least two jobs, i.e., n ≥ 2.

Proof. Assume that n = 1. Then, the only job is j∗. If the algorithm rejects it, then wj∗ < α,

opt(J) also rejects j∗ (as otherwise its cost would be at least 1), and the algorithm is optimal.

If the algorithm schedules j∗ and so does opt(J), then the algorithm is optimal again (both

of them have makespans of 1). Otherwise, alg(J) = 1 while opt(J) = wj∗ ≥ α, and the

competitive ratio is at most 1
α = R.
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Claim 8. The input J contains no cheap jobs.

Proof. Assume that J contains at least one cheap job. In this case opt(J) does not reject

any job (except for possibly j∗) by Claim 6. The cost of opt(J) is at least 1, as it accepts

at least one job, since n ≥ 2. Moreover, its cost is at least max{1, n3 }, if it accepts j∗, and

it is at least max{1, n−1
3 }+ wj∗ otherwise, due to the total sizes of jobs, and n ≥ 2. In both

cases, opt(J) ≥ max{1, n−1
3 + α2}, as α2 ≤ min{1

3 , wj∗}.
If the algorithm accepts j∗, then β = 1

3 . Additionally, wj∗ ≥ α > 1
3 , so opt(J) ≥

max{1, n3 }, no matter whether opt(J) accepts or rejects j∗. The cost of the algorithm for

every rejected job is no larger than β = 1
3 , and its cost for N accepted jobs is at most ⌈N3 ⌉ ≤

N+2
3 . Thus, its total cost is at most n+2

3 . If n ≥ 3, then alg(J)
opt(J) ≤

(n+2)/3
n/3 = 1 + 2

n ≤ 5
3 < R.

If n = 2, then the makespan of the algorithm is 1, and it rejects at most one job (of rejection

penalty at most β = 1
3), so alg(J) ≤ 4

3 , while opt(J) ≥ 1, and the competitive ratio is below

R in this case as well.

We are left with the case where the algorithm rejects j∗, and thus wj∗ < α. Let Ne ≥ 0 be

the number of expensive jobs, and let Nc ≥ 1 be the number of cheap jobs (where Ne +Nc =

n−1). We have alg(J) ≤ ⌈Ne
3 ⌉+wj∗+β ·Nc. Using the definition of β and 0 < α2 ≤ wj∗ < α,

wj∗ + β ·Nc = wj∗ + β + β · (Nc − 1) = (1 + wj∗)α + β · (Nc − 1) ≤ (1 + α)α + β · (Nc − 1).

We have ⌈Ne
3 ⌉ = 0 for Ne = 0, ⌈Ne

3 ⌉ = 1 for Ne = 1, 2, 3, and ⌈Ne
3 ⌉ ≤ Ne+2

3 .

First, consider the caseNe = 0. In this case, Nc = n−1. By alg(J) ≤ (1+α)α+β ·(Nc−1)

and β < α, we get alg(J) ≤ (1+α)α+α·(n−2) = α2+α(n−1). By using opt(J) ≥ n−1
3 +α2,

we find alg(J)
opt(J) ≤

3α(n−1)+3α2

n−1+3α2 < 3α < R, since α > 0 and n ≥ 2.

We are left with the case Ne ≥ 1, and n ≥ 3 (as Nc ≥ 1, and Nc + Ne = n − 1). If

n ≤ 4, then Ne, Nc ≤ 2, and alg(J) ≤ 1 + α + α2 + β · (Nc − 1). If Nc = 1, we are done

by opt(J) ≥ 1. Otherwise, Nc = 2 and n = 4 hold, and we have opt(J) ≥ 1 + α2 while

alg(J) ≤ 1+α+α2+β < 1+2α+α2, as β < α. We get alg(J)
opt(J) ≤

1+2α+α2

1+α2 = α2+α+1 = R,

since α = α2 + α3 + α4.

Finally, we are left with the case n ≥ 5, Ne ≥ 1, and Nc ≥ 1. Let ω = 1−2α2. Recall that

β ≤ ω and ω > 1
3 , by Claim 1. Thus, alg(J) ≤ ω(Ne+2)+(1+α)α+ω ·(Nc−1) = nω+α+α2,

while opt(J) ≥ n−1
3 + α2. We get alg(J)

opt(J) ≤ 3nω+3α+3α2

n−1+3α2 = 3ω + 3ω−9ωα2+3α+3α2

n−1+3α2 ≤ 3ω +
3ω−9ωα2+3α+3α2

4+3α2 = 15ω+3α+3α2

4+3α2 . As 15ω+3α+3α2

4+3α2 ≤ R = 1
α is equivalent to 15ωα + 3α3 ≤ 4,

we will prove the last inequality. Using ω ≤ 0.41, α < 0.55, and α3 < 0.17 we find that

15ωα+ 3α3 < 4, as required.

Claim 9. The input J contains no expensive jobs.

Proof. Assume that J has at least one expensive job. As there are no cheap jobs by Claim 8,

the algorithm does not reject any job, possibly except for j∗. Additionally, wj∗ ≥ α2, the cost

of opt(J) for each job is at least 1
3 if this job is accepted, and otherwise (if it is rejected) the

6



cost of opt(J) for the job is at least α2 (as all jobs except for j∗ are expensive, and β > α2).

We find opt(J) > α2n.

If n ≤ 3, the algorithm completes all its accepted jobs at time 1. Its cost satisfies alg(J) ≤
1+wj∗ if j∗ is rejected (in which case wj∗ < α), and alg(J) ≤ 1 otherwise. Thus, alg(J) <

1+α. If opt(J) accepts at least one job, we are done, as in this case opt(J) ≥ 1. Otherwise,

if n = 3, we have opt(J) ≥ 3α2, and alg(J)
opt(J) ≤ 1+α

3α2 < R as 3α2R = 3α > 1 + α since

α > 1/2. If n = 2 and alg(J) = 1, then using opt(J) ≥ 2α2, we get alg(J)
opt(J) ≤ 1

2α2 < R,

as 2α2R = 2α > 1. If n = 2 and alg(J) = 1 + wj∗ , then as opt(J) rejects both jobs (one

expensive job and the job j∗), opt(J) ≥ β + wj∗ = α(1 + wj∗), by the definition of β in this

case, and alg(J)
opt(J) ≤

1
α = R.

If n = 4, then alg(J) ≤ 1 + wj∗ < 2 if j∗ is rejected and otherwise alg(J) = 2. Using

opt(J) ≥ 4α2 we have alg(J)
opt(J) ≤

1
2α2 < R.

If n ≥ 5, then alg(J) ≤ ⌈n−1
3 ⌉ + wj∗ ≤ n+1

3 + wj∗ if j∗ is rejected, and otherwise

alg(J) ≤ ⌈n3 ⌉ ≤ n+2
3 . In both cases, alg(J) ≤ n+1

3 + α. Using opt(J) ≥ nα2 we have
alg(J)
opt(J) ≤

n/3+1/3+α
nα2 = 1

3α2 + 1/3+α
nα2 ≤ 1

3α2 + 1/3+α
5α2 = 2+α

5α2 < R as 5α2R = 5α > 2 + α.

We found that J cannot have cheap jobs or expensive jobs, but n ≥ 2 implies that there

is at least one job except for j∗, thus, we reached a contradiction.
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