
Operations Research Letters 30 (2002) 415–420

Operations
Research
Letters

www.elsevier.com/locate/dsw

On-line scheduling of unit time jobs with rejection:
minimizing the total completion time

Leah Epsteina, John Nogab, Gerhard J. Woegingerc;d; ∗; 1

aSchool of Computer and Media Sciences, The Interdisciplinary Center, P.O. Box 167, 46150 Herzliya, Israel
bDepartment of Computer Science, California State University, 18111 Nordho* Street, Northridge, CA 91330-8295, USA

cDepartment of Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
dInstitut f3ur Mathematik, Technische Universit3at Graz, Steyrergasse 30, A-8010 Graz, Austria

Received 3 December 2001; received in revised form 6 May 2002; accepted 10 May 2002

Abstract

We consider on-line scheduling of unit time jobs on a single machine with job-dependent penalties. The jobs arrive on-line
(one by one) and can be either accepted and scheduled, or be rejected at the cost of a penalty. The objective is to minimize
the total completion time of the accepted jobs plus the sum of the penalties of the rejected jobs.

We give an on-line algorithm for this problem with competitive ratio 1
2 (2 +

√
3) ≈ 1:86602. Moreover, we prove that

there does not exist an on-line algorithm with competitive ratio better than 1.63784. c© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Scheduling; On-line algorithm; Competitive analysis; Worst-case bounds

1. Introduction

Consider a system with a single machine and n jobs
J1; : : : ; Jn. Job Jj (j=1; : : : ; n) has a rejection penalty
ej and a processing time pj = 1 on the machine. The
machine can process at most one job at a time. For
each job Jj, we must decide whether to accept that
job or whether to reject it. The accepted jobs are to
be scheduled on the machine, and we pay the sum of
job completion times in the constructed schedule. For

∗ Corresponding author. Department of Mathematics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

E-mail addresses: lea@idc.ac.il (L. Epstein),
jnoga@ecs.csun.edu (J. Noga), g.j.woeginger@math.utwente.nl
(G.J. Woeginger).

1 Supported by the START program Y43-MAT of the Austrian
Ministry of Science.

the rejected jobs, we pay the corresponding rejec-
tion penalties. In other words, the objective value is
the total completion time of the accepted jobs plus
the total penalty of the rejected jobs. We denote this
objective function by an entry “Rej +

∑
Cj” in the

third Eeld of the three-Eeld scheduling notation (see
e.g. [4]). Hence, the considered problem is 1|pj =
1|Rej +∑

Cj.
In the o*-line version of this problem, all the job

data (i.e., all the job penalties) are known a priori. This
version of the problem is well understood. Engels et
al. [2] give a polynomial time algorithm for it. In this
note, however, we are mainly interested in the on-line
version of this problem for which the job data are not
known a priori: The jobs arrive one by one, and we do
not have any knowledge on the future of the system.
We decide whether the current job should be rejected
(in which case we pay the penalty) or be accepted (in
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which case it is assigned to the machine, and we pay
its completion time), and only then we learn about the
next job and about its penalty.
The quality of an on-line algorithm A is usually

measured by its competitive ratio or worst-case ratio
RA. This competitive ratio is deEned by

RA = sup {A(I)=OPT(I) | I is a sequence of jobs}:
(1)

Here, A(I) denotes the objective value in the schedule
constructed by the on-line algorithm A for the job se-
quence I , whereas OPT(I) denotes the objective value
in an optimal oL-line schedule for I . In this note, we
will prove the following theorem.

Theorem 1. For the problem of minimizing total
completion time plus total rejection penalty of unit
time jobs on a single machine; there exists an on-line
algorithm with competitive ratio 1

2 (2 +
√
3) ≈

1:86602.
Moreover, for this problem there does not exist an

on-line algorithm with competitive ratio less or equal
to 1:63784.

The proof of the positive result in this theorem is
contained in Section 2, and the proof of the negative
result is in Section 3. Section 4 gives some conclu-
sions.
Let us brieMy discuss the more general scheduling

problem where the job processing times are arbitrary
(and not necessarily unit time, as in our variant). Sup-
pose that there exists an R-competitive on-line algo-
rithm A for this problem, and confront it with a job
with processing time p1 = 1=(R + 1) and penalty 1.
In case A rejects the job, then no further job may
arrive. In this case, A(I) = 1, OPT(I) = 1=(R + 1),
and A is not R-competitive. If, on the other hand, al-
gorithm A decides to accept the job, a huge num-
ber H of jobs may arrive, all with zero processing
times and all with rejection penalties 1. In this case,
A(I)¿ (H + 1)=(R + 1), OPT(I) = 1, and algorithm
A again is not R-competitive. Hence, for this more
general scheduling problem, any on-line algorithm A
yields RA = ∞, and thus must behave very poorly
in the worst case; a hopeless situation! Note that in
the above instances, all jobs have the same rejection
penalty.

Let us brieMy mention some related results from the
literature. Scheduling with rejection was Erst consid-
ered by Bartal et al. [1] who concentrated on oL-line
and on-line results for non-preemptive makespan on
parallel machines. For preemptive makespan on par-
allel machines with rejection, Seiden [5] considered
the on-line variant, whereas Hoogeveen et al. [3]
considered the oL-line variant. Engels et al. [2] dis-
cuss oL-line sum of completion times with rejection.
All these papers discuss the computational complex-
ity and approximability of the considered problems.
Sgall [6] gives a comprehensive survey on on-line
scheduling.

2. The algorithm

In this section we will prove our positive main
result. An important parameter for the algorithm is
� = 1

2(1 +
√
3), the larger root of �2 = � + 1

2 . Note
that �2 = 1

2 (2 +
√
3) equals the competitive ratio that

is claimed in Theorem 1.
Our algorithm GREEDY is depicted in Fig. 1. Ex-

actly as in the depicted algorithm, we will use accj
to denote the number of accepted jobs from J1; : : : ; Jj.
Algorithm GREEDY is a quite simple greedy-type algo-
rithm: when deciding about job Jj, it has the choice
between processing the job at a cost of accj−1 + 1,
and rejecting the job at a cost of ej. GREEDY multiplies
the former cost by � and the latter cost by 1, and then
simply selects the cheaper alternative. Multiplying the
costs accounts for the fact that an accepted job is more
dangerous since it may increase the cost of later jobs,
whereas a rejected job cannot.
For an instance I of the scheduling problem, we

denote by OPT(I) the objective value of the optimal
oL-line schedule and by GREEDY(I) the objective
value of the schedule that is constructed by algorithm
GREEDY. In the rest of this section, we will prove that
the on-line algorithm GREEDY satisEes the statement
of Theorem 1. Suppose for the sake of contradiction
that there exist instances I for which

GREEDY(I)¿ �2 OPT(I): (2)

Consider such an instance I with the smallest number
of jobs, and Ex an optimal oL-line schedule � for it.
Let �¿ 0 be an inEnitesimally small real number. We
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Fig. 1. Description of the on-line algorithm GREEDY.

deEne another instance I ′ by modifying the penalties
of the jobs in I .

(Acc) For every job Jj that is accepted by the on-line
algorithm, we create a job J ′

j with penalty e′j=
� (accj−1 + 1) + �. In this case, e′j6 ej holds.

(Rej) For every job Jj that is rejected by the on-line
algorithm, we create a job J ′

j with penalty e′j=
� (accj−1 + 1). In this case, e′j¿ ej holds.

Lemma 2. Algorithm GREEDY accepts job Jj in in-
stance I if and only if it accepts job J ′

j in instance I ′:

Proof. For j = 1 this is straightforward to check.
For j¿ 2; we use induction. Note that the induc-
tion hypothesis implies that the same number of jobs
is accepted from J1; : : : ; Jj−1 and from J ′

1; : : : ; J
′
j−1.

Consequently; job J ′
j is accepted in I ′ if and only if

e′j ¿�(accj−1 + 1); and by construction this inequal-
ity holds if and only if job Jj is accepted in I .

Lemma 3. There does not exist a job Jj in instance I
that is simultaneously rejected in the optimal o*-line
schedule � and in the schedule constructed by algo-
rithm GREEDY.

Proof. Suppose otherwise; and consider the instance
K that results by removing Jj from instance I . Then
GREEDY(K)=GREEDY(I)−ej; since the behavior of the
on-line algorithm does not depend at all on the rejected
jobs. Moreover; OPT(K)6OPT(I) − ej. This implies
GREEDY(K)=OPT(K)¿GREEDY(I)=OPT(I)¿ �2; and
contradicts the minimality of I .

Lemma 4. For the GREEDY schedule and the op-
timal schedule of instances I and I ′; we have
OPT(I)¿OPT(I ′) and GREEDY(I)6GREEDY(I ′).

Proof. First let us compare OPT(I ′) to OPT(I).
Consider the schedule �′ for I ′ that accepts job
J ′
j if and only if job Jj is accepted in the op-
timal oL-line schedule �. Then the contribution
of the accepted jobs to the objective value in �
and �′ is the same. By Lemma 3; every rejected
job Jj in � is accepted by GREEDY; therefore; the
new penalty is computed in (Acc) and satisEes
e′j6 ej. Hence; the contribution of the rejected
jobs to the objective value of � is at least as large
as their contribution to the objective value of �′.
Summarizing; this yields the claimed inequality
OPT(I)¿ OPT(I ′).
Now let us compare GREEDY(I ′) to GREEDY(I).

By Lemma 2, the contribution of the accepted jobs
to the objective values of the GREEDY schedules
for I and I ′ is the same. The penalties of the re-
jected jobs are computed according to (Rej), and
satisfy e′j¿ ej. This yields the claimed inequality
GREEDY(I)6GREEDY(I ′).

Lemma 5. For instance I ′; we have GREEDY(I ′)¡�2

OPT(I ′).

Proof. Denote by x the number of jobs that are re-
jected in the optimal schedule �′ for I ′; but are ac-
cepted in the GREEDY schedule. Denote by y the num-
ber of jobs that are accepted in �′ but rejected in the
GREEDY schedule; and by z the number of jobs that are
accepted in both schedules.
Algorithm GREEDY accepts x+ z jobs and rejects y

jobs from instance I ′. By the construction in (Rej), the
penalty of every rejected job is bounded from above
by �(x + z + 1). Therefore,

GREEDY(I ′)6 1
2 (x + z)(x + z + 1) + � y(x + z + 1):

(3)
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The optimal schedule for instance I ′ accepts y + z
jobs and rejects x jobs. Every rejected job is accepted
by GREEDY. Hence, at the moment in time where
the optimal schedule decides to reject its ‘th job,
GREEDY has already accepted at least ‘ − 1 jobs. By
(Acc), the penalty of this ‘th job is at least � ‘ + �.
Therefore,

OPT(I ′)¿
1
2
(y + z)(y + z + 1) +

x∑
‘=1

(� ‘ + �)

¿
1
2
(y + z)(y + z + 1) +

�
2
x(x + 1): (4)

We deEne

F(x; y; z) = �2 (y + z)(y + z + 1) + �3 x(x + 1)

−(x + z + 1)(x + z + 2� y):

By using the inequalities in (3) and (4), we derive that

�2 OPT(I ′)− GREEDY(I ′)¿ 1
2F(x; y; z):

Our goal now is to show that F(x; y; z)¿ 0 holds for
any non-negative integers x; y; z. Clearly, this will
prove the lemma. First, we consider the case where
x= z = 0. In this case we have y¿ 1, and this yields

F(0; y; 0) = �2y(y + 1)− 2� y

= � y(� y + �− 2)¿ 0:

From now on we assume that x + z¿ 1. The func-
tion F(x; y; z) is a quadratic function in y where the
coeOcient of the quadratic term y2 is positive. By ap-
plying calculus, we see that this quadratic function
is minimized at y∗ = 1

� (x + z + 1) − z − 1
2 . This

yields

F(x; y; z)¿ F(x; y∗; z)

=
(
x + z + 1− �

2

)(
x + z + 1 +

�
2

)

+ �3x(x + 1)− (x + z + 1)

×(3x + 3z − 2� z + 2− �)

= (x + z + 1)(2� z − 2z − 2x − 1 + �)

−�2

4
+ �3x(x + 1) (5)

=(x + z)(2� z − 2z − 2x) + �3x2

+ z(3�− 3) + x(�3 + �− 3)

+
(
�− 1− �2

4

)
: (6)

Now we use 3�− 3¿�3 + �− 3¿ 0 and x + z¿ 1
to bound the expression in line (6) by

z(3�− 3) + x(�3 + �− 3) +
(
�− 1− �2

4

)

¿ (�3 + �− 3) +
(
�− 1− �2

4

)
¿ 0:

Consequently, we get from lines (5) and (6) that

F(x; y; z)¿ (x + z)(2� z − 2z − 2x) + �3x2

= x2(�3 − 2) + 2xz(�− 2) + 2(�− 1)z2

= 3
2 x

2(�− 1)−2
√
3(�− 1)xz+2(�− 1)z2

= 1
2 (�− 1) (

√
3x − 2z)2¿ 0:

Here we have used that �3 − 2 = 3
2 (� − 1) and that

� − 2 = −√
3(� − 1). This completes the proof of

Lemma 5.

Now the statements in Lemmas 4 and 5 together
yield that

GREEDY(I)6GREEDY(I ′)¡�2 OPT(I ′)6�2 OPT(I);

which blatantly contradicts our initial assumption (2).
This completes the proof of the positive result stated
in Theorem 1.
The above analysis of algorithm GREEDY actually is

tight: For a huge integer n, consider an instance I ′ as
described above: First, there arrive x ≈ 2n jobs that
are accepted by GREEDY but rejected in the optimal
schedule. Then there arrive y=n joby that are rejected
by GREEDY but accepted in the optimal schedule. Fi-
nally, there arrive z ≈ √

3 n jobs that are accepted
in both schedules. The penalties of these jobs are al-
ways Exed according to the rules (Acc) and (Rej). It
can be veriEed that then OPT(I ′) ≈ (3 + 2

√
3) n2 and

GREEDY(I ′) ≈ �2 (3 + 2
√
3) n2.

3. The lower bound

In this section, we will prove the negative re-
sult stated in Theorem 1. For an instance, I of the
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Fig. 2. A job sequence as in Lemma 6 with R = 1:63.

scheduling problem with n jobs and with penalties
ek (k = 1; : : : ; n), we denote by Ik (16 k6 n) the
restriction of I to the Erst k jobs, and we denote by
OPTk the optimal objective value of Ik .

Lemma 6. Let R¿ 1. Assume that there exists an
instance I with n unit time jobs and with penalties
ek (k = 1; : : : ; n) such that e1 = R; en6 n and such
that

1
2k(k − 1) + ek ¿ROPTk for k = 1; : : : ; n: (7)

Then for our scheduling problem; there does not exist
an on-line algorithm with competitive ratio strictly
less than R.

Proof. Suppose for the sake of contradiction that there
exists an (R − �)-competitive on-line algorithm for
some �¿ 0.
First we prove by induction that this on-line algo-

rithm must accept all jobs when fed with the instance
I . This holds for k=1, since OPT1=1 whereas e1¿R.
Now consider the moment in time where the kth job
arrives. So far, the on-line algorithm has accepted all
jobs and thus has accumulated a total job completion
time of 1

2k(k − 1). Then by (7), it cannot reject the
kth job without increasing the on-line cost to at least
R times the oL-line cost. Hence, also the kth job is
accepted.

Nowwe get a contradiction: as the on-line algorithm
accepts the nth job, its cost increases to 1

2n(n− 1) +
n¿ 1

2n(n− 1) + en¿ROPTn.

It is quite easy to construct job sequences as de-
scribed in Lemma 6. In Fig. 2, we list such a se-
quence for R=1:63. The columns OPTk and ONk list
the optimal objective value and the (forced) objec-
tive value of the on-line algorithm after k jobs. With
the help of a computer program, we have constructed
similar sequences for values of R up to approximately
1:6378411152. The idea is to choose every value ek as
small as possible so that it just satisEes the inequality
in (7). This proves the negative result stated in Theo-
rem 1.

4. Conclusions

We have presented a positive and a negative result
for the on-line single machine problem. The main open
problem is of course to close the gap between the
lower bound 1:63784 and the upper bound 1:86602 in
Theorem 1.
Another open problem concerns the corresponding

on-line problem Pm|pj=1|Rej+∑
Cj onm¿ 2 iden-

tical parallel machines. The single machine algorithm
from Section 2 easily generalizes to m¿ 2 machines:
when the on-line algorithm decides about a job Jj,
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it either may accept the job and schedule it with the
smallest possible completion time Cj, or it may reject
it at a certain penalty ej. The generalization of our al-
gorithm GREEDY to m machines accepts the job if and
only if ej ¿�Cj holds; note that for m= 1 machines,
this exactly yields to the algorithm described in Fig. 1.
Along the lines of the proof in Section 2, we can show
that the competitive ratio of this on-line algorithm for
Pm|pj = 1|Rej +∑

Cj equals 1
2 (2 +

√
3) ≈ 1:86602

for every m¿ 2. The analysis can be done more or
less separately for every machine, and (up to some-
what messy calculations) the argument boils down to
adding up m inequalities of the type proved in Sec-
tion 2 for a single machine. We leave all details to the
reader.
Also the lower bound construction in Section 3 may

be adapted to m¿ 2 machines. However, as m be-
comes larger, the resulting lower bound values rapidly
decline and tend towards 1. Numerical experiments
seem to indicate that these lower bound values be-
have like 1+�(1=m) as m becomes large. Denote by
Tm the on-line approximability threshold of problem
Pm|pj=1|Rej+∑

Cj (that is, for every c¿Tm there
exists a c-competitive on-line algorithm, whereas for
every d¡Tm there does not exist a d-competitive
on-line algorithm). We know that Tm6 1:86602 for
all m. It would be interesting to understand the be-
havior of these thresholds. Is it true that the numbers

Tm form a decreasing sequence, and that hence the
scheduling problem becomes easier as the number of
machines increases?
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