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Abstract

We study the scheduling problem of minimizing the maximum starting time
on-line. The goal is to minimize the last time that a job starts. We show that
while the greedy algorithm has a competitive ratio of @(logm), we can give a
constant competitive algorithm for this problem. We also show that the greedy
algorithm is optimal for resource augmentation in the sense that it requires
2m — 1 machines to have a competitive ratio of 1, whereas no algorithm can
achieve this with 2m — 2 machines.

1 Introduction

In this paper, we study on-line multiprocessor scheduling with a new objective
function: the mazimum starting time. Jobs arrive on-line to be scheduled on m
parallel machines. These machines can be either identical or related, in which case
each machine has a speed that determines how long it takes to run one unit of work.

We study the on-line paradigm where jobs arrive one by one. A job J; is defined
by its size and by its order in the input sequence. Denote the starting time of job
J; by S;. We denote the cost of an algorithm A on a job sequence o = {Ji,...,J,}
by A(c) = max; S;. An algorithm is required to run the jobs on each machine in
the order of arrival.

An example of this situation is the following. There is a loading station where
trucks are loaded with goods. These goods need to be delivered to different places,
after which the trucks return to the loading station to pick up a new load. At the
end of a work day, the station can close as soon as the truck carrying the last load
has left, and does not need to wait for the trucks to return. The time it takes to
deliver the goods in one truck is the size of the job. (Here we consider a truck
load to be “one job”, e. g. each truck contains only one item, or items for only one
destination (client).)
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We use two measures to study the performance of on-line algorithms. The com-
petitive ratio compares an on-line algorithm to an optimal off-line algorithm opT
that knows the job sequence in advance (but can not change the order in which jobs
run on a machine, i.e. it also has to run jobs on a machine in the order of their
arrival). The competitive ratio R(.A) of an on-line algorithm A is the infimum value
of R such that for every sequence o,

A(o) <R -oPT(0) . (1)

The second measure involves resource augmentation. Assume the on-line algorithm
uses m machines, where m > m. What is the minimum value of /m such that
the cost of the on-line algorithm is bounded by the cost of the optimal off-line
algorithm (i.e. the competitive ratio is at most 1)? Resource augmentation was
originally introduced by [11], and further widely studied for various scheduling and
load balancing problems [5, 7, 11, 12, 14].

Note that if a sequence o contains at most m jobs, then opT(¢s) = 0. By (1),
any algorithm with finite competitive ratio needs to have zero cost and run all jobs
on different machines in that case.

All previous work assumed that the output needs to be collected by the same
system, and hence the last completion time was considered in numerous papers
[10, 4, 13, 1, 9, 8]. Other papers also considered different functions of the completion
times [2] but never the starting times. Resource augmentation for scheduling of jobs
one by one was also considered with the maximum completion time goal function
[6, 3]. However, to the best of our knowledge, no previous work on the above goal
function exists.

We show the following results for the competitive ratio on identical machines:

e The greedy algorithm, which assigns each job to the least loaded machine, has
competitive ratio ©(logm).

e The greedy algorithm has optimal competitive ratios for 2 and 3 machines,
which are 2 and 5/2 respectively.

e There exists a constant competitive algorithm BALANCE which has competi-
tive ratio 12 for any m (hence the greedy algorithm is far from having optimal
competitive ratio for general m).

e No deterministic algorithm for general m has competitive ratio smaller than
4.

For two related machines, we give a tight bound of ¢ + 1 for the competitive
ratio, where ¢ is the speed of the fastest machine relative to the slowest.
We show the following results for resource augmentation on identical machines:

e The greedy algorithm has competitive ratio 1 if it uses 2m — 1 machines (and
is compared to an optimal off-line algorithm with m machines).



e Any on-line algorithm which uses 2m —2 machines has competitive ratio larger
than 1, and any on-line algorithm which uses 2m — 1 machines has competitive
ratio of at least 1. Hence the greedy algorithm is optimal in this measure.

Note that the off-line version of minimizing the maximum starting time is strongly
NP-hard. The off-line problem of minimizing the maximum completion time (min-
imizing the makespan) is a special case of our problem. A simple reduction from
the makespan problem to our problem can be given by adding m very large jobs
(larger than the sum of all other jobs) in the end of the sequence. Each machine
is forced to have one such job, and the maximum starting time of the large jobs, is
the makespan of the original sequence.

We present results on the greedy algorithm in Section 2, the constant competitive
algorithm BALANCE in Section 3, lower bounds in Section 4 and results for resource
augmentation in Section 6.

2 The Greedy Algorithm

GREEDY always assigns an arriving job on the machine where it can start the earliest
(see [10]). In some upper bound proofs we use the following definition: a final job
is a job that starts as the last job on some machine in OPT’s schedule.

Theorem 1 R(GREEDY) = ©(logm) on identical machines.

Proof. Let A = opT(0). Note that all on-line machines are occupied until time
GREEDY(0). We cut the schedule of GREEDY into pieces of time length 2X starting
from the bottom.

If there are less than m final jobs, there are less than m jobs, hence GREEDY is
optimal. Suppose there are m final jobs.

Claim: At time 2i\, at most m/2¢ final jobs did not start yet.

Proof: By induction. The claim holds for ¢ = 0. Assume it holds for some ¢ > 0.

A final job is called missing if it did not start before time 2Xi. Let k& be the
number of missing jobs. We have k& < m/2' starting at time 2)\i or later. The
total size of non-final jobs running at any time after 2Xs is at most kX. This follows
because GREEDY schedules the jobs with monotonically increasing start times, hence
if there are k missing final jobs, then all the unstarted jobs must have arrived after
the m — k-th final job. That job is started before time 2); and hence the unstarted
jobs must be scheduled by OPT on the machines where it runs the last k final jobs.
Since OPT completes all these (non-final) jobs no later than at time A, the total size
of these jobs is at most k.

At most k/2 machines can be busy with these jobs during the entire time interval
[2Ai,2A(7 + 1)]. Hence k/2 or more final jobs start in this interval (one for every
machine that is not busy with non-final jobs during the entire interval and that was
also not running a final job already). At most k/2 final jobs will be missing at time
2\(i + 1), and k/2 < m/2!FL O



At time 2 logy m, only one final job is missing, therefore GREEDY (o) < 2\ log, m+
A, hence R(GREEDY) = O(logm).

To show that R(GREEDY) = (logm), we use a job sequence that consists of a
job of size 1 followed by a job of size M (a large constant, e.g. M = m), repeated
m times. The optimal algorithm can assign the jobs so that no job starts later than
at time 1, whereas GREEDY starts the last job at time 1 + |[logy, m]. O

We now consider the competitive ratio of GREEDY for m = 2,3. In Section 4,
we will show matching lower bounds. Hence, GREEDY is optimal for m = 2, 3.

Lemma 1 On identical machines, R(GREEDY) < 2 for m = 2, and we have
R(GREEDY) < 5/2 for m = 3.

Proof. We start with the case m = 2. We need to show that the competitive ratio
of GREEDY is at most 2. Assume by contradiction that GREEDY has competitive
ratio of p > 2. Define ¢ = 1(p — 2) and consider a sequence o for which GREEDY
has a ratio of at least p —e. Without loss of generality we assume that OPT(co) = 1.
We denote the last job in o by J,. This is a final job.

Since Jp was assigned by GREEDY to the least loaded machine, both of the on-
line machines are busy until time p — . Hence the total size of all jobs but J; is
at least 2(p — ) > 4. The volume of jobs that OPT runs before time OPT(0) =1 is
at most 2. OPT can run only two additional (final) jobs after time 1, one on each
machine. One of those jobs is Jy. Hence the other job, Jy, must have a size greater
than 2(p —e) — 2 > 2.

Hence there exists a job Jy of size greater than 2. The volume of the remaining
jobs (apart from Jp) is at most 2. Hence GREEDY will not schedule J; on the same
machine as Jy, because the other machine must be less loaded. Scheduled on that
machine, Jp starts no later than at time 2, since at most a volume of 2 of jobs is
scheduled before it.

For m = 3, suppose GREEDY has competitive ratio p > 5/2 and define o and J,
as above (taking ¢ = Z(p — 5/2)). Assume OPT(c) = 1. Denote the total size of all
jobs but J; by V. Note that the size of J; is irrelevant for the competitive ratio; we
may assume it has size 0. Denote the total size of all jobs of size at most 1 by V.
Since OPT(0) = 1, OPT starts all its jobs no later than at time 1; the jobs that it
completes before time 1 have total size at most 3.

We have V' > 3(p —¢) > 15/2, since all three of GREEDY’s machines are busy
until past time p — e > 5/2 when Jy arrives.

e If o contains no jobs larger than 1, consider the optimal off-line schedule.
Two final jobs are of size at most 1, and the third (Jy) is of size 0. The rest
of the jobs are completed by time 1, and their total size is at most 3. Hence
V = V' <5, a contradiction.

e If o contains one job larger than 1, then V' < 4: one final job has size 0, and
one must have size at most 1 (since only one can be larger than 1). The rest
of the jobs are of size at most 1, and have total size at most 3. Consider the



least loaded machine among the two machines that do not run the job larger
than 1, at the time Jy arrives. Since V' < 4, it cannot have a load more than
2. But then GREEDY starts J; no later than at time 2.

e If o contains two jobs larger than 1, then analogously to the previous cases,
V' < 3. Denote the time that GREEDY starts the second large job by ts.
Similarly to in the previous case, we have to < 3/2 < 5/2. At most a volume
of 1 of jobs starts after t5, since OPT has to run all these jobs and J; on one
machine if OPT(o) = 1: two of OPT’s machines are already running large jobs
and cannot be used anymore.

— Ifty > 1/2, then in the worst case GREEDY assigns all the jobs that arrive
after ¢o to one machine and starts Jy no later than at time 5/2.

— If t9 < 1/2, then at the time the second large job arrives GREEDY starts
no job later than at time 1/2. Hence the on-line machine that has no
large job has load at most 3/2 at this time, since all jobs on that machine
have size at most 1 and GREEDY always uses the least loaded machine.
Since after t2, at most a volume 1 of jobs still arrives, J; starts no later
than at time 5/2. O

We now turn to the performance of GREEDY on related machines. We set the
speed of the slowest machine to 1 and denote the speed of the fastest machine by
g > 1. On the fastest machine, it takes w/q time to complete a job of size w.

Lemma 2 For two related machines, R(GREEDY) < ¢q + 1.

Proof. Suppose the competitive ratio of GREEDY is p > 1 4+ ¢q. We define J; and
o analogously to in Lemma 1, taking ¢ = %(p —q —1). In the present case, we find
that the total size of all jobs but .J, must be greater than (¢ + 1)?, OPT can run at
most 1 + ¢ before time 1 and there must be a job Jy of size greater than ¢(1 + g).
Again GREEDY will not schedule J; on the same machine as Jy (even if Jj is run on
the fast machine), and hence not start it later than at time ¢ 4+ 1 (assuming that Jy
is run on the slow machine, otherwise it starts not after time (¢ + 1)/q). O

3 Algorithm BALANCE

We give an algorithm for identical machines of competitive ratio 12. This algorithm
works in phases and uses an estimate on OPT(co) which is denoted by A. A job is
called large if its size is more than A, and small otherwise; if A > OPT(0), OPT can
only run one such job on each machine. Also, once OPT has done this, it cannot use
that machine anymore for any job.

A phase of BALANCE ends if it is clear from the small jobs that arrived in the
phase, and from the large jobs that exist, that if another job arrives then A < opPT(0).
In this case we double A and start a new phase.



In every phase, BALANCE only uses machines that do not already have large
jobs. Each such machine will receive jobs according to one of the two following
possibilities.

1. Only small jobs, of total weight in that phase less than 3.
2. Small jobs of weight less than 2\, and one large job on top of them.

A machine that received a large job is called large-heavy, a machine that received
weight of at least 2\ of small jobs in the current phase is called small-heavy. Both
small-heavy and large-heavy machines are considered heavy. A machine that re-
ceived more than a weight of A of small jobs in the current phase but at most 2\
(and no large job) is considered half-heavy. Other machines are non-heavy. A ma-
chine that is not heavy (but possibly half-heavy) is called active. The algorithm
BALANCE also maintains a set () that contains the active machines.

Define \; as the value of A in phase 7. The algorithm BALANCE starts with
phase 0 which is different from the other phases. In phase 0, m jobs arrive that are
assigned to different machines. We then set A\g equal to the size of the smallest job
that has arrived. Then the first of the regular phases starts.

Phases: A new phase starts when ) = (), i. e. there are no active machines
anymore. (Phase 1 starts when phase 0 ends.) At the start of phase ¢ > 0, we set
Ai = 2X;_1. Then @ contains all machines that do not have a large job. This holds
because no machine has yet received any job in the current phase, so no machine
can be small-heavy. Note that such a large job has arrived in some previous phase,
but that the definition of large jobs has changed compared to the previous phase.
I. e. not all the large jobs from previous phases are still large.

At all times, the algorithm only uses active machines. When the phase starts,
all active machines are non-heavy. Each phase consists of two parts. The first
part continues as long as there is at least one non-heavy machine among the active
machines. As soon as no machine is non-heavy, the second part starts.

Part 1 For small jobs, BALANCE uses the machines in ) in a Next Fit-fashion,
moving to the next machine as soon as a machine has received a load of more than
A; in the current phase. An arriving large job is assigned to a machine that already
has weight of more than A;. If no such machine exists, it is assigned to the active
machine that BALANCE is currently using or going to use for small jobs (there is a
unique such machine, and all other non-heavy machines did not receive any jobs in
the current phase). A machine that receives a large job becomes large-heavy, and is
removed from Q.

Part 2 We again start using the machines in () in a Next Fit-fashion, moving to
the next machine as soon as the machine has received a total load at least 2)\; in
the current phase. A machine that receives weight of at least 2)A; of small jobs in
total in this phase becomes small-heavy and hence stops being active (is removed
from ). A machine that receives a large job becomes large-heavy and also stops
being active (it is removed from Q).



As long as |@Q| > 0, there are active machines. When @ = (), a new phase starts.
An example of a run of BALANCE can be seen in Figure 1.

We show that as soon as a first job in the new phase arrives, then \;_; < oPT(0).
(Note that it is possible that no jobs arrive in a phase; this happens if Q = () at the
beginning of a phase.)

D jobs from previous phases that are now small large jobs from first part of this phase

jobs from previous phases that are till large - small jobs from second part of this phase

B small jobs from first part of this phase - large jobs from second part of this phase

Figure 1: A run of BALANCE

Lemma 3 In each phase i > 0 in which jobs arrive, we have OPT(c) > X;/2, where
o 1is the sequence of jobs that arrived until phase i, including the first job of phase i.

Proof. The lemma holds for phase 1, since there is at least one machine of the
optimal off-line algorithm that has two scheduled jobs after the first job in phase 1
arrives.

Consider a phase 4 > 1. If phase 4 starts when phase ¢ — 1 is still in its first part,
then no machines are small-heavy. Hence in total m jobs have arrived that were
considered large in phase ¢ — 1 (where some may have arrived before phase i — 1).
After the first job arrives in phase i, we have OPT(0) > \j—1 = A;/2.

If phase ¢ starts while phase ¢ — 1 is in its second part, let K be the set of large
jobs that were assigned to non-heavy machines in phase i — 1. (If no such jobs
exist, K = ()). The jobs in K arrived in part 1 of phase i — 1, since in part 2 only
half-heavy machines are used. In part 1 of a phase, the active machines that have
already been used are half-heavy or large-heavy.



Assume by contradiction that OPT(0) < A;_1. Suppose K # (). Denote the last
job in K by Jg and denote the set of machines that are still active after Jx has
arrived by Q'. Write ¢ = |Q'|. There was no half-heavy machines available for Jy,
so all the machines that already received jobs in phase 7 — 1, including the one that
received Jg, are large-heavy at this point (they cannot be small-heavy in part 1).
If K = (), define Q' as the set of active machines at the start of phase i — 1. Clearly,
all machines not in @’ are large-heavy at that point.

From this, we have that there exist m — ¢ large jobs after Jx has arrived (or at
the start of phase i — 1): all machines not in Q' either were large-heavy when phase
1 — 1 started, or became large-heavy during it. Hence there are m — ¢ machines of
OPT with a large job, since OPT cannot put two large jobs on one machine; OPT
cannot put any more jobs on those machines if OPT(0) < A;—;. Consider the set
Qopr of machines of OPT that do not run any of the m — ¢ large jobs that arrived
already. We have |Qppr| = |Q'| = ¢.

We calculate how much weight can be assigned by BALANCE to the machines
in Q' (or equivalently, by OPT to the machines in Qpy) in the remainder of phase
i — 1. In the schedule of OPT, the machines in Q{yp have some ¢ jobs running last
on them. Apart from that they have at most an amount of OPT(0) < A;—; small
jobs.

Let q; < g be the number of large jobs assigned by BALANCE to machines in Q’
in the remainder of phase 1 — 1. At the end of phase ¢ — 1, each machine in Q' is
either small-heavy, or has an amount of at least \;_; small jobs and a large job. The
total weight of small jobs assigned in phase i — 1 to the machines of ' by BALANCE
is at least (2q — q1)\;.

Suppose we remove the ¢ largest jobs assigned in phase 1 — 1 to the machines
of the set @’ in the assignment of BALANCE. This means that we remove q; large
jobs and g — g1 small jobs. By definition, each small removed job has size of at most
Ai—1, so we removed at most an amount of (¢ —g1)A;—1 small jobs. Therefore we are
left with total weight of at least g\;—; on the machines in @', counting only weight
from jobs that arrived in this phase.

This implies that even if OPT runs the largest ¢ jobs last on the machines in
Qopr- it starts at least one of them at time A;_; or later, by the total weight of the
other jobs. This gives a contradiction, already without the first job in phase i. This
proves the lemma. O

Theorem 2 Algorithm BALANCE has a competitive ratio of 12.

Proof. Consider the last phase £ > 0 in which jobs arrived. (If / = 0, BALANCE is
optimal.) Let A = X\y. We have oPT > A/2 by Lemma 3. Consider the machines
that received jobs in phase £, and for each such machine, consider the total size of
jobs below the last job that is run on that machine. (For the machines that did
not receive jobs in this phase, we have stronger bounds.) This size consists of three
parts:

e The small jobs of phase /¢



e The small jobs of previous phases
e The large jobs of previous phases

For the computation, for phases 0 < ¢ < £ in which a machine got only small
jobs, we replace an amount of 2); of small jobs from that phase by one (large) job.
(Possibly a small job is broken in two parts to get a total of exactly 2);.) Because we
only consider machines that received jobs in phase ¢, the maximum starting time is
unaffected by this substitution. As a result, each machine receives at most a weight
of 2)\; of small jobs in phase i.

In phase /, each machine receives at most 2A of small jobs before it receives its
last job. The value of A is doubled between phases, hence the total amount of small
jobs from previous phases on a machine is at most ) ; ,2\; < 2A.

We still need to consider the large jobs from previous phases. We count the large
jobs not by the phases they arrive; instead, each large job is counted in the first
phase where it is not large anymore, and the machine is active again. The large jobs
that replace 2A worth of small jobs as described above, are always already small in
the subsequent phase. For each phase ¢ < /, a machine has at most one job that
has just become small. This job is of size at most \;. Hence in total the size of all
these jobs is at most )., A\; < 2A. Therefore the total load below the last jobs on
any machine is at most 2A + 2A +2A < 6A. Since A < 20PT, we are done. O

4 Lower Bounds

In the following proofs, we take M to be a large constant. If we construct a job
sequence o that contains a job of size M, then we assume that M is larger than R
times the sum of smaller jobs in o, where R is the competitive ratio that we want
to show. This choice of M ensures that if a machine is assigned a job of size M, it
cannot receive any other job after this without violating the competitive ratio.

Lemma 4 Suppose we have a job sequence o that shows that R(A) > R for all on-
line algorithms on my machines. Then for any m > mq, R(A) > R for all on-line
algorithms on m machines, as well.

Proof. Construct the sequence ¢’ by adding m — m; jobs of size M before the first
job of . The optimal cost for this sequence is the same as for ¢ on m; machines.
On the machines that do not run the first m — m; jobs, we have that A must have
a cost at least R times the optimal cost for o on m; machines, and we are done. [J

Theorem 3 Take a = (v/5+1)/2 ~ 1.618 and M a large constant. For all on-line
algorithms A, we have the following lower bounds for the competitive ratio.

Number of machines ‘ Job sequence ‘ R
2 1,M,1,M 2
3 1/2,1/2,M,1, M,1, M 5/2
4 a—l,a—1,M M1, M,1,M | a+1~2.618




Moreover, as the number of machines tends to infinity, the competitive ratio tends
to at least 4.

Proof. For m < 4, we use the job sequences described in the table above. For
these sequences, any on-line algorithm that has a better competitive ratio than in
the last column of the table must assign these jobs in the same way as the greedy
algorithm, or violate the competitive ratio. In all cases, after the last job arrives we
have OPT(0) =1 and A(o) = R.

As an example, for m = 4, the first four jobs must be assigned to four different
machines, the next two jobs to the machines with the jobs of size @ — 1, and the
last two to the machine that does not have a job of size M yet. The sequence stops
as soon as A assigns a job differently than described here, or after the fourth large
job.

For larger m, we use the following job sequence. Assume m = 2" for some r > 3,
and consider a sequence of real numbers {k;}3°, with properties to be defined later.
We will first define the job sequence and then specify for which value of r it works.
The job sequence consists of 7 + 1 steps. For 1 <4 < r, in step i first m/2¢ jobs of
size k; arrive, and then m/2¢ jobs of size M. In step r + 1, one last job of size k,
arrives, followed by a job of size M.

We denote the optimal maximum starting time after step ¢ by opT;. If k; < k;1q
for all 1 <4 <r —1, then for 1 < i < r, we have OPT; = k;_1 (we put kg = 0),
which is seen as follows. We describe the optimal schedule after step 7. (We note
that the optimal schedules after different steps can be very different.) There are
m/2¢ machines with one job of size k;, and m/2" machines with one job of size M.
These machines do not have any other jobs. The remaining machines have one job
of size ks for some s < i, and after it one job of size M. After the last step we have
OPT,y1 = k,. In this case, all machines have one job of size ks for some s < r, and
after it one job of size M.

We will now define the sequence {k;}$2, in such a way that the on-line algorithm
cannot place two jobs on the same machine in one step. By induction we can see
that at the start of step i (1 < i < r), m(1 — 1/2'=1) jobs of size M have already
arrived. Thus if the on-line algorithm places the m/2'~! jobs from step  on different
machines (that moreover do not have a job of size M yet), then also by induction,
after every step ¢ (1 <14 < r), every machine of the on-line algorithm either has a
job of size M, or it has one job of each size k;, for 1 < j <.

Define s; = 2321 kj;. If the on-line algorithm does put two jobs on the same
machine in some step ¢ < r, then by the above the last job on that machine starts
at time %, k; and the implied ratio is

Zi‘ﬂ kj S5
R; = == = 2
ki1 ki1 2)

If the on-line algorithm never does this, then in the final step r 4+ 1 it has only
m/2" = 1 machine left without a job of size M, and this machine has one job of

10



each size k; for 1 < j < i. The on-line algorithm has minimal cost if it places
the two jobs from step 7 + 1 on this machine, and the implied competitive ratio
is thus Ry = (327, kj + kr)/kr = (sr + k) /ky. Using (2), we will define the
sequence {k;}°, so that R; = R is a constant for 1 < ¢ < r 4 1. This implies
ko=0, ki =1, k; = Rk;_1 — Z;;ll kj = Rk;_1 — s;—1 for 7 > 1. This proves a
competitive ratio of R if k; < kjq for 1 <i <r —1 and (s, + k;)/kr > R (where
this last condition follows from step r + 1). We have

(sp +kp)/kr >R <= ky+ 5, > Rky = sp41 using (2)
< kr 2> Srp1— S = krq1
& Sp41 2 Spg2 = k2 <0 &= 5,43 <0.

Hence it is sufficient to show that the sequence {s;}:2, has its first nonpositive term
Sp+3 for some r > 1. This value of r determines for which m this job sequence
shows a lower bound of R, since m = 2". Note that if s,,3 is nonpositive, we
have to stop the job sequence after step r + 1 at the latest, because by the above
krya < 0 < k1 < ki the sequence is no longer non-decreasing. As stated above,
we will in fact give one final job of size k, in step r 4+ 1, and a job of size M, and
thus not use any value k; for 4 > r. The sequence {s;}:°, satisfies the recurrence
Si+2 — Rsi+1 + Rs; = 0. For R < 4, the solution of this recurrence is given by

9 sin(0i) /R 1
si:M where cosf = ——VR and sin9:\/1—g.
VAR — R? 2 4

Since sinf # 0, then 6 # 0, which implies s; < 0 for some value of i. Furthermore,
this value of ¢ tends to co as R tends to 4 from below. Direct calculations show that
fori=1,2,3,4, s; > 0, hence given such minimal integer ¢, we can define r =7 — 3.
From the calculations it also follows that {k;};_, is non-decreasing.

In conclusion, for any value of R < 4 it is possible to find a value r so that any
on-line algorithm has at least a competitive ratio of R on 2" machines. By Lemma
4, this implies that for every € > 0, there exists a value m such that for any on-line
algorithm A on m > m; machines, R(A) >4 —e. O

Note that this proof does not hold for R > 4, because the solution of the recur-
rence in that case is not guaranteed to be below 0 for any s.

Corollary 1 On identical machines, GREEDY is optimal for m = 2, 3.

Proof. This follows from Lemma 1 and Theorem 3. O

5 Related machines

We only study the special case m = 2. The reason for this is that already for m = 2,
the competitive ratio is unbounded as ¢ — co. We give a matching lower bound to
the upper bound from Lemma 2, showing that Greedy is optimal for this case.

11



Theorem 4 For the problem of minimizing the mazimum starting time on two
related machines, the competitive ratio is at least ¢ + 1.

Proof. Consider an algorithm A for this problem and suppose it has a competitive
ratio of less than g+1. A job of size 1 arrives. If A places it on the slow machine (the
machine with speed 1), then a job of size M arrives (which has to go on the other
machine; M is defined as in Section 4), followed by a job of size ¢ and another job
of size M. The maximum starting time of A is at least ¢ + 1, whereas the optimal
maximum starting time is 1, by putting the job of size 1 on the slow machine, the
job of size ¢ on the fast machine, and starting both the large jobs at time 1.

If A places the first job on the fast machine, then take N a large constant. The
second job has size Nq and must be placed on the slow machine. The third job has
size NM, where M = (¢4 1)N, and must be placed on the fast machine, otherwise
a competitive ratio of Nq/(1/q) = N¢? is implied. Then a job of size N — 1 arrives
which must go on the slow machine; finally another job of size NM arrives. A starts
its last job at time Ng + (N — 1) whereas in the optimal schedule, no job starts
after time N. By letting N grow without bound (maintaining M = (¢ + 1)N), this
proves the ratio. O

6 Resource Augmentation

We now consider on-line algorithms that have more resources than the off-line al-
gorithm. It turns out that in these changed circumstances, GREEDY is optimal
in the sense that it requires the minimum possible number of machines to have a
competitive ratio of 1. We only consider identical machines in this section.

Lemma 5 R(GREEDY) =1 if it has at least 2m — 1 machines.

Proof. Let h = GREEDY(0) and h* = OPT(0). Note that the last job Jp that
is assigned at time h by GREEDY is a final job for oPT as well, since this is the
very last job in the sequence. Let S be the set of on-line machines of GREEDY
that only contain non-final jobs or J,. Since there are at most m final jobs, |S| >
2m — 1 — (m — 1) = m. All of GREEDY’s machines are occupied from 0 to h. The
machines in S are occupied during this time by non-final jobs. Let W be the total
size of non-final jobs. We have W > mh. But W < h*m. Hence h < h*. [l

Note that a similar proof shows that the competitive ratio of GREEDY tends to
zero as the number of on-line machines tends to oco.

Lemma 6 Any algorithm that has at most 2m — 2 machines has a competitive ratio
greater than 1.

Proof. Suppose A has a competitive ratio of at most 1. We use a construction in
phases, where in each phase the size of the arriving jobs is equal to the total size of
all the jobs from the previous phases. Let n; denote the number of jobs in phase 1,
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and M; denote the size of the jobs in phase 7. We determine the number of phases
later. We take ng = m and n; = 2m — 1 for 4 > 0. Furthermore, we take My = 1,
My = noMy =m and

i—1 i—2
M; = anMj = anMj +n,_1M;_1 = 2mM;_, for i > 1.
pr =0

Claim: After i phases, at least min(m + (m — 1)(1 — %), 2m — 2) machines are
non-empty.

Proof: We use an induction. All jobs from phase 0 have to be assigned to
different machines to have a finite competitive ratio, so m machines are non-empty
after phase 0.

Consider phase ¢ for ¢ > 0. During each phase ¢ > 0, the optimal costs are at
most M;: all the jobs from the previous phases go together on one machine, followed
by one job of size M;. All other machines have two jobs of size M;. In order to
have a competitive ratio of 1, A can assign at most one job of size M; on each
non-empty machine, and at most 2 such jobs on each empty machine. Let x be the
number of non-empty machines at the start of phase 7. If z = 2m — 2 we are done
immediately. Else, we have z > m + (m — 1)(1 — 21%1) by induction. The number
of machines that become non-empty in phase i is at least (2m — 1 — x)/2, so after

phase i, at least m — % — %m + z machines are non-empty. By induction, we have
m—3+33>m—g+(m+(m-1)1-55))/2=m+ (m—1)(1 - 5). O

Taking k = [logym], we have that after k phases, m + (m — 1)(1 — 2%) >
m + (m —1)(1 — L) > 2m — 2, hence A needs more than 2m — 2 machines to
maintain a competitive ratio of 1. O

Note that no algorithm 4 which uses 2m — 1 machines can have competitive
ratio less than 1, due to the sequence 1,...,1 (2m jobs). At least two jobs run on

the same on-line machine, hence A(c) = opT(0) = 1.

7 Conclusions

We showed that the greedy algorithm is far from being optimal in one measure
(competitive ratio), but optimal in a different measure (amount of resource aug-
mentation). This phenomenon raises many questions. Which of the two measures
is more appropriate for this problem? Furthermore, which measure is appropriate
for other problems? Is it possible to introduce a different measure that would solve
the question: is GREEDY a good algorithm to use?
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