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Abstract

We consider a job scheduling game with two uniformly related parallel machines (or links). Jobs are
atomic players, and the delay of a job is the completion time of the machine running it. The private goal
of each job is to minimize its own delay and the social goal is to minimize the maximum delay of any job,
that is, to minimize the makespan. We consider the well known price of anarchy (POA) as well as the
strong price of anarchy (SPOA), and show that for a wide range of speed ratios these two measures are
very different whereas for other speed ratios these two measures give the exact same bound. We extend
all our results for models of restricted assignment, where a machine may have an initial load resulting
from jobs that can only be assigned to this machine, and show tight results for all variants.

1 Introduction

A Nash equilibrium (NE) is a kind of solution concept of a game, involving two or more players, where
no player can gain anything by changing only his own strategy unilaterally. If each player has chosen a
strategy and no player can benefit by changing his strategy while the other players keep theirs unchanged,
then the current set of strategy choices and the corresponding payoffs constitute a Nash equilibrium. If a
player chooses to take one action with probability 1 then that player is playing a pure strategy, and otherwise
a mixed strategy. If all players have pure strategies, the resulting equilibrium is called pure (see [26]).

In recent years, computer scientists started to adopt some game theoretical concepts and terminology
in their studies. A large number of studies of Nash Equilibria, for problems coming from the field of
computer science, were carried out in the last few years. Koutsoupias and Papadimitriou [23, 22] proposed
to investigate the behavior of the worst case coordination ratio, which is the ratio between the social cost of
the worst NE and the social optimum.

Aumann [2] was the first one to introduce a number of concepts in game theory. One of these concepts
was a strong equilibrium (SNE), which is a pure NE, in which not only single players cannot benefit from
changing their strategy (to a different pure strategy), but no non-empty subset of players can form a coalition,
where a coalition means that all of them can change their strategies together, and all gain from the change
(see [2, 1, 7]).

In this paper, we study pure Nash equilibria and strong equilibria for a scheduling problem on uniformly
related machines. We next define the problem and the meaning of equilibria in this context.

Scheduling on uniformly related machines is a basic assignment problem. In such problems, a set of
jobs J = {j1, j2, . . . , jn} is to be assigned to a set of m machines M = {M1, . . . ,Mm}, where machine
Mi has a speed si. The size of job jk is denoted by pk and it is equal to its running time on a unit speed
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machine. Moreover, the running time of this job on a machine of speed s is pk
s . An assignment or schedule is

a function S : J → M . The completion time of machine Mi, which is also called the delay of this machine,
is

∑
k:S(jk)=Mi

pk
si

. The cost, or the social cost of a schedule is the maximum delay of any machine, i.e., the

makespan.
In this paper we consider the case of two uniformly related machines. We assume (without loss of

generality) that M1 has unit speed and M2 has speed s ≥ 1. If s = 1, then the machines have identical
speed but we still use the same notations, that is, the roles of M1 and M2 are fixed. We consider pure Nash
equilibria and strong equilibria. The delay of a job is defined to be the delay of the machine that runs it.
Seeing this scheduling problem as a game, the players are the jobs who are selfishly interested in minimizing
their own delays.

A schedule is a Nash equilibrium (NE) if there exists no job that can decrease its delay by migrating to
a different machine. More precisely, consider an assignment S : J → {M1,M2}. The class of schedules
S contains all schedules Sk that differ from S only in the assignment of jk, that is Sk(jℓ) = S(jℓ) for all
ℓ ̸= k and Sk(jk) ̸= S(jk), that is if S(jk) = M1 then Sk(jk) = M2 and otherwise Sk(jk) = M1. For
cases where the number of machines is larger than 2, S contains a wider class of schedules, allowing each
job to move to any machine. We say that S is a (pure) NE if for any job jk, the delay of jk in Sk is no
smaller than its delay in S. Pure Nash equilibria do not necessary exist for all games (as opposed to mixed
Nash equilibria). It is known that for scheduling games of this type, a pure NE always exists [16, 11].

A schedule is a strong equilibrium (SNE) if there exists no (non-empty) subset of jobs, such that if all
jobs in this set migrate to a different machine simultaneously, this results in a smaller delay for each and
every one of them. More precisely, given a schedule S, we can define a class of schedules S which contains
all schedules SK , where K ⊆ J , K ̸= ∅. For ℓ /∈ K, we have SK(jℓ) = S(jℓ) whereas for ℓ ∈ K, we
have SK(jℓ) ̸= S(jℓ). S is a SNE if for any K ̸= ∅, there exists at least one job jk ∈ K whose delay
in SK is no smaller than its delay in S. A SNE is always a pure NE (by definition). Strong equilibria do
not necessarily exist. Andelman, Feldman and Mansour [1] were the first to study strong equilibria in the
context of scheduling and proved that scheduling games (of a more general form) admit strong equilibria.
More general studies of the classes of congestion games which admit strong equilibria were studied in
[20, 30].

In general, there is a recent interest in studies that separate the effect of the lack of coordination between
players from the effect of their selfishness (see e.g. [17]). A NE that is not a social optimum is a stable
situation not only since users are selfish, but also since the type of moves they consider is unilateral moves.
Strong equilibria are stable situations whose stability is only the result of selfishness, since coordination
between players is possible.

We consider the following four variants of scheduling on two uniformly related machines. The first
variant is the standard one where any job can run on any machine. Three other variants relate to the so
called restricted assignment problem. In this problem, each job is associated not only with a size, but
also with a list of machines it can be processed on. This means that each job can run on one of the three
subsets {1, 2},{1} and {2}. Thus for the case of two machines, a job can either run on any machine, or is
restricted to one of the machines. Therefore, this model is equivalent to the case where machines may have
an initial load that cannot switch machines. This generalization was mentioned already in the seminal paper
of Koutsoupias and Papadimitriou [23]. The two additional models are the hierarchical models (see [4]),
in which every job is associated with a prefix (or suffix) of the machines. In the first hierarchical model,
each job is associated with one of the sets {1, 2},{1}, whereas in the second hierarchical model the sets are
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{1, 2},{2} (if s = 1, only one hierarchical model exists). We therefore consider four different variants. 0.
No machine may have an initial load. 1. Only M1 may have initial load 2. Only M2 may have initial
load. 3. Any machine may have an initial load.

Let the initial load of machine i be ei, and the total size of jobs assigned to machine i be hi. The delay
of a machine is defined to be the total size of jobs and initial loads on this machine, divided by its speed.
Therefore, the delay of M1 is e1 + h1 and the delay of M2 is e2+h2

s .
In our scheduling model, the coordination ratio, or price of anarchy (POA) (see [28]) is the worst

case ratio between the cost of a pure NE and the cost (i.e., makespan) of an optimal schedule, denoted by
OPT. The strong price of anarchy (SPOA) is defined similarly, but only strong equilibria are considered.
Therefore we refer to the pure price of anarchy by POA and when we discuss the mixed price of anarchy
we call it the mixed POA. Note that a pure equilibrium is a special case of mixed equilibria.

We study the POA and the SPOA for all these models as functions of s. We denote the POA and SPOA
for the i-th variant by POAi(s) and SPOAi(s).

It is noted in a series of papers (e.g., [23, 25, 27, 6, 5]) that the model which we study is a simplification
of problems arising in real networks, that seems appropriate for describing basic problems in networks.
Previous work. We mention several related results for similar models of scheduling. We survey the known
results for the POA and SPOA and see that in some models these measures give the same results, whereas
in other models the SPOA allows to obtain more meaningful results.

The most general case is unrelated machines, where the time to run a job jk on a machine Mi is a
function of k and i. In this model the POA is unbounded [3], which holds already for a setting of two
machines. Surprisingly the SPOA for this problem is bounded by the number of machines m, as shown
by Fiat et al. [14], and this is tight [1]. The upper bound of 2 for two machines was already shown in
[1] (an upper bound of 2m − 1 for m ≥ 3 was shown in that paper as well). It can be seen that in this
case, separating the effect of lack of coordination from the effect of selfishness reveals a linear ratio (in the
number of machines) between the cost of worst case equilibrium and the optimal cost.

Awerbuch et al. [3] focused on scheduling with restricted assignment and identical speed machines.
Each job can run on only a subset of the machines, and has a fixed running time on all machines that can run
it. They show that the POA is Θ( logm

log logm) (and Θ( logm
log log logm) for mixed strategies). Their result holds for

the hierarchical machines model as well, which for m machines means that the subset of allowed machines
is a prefix of the machines for every job. The result for the (pure) POA appears also in [18]. Levy [24]
observed that the results on the (pure) POA in this case are valid for the SPOA as well.

For m identical machines, the POA is 2m
m+1 which can be deduced from the results of [15] (the upper

bound) and [29] (the lower bound). It was shown in [1] that the SPOA has the same value as the POA for
every m. Note, however, that the mixed POA is non constant already in this case, and equals Θ( logm

log logm),
where the lower bound was shown by Koutsoupias and Papadimitriou [23] and the upper bound by Chumaj
and Vöcking [6] and independently by Koutsoupias, Mavronicolas and Spirakis [21]. Tight bounds of 3

2 on
the mixed POA for two identical machines were shown by [23].

We conclude the survey of previous work by the known results for scheduling on uniformly related
machines, the model which we study in this paper. A number of papers studied this model [23, 25, 6, 13, 14].
It is typically assumed that there is no initial load on the machines. Chumaj and Vöcking [6] showed that the
POA is Θ( logm

log logm) (and Θ( logm
log log logm) for mixed strategies). Feldmann et al. [13] proved that the POA

for m = 2 and m = 3 is
√
4m−3+1

2 which equals ϕ =
√
5+1
2 for two machines and 2 for three machines.

They did not investigate the POA as a function of the machine speeds. As for the mixed POA, it was shown
in [23] that it is at least 1 + s

s+1 for s ≤ ϕ. Recently, Fiat et al. [14] showed that the SPOA for this model
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is Θ( logm
(log logm)2

).

2 Statement of Results

In this paper, we deal with the question of whether the difference between the POA and SPOA for uniformly
related machines is a property caused by having a relatively large number of machines, or whether this is
an inherent property which is true for every combination of speeds. We focus on the case of two machines
with speed ratio s. We demonstrate the differences in POA and SPOA, that exist in two of the models, for
a range of values of s. However, we find that in many cases the POA and SPOA are defined by the same
function. Thus we show that the difference between POA and SPOA exist already for a small number of
machines. However, the two measures are not different for any set of speeds. This result proves that the two
measures are strongly related, but not identical already for relatively simple cases.

To state the results precisely, i.e., in order to specify the tight bounds on all eight functions POAi(s) and
SPOAi(s) (for i = 1, 2, 3, 4), we define the following five functions.

FA(s) =


1 + s

s+2 , 1 ≤ s ≤
√
2 ≈ 1.4142

s,
√
2 ≤ s ≤ ϕ = 1+

√
5

2 ≈ 1.618

1 + 1
s , s ≥ ϕ ,

FB(s) =


1 + 1

s+1 , 1 ≤ s ≤
√
2

s,
√
2 ≤ s ≤ ϕ

1 + 1
s , s ≥ ϕ ,

FC(s) =

{
1 + s

s+1 , 1 ≤ s ≤ ϕ

1 + 1
s , s ≥ ϕ ,

Let s1 be the root of s3−2s2−s+1 = 0 in the interval (2, 3), and let s2 be the root of 3s3−4s2−3s+2 =

0 in the interval (53 , 2).

GA(s) =



1 + s
s+2 , 1 ≤ s ≤

√
2

s,
√
2 ≤ s ≤ ϕ

1
s−1 , ϕ ≤ s ≤

√
3 ≈ 1.732

1 + 1
s+1 ,

√
3 ≤ s ≤ 2

s2

2s−1 , 2 ≤ s ≤ s1 ≈ 2.24698

1 + 1
s , s ≥ s1 ,

GB(s) =


1 + s

s+1 , 1 ≤ s ≤ ϕ
1

s−1 , ϕ ≤ s ≤ s2 ≈ 1.69152

1 + s2

2s2+s−1
, s2 ≤ s ≤ s1

1 + 1
s , s ≥ s1 ,
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Figure 1: Results for the case without initial load: POA0(s) = FA(s) (top) and SPOA0(s) = GA(s)

(bottom).
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Figure 2: Results for the case with possible initial load on each machine: POA3(s) = SPOA3(s) = FC(s).

We prove the following theorems. A summary of the results can be found in Table 1. Graphs of the
POA and SPOA functions can be found in Figures 1,2,4 and 3.

Theorem 1 The price of anarchy as a function of s ≥ 1 is exactly FA(s) if no initial load may exist on any
of the machines, FB(s) if only M2 may have an initial load, and FC(s) if M1 may have an initial load.

Theorem 2 The Strong price of anarchy as a function of s ≥ 1 is exactly GA(s) if no initial load may exist
on any of the machines, GB(s) if M1 may have an initial load but M2 cannot have an initial load, FB(s)

if M2 may have an initial load but M1 cannot have an initial load, and FC(s) if both M2,M1 may have an
initial load.

Note that for in the two cases where the result for the POA is different from the result for the SPOA, we
get that the SPOA and POA are equal for s ≤ ϕ and for s > s1. Thus for values of s that are close to 2, the
two measures are different. On the other hand, for relatively small values of s and large values of s, the two
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Figure 3: Results for the case with possible initial load on the machine of speed 1, M1: POA1(s) = FC(s)

(top) and SPOA1(s) = GB(s) (bottom).
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Figure 4: Results for the case with possible initial load on the machine of speed s, M2: POA2(s) =

SPOA2(s) = FB(s).

i 0 1 2 3

POA(i) FA(s) FC(s) FB(s) FC(s)

SPOA(i) GA(s) GB(s) FB(s) FC(s)

Table 1: Overview of Results

measures give the same result. In the other two cases we learn that the two measures give the same result.
The overall bound (maximum value over all speeds) is ϕ in all the cases, which is achieved for s = ϕ.

The difficulty in proving the results lies in correct identification of the different intervals for which the
behavior of the POA is different. Moreover, instances which result in lower bounds on both the SPOA and
POA should be distinguished from those that are valid only for the POA. Upper bounds require a careful
examination of all possibilities.
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We note some properties of the functions that follow from the definitions of POA and SPOA, and from
the relation between the models.

Proposition 1 1. For every i, POAi(s) ≥ SPOAi(s).

2. POA0(s) ≤ POA2(s) ≤ POA3(s), POA0(s) ≤ POA1(s) ≤ POA3(s).

3. SPOA0(s) ≤ SPOA2(s) ≤ SPOA3(s), POA0(s) ≤ SPOA1(s) ≤ SPOA3(s).

For a schedule S, we use S to denote the makespan of S as well (thus OPT denotes the optimal makespan
as well as an optimal assignment).

3 Lower bounds

We present the instances which allow to prove the lower bounds in Table 2. The ranges in which each
instance is used can be found in Table 3.

It is not difficult to verify the next claim.

Proposition 2 Consider each instance in the ranges for which this instance is used. All job sizes are posi-
tive, and all initial loads are non-negative. In all cases except for instance J6, the jobs are given sorted in
non-increasing order.

Proposition 3 The optimal makespan of each instance is as it is described in the table.

Proof In all cases except for J5, in the given schedule, both machines have the same delay. The instance
J5 is used for s ∈ (2, s1). The delay of M2 is 2s− 1. The delay of M1 is s(s− 1)2 ≤ 2s− 1, since this is
equivalent to s3 − 2s2 − s+ 1 ≤ 0, which holds for 2 < s < s1. �

We use the following property.

Proposition 4 Any schedule on two machines where both machines have the same delay is a pure NE. A
schedule where machine Mi has a larger delay than the other machine is a pure NE if and only if the job of
minimum size assigned to Mi cannot reduce its cost by moving to the other machine.

Using this proposition, we prove the following for the schedules defined for the instances of Table 2.

Lemma 1 Each one of the schedules Si of Table 2 is a pure NE.

Proof It is not hard to verify the delays of the machines in the schedules Si (1 ≤ i ≤ 10), and that the
machine of larger delay is the one whose delay is written in bold. For all schedules except for S2 and S3,
the resulting delay of the machine of smaller delay, if a job of minimum size from the other machine joins
it, is the same as the delay of the machine with larger delay, so the job would not decrease its cost. For S2,
which is used for

√
2 ≤ s ≤ ϕ, this resulting delay is 1 + 1

s ≥ s (which holds for s ≤ ϕ). For S3, which is
used for ϕ ≤ s ≤

√
3, this resulting delay is s− 1

s ≥ 1, (which holds for s ≥ ϕ). �

Proposition 5 Given a schedule on two machines which is a pure NE, if this schedule is not a SNE, then a
coalition of jobs where every job can reduce its cost consists of at least one job of each one of the machines.
Moreover, the coalition cannot contain the entire set of jobs coming from M2.
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Job sizes Initial load Optimal makespan OPT delays in Si Si

J1 s2 + s, s2 + s, s, 2− s2 0 s+ 2 {1, 4}, {2, 3} 2 + s− s2, 2s+ 2 {3, 4}, {1, 2}

J2 s, 1 0 1 {2}, {1} s, 1
s

{1}, {2}

J3 1, s− 1, s2 − s− 1 0 s− 1 {2}, {1, 3} 1, s− 2
s

{1}, {2, 3}

J4 s2 + s− 1, s+ 1, 1 0 s+ 1 {2}, {1, 3} 1, s+ 2 {3}, {1, 2}

J5 s2, s(s− 1)2, s2 − s 0 2s− 1 {2}, {1, 3} s2, s2 − s {1}, {2, 3}

J6 s+ 1, s, s2 − s− 1 0 s {2}, {1, 3} s+ 1, s− 1
s

{1}, {2, 3}

J7 s2 + s, s2 s+ 1− s2 (1) s+ 1 {2}, {1} 2s+ 1, s {1}, {2}

J8 s3 + s2, s3, s3 − s 2s2 + s− 1− s3 (1) 2s2 + s− 1 {2}, {1, 3} 3s2 + s− 1, 2s2 − 1 {1}, {2, 3}

J9 s+ 1, 1 s2 + s− 1 (2) s+ 1 {1}, {2} 1, s+ 2 {2}, {1}

J10 s+ 1, s s2 − s− 1 (2) s {2}, {1} s+ 1, s− 1
s

{1}, {2}

Table 2: The instances which are used to prove the lower bounds. The first column contains the names of
the instances. The second column contains the jobs while the third column contains the initial loads, if exist,
where the number in parenthesis is the index of the machine which has the initial load. The next two columns
contain the optimal makespan and the parition into two sets (assigned to M1 and M2 respectively) which
allows it. The last two columns contain for each instance Ji the delay of each machine in an assignment Si

(the delay which appears in bold is the larger delay) and the partition which defines it.

SPOA0 POA0 SPOA1 POA1 SPOA2 POA2 SPOA3 POA3

[1,
√
2 ≈ 1.414) J1 J1 J7 J7 J9 J9 J7 J7

[
√
2, ϕ ≈ 1.618] J2 J2 J7 J7 J2 J2 J7 J7

(ϕ, s2 ≈ 1.691] J3 J6 J3 J6 J10 J6, J10 J10 J6, J10

(s2,
√
3 ≈ 1.732] J3 J6 J8 J6 J10 J6, J10 J10 J6, J10

(
√
3, 2] J4 J6 J8 J6 J10 J6, J10 J10 J6, J10

(2, s1 ≈ 2.246) J5 J6 J8 J6 J10 J6, J10 J10 J6, J10

[s1,∞) J6 J6 J6 J6 J6, J10 J6, J10 J6, J10 J6, J10

Table 3: The inputs which give the lower bounds for each interval of speed ratios, for each each measure.

Proof If there is a coalition which consists of jobs coming from one machine, then each one of these jobs
would reduce its cost if it changes its action unilaterally, so the schedule cannot be a NE. If the entire set
of jobs assigned to M2 moves to M1 then their delay cannot decrease, even if in the resulting schedule no
additional jobs are assigned to M1. �

Proposition 6 Given a schedule on two machines which is a pure NE but not a SNE, then the delay of M1

is strictly larger than the delay of M2.

Proof Consider such a schedule S, and consider a coalition where every job can reduce its cost. Let Yi+Xi

be the total size of jobs assigned to Mi in S, where Xi is the total size of jobs in the coalition and Yi the
total size of jobs not in the coalition. By proposition 5, Xi > 0 for i = 1, 2. Since all jobs in the coalition
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reduce their costs, we have X1+Y2
s < X1 + Y1 and X2 + Y1 < X2+Y2

s . Multiplying the first inequality by
s and summing with the second, we get X1 + Y2 +X2 + Y1 < sX1 + sY1 +

X2
s + Y2

s . Reorganizing and
dividing by s− 1 gives Y2+X2

s < X1 + Y1. �

Lemma 2 All the schedules of Table 2 except for S6 are strong equilibria in all intervals where they are
used. S6 is a SNE for s ∈ [s1,∞).

Proof By Proposition 5, a schedule, which is a NE and M2 in which has a single job assigned to it, is a
SNE. Thus S2, S7, S9 and S10 are strong equilibria. By Proposition 6, S1 and S4 are strong equilibria as
well, since M2 has a larger delay in those schedules.

For S3, there are two possible coalitions, which are {j1, j2} and {j1, j3}. If the first coalition deviates,
the delay of j2 would become s− 1 > s− 2

s , which holds for s < 2, so this deviation is impossible. If the
second coalition deviates, the delay of j1 would remain 1, so this deviation is not possible either.

For S5, in a schedule resulting of a deviation of coalition, M1 will have one of the jobs j2 and j3, so its
delay would be at least s2 − s, so such a deviation is impossible.

For S6, we need to consider the coalitions {j1, j2} and {j1, j3}. Job j2 would have a delay of s on M1

so it does not benefit from moving. Job j3 benefits from moving to M1 only if s2 − s − 1 < s − 1
s , or

s3 − 2s2 − s+ 1 < 0, which does not hold for any s ≥ s1.
For S8, the delay of M1 if one of j2 and j3 would be assigned to it would be at least 2s2 − 1, so no

coalition can exist. �
We have therefore proved the following theorem (using Proposition 1).

Theorem 3 The instances of Table 2 imply the lower bounds as indicated in Table 1.

4 Upper bounds

In all the proofs of this section, we assume without loss of generality that the sum of sizes of all jobs and
initial loads (if exist) is exactly 1. We consider a specific optimal assignment OPT, and given the total size
of jobs and initial loads, we have OPT ≥ 1

s+1 . In each proof we consider an assignment S, which is not
optimal, and intend to prove that its delay is at most f(s) · OPT for a function f(s). To prove this, we
will assume by contradiction that the maximum delay of S is larger than f(s) · OPT ≥ f(s)

s+1 . Unless stated
otherwise, it is assumed that S is a NE. If it is also assumed that it is a SNE, then this assumption is stated.
In what follows, d denotes the delay of S.

Lemma 3 In S, a machine with a maximum delay has at least one job which is assigned to the other
machine in OPT. This holds even if the machines may have initial load. If in S the machine M2 has no
initial load, and the maximum delay is achieved for M2, then in this schedule, M2 also has at least one job
assigned to M2 in OPT. This holds even if M1 may have initial load. If in S the machine M1 has no initial
load, the maximum delay is achieved for M1, and this delay is above s · OPT, then in this schedule, M1 also
has at least one job assigned to M1 in OPT. This holds even if M2 has initial load.

Proof In general, even if machines may have initial loads, if Mi has a maximum delay in S and it only
contains (in addition to a possible initial load) the jobs which this machine contains in OPT, then S is optimal,
since we get d ≤ OPT. Therefore, Mi contains in S a job which is assigned to the other machine by OPT.

Let d1 and d2 denote the delays of M1 and M2 (respectively) in OPT. Since S is not optimal, we have
d > d1 and d > d2. The total size of jobs assigned to M2 in OPT is at most s · d2, and for M1 it is at most
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d1. If d is the delay of M2, and M2 has no initial load, then the total size of jobs assigned to M2 in S is s · d.
Since s · d > d1, there must be a job coming from M2 in OPT. If d > s · OPT is the delay of M1, and M1

has no initial load, since s · d2 ≤ sOPT, then M1 must have a job coming from M1 in OPT. �

Lemma 4 If in S, the maximum delay d is achieved for Mi, then any job assigned to Mi in this schedule
has a size of at least d(s+ 1)− 1. This holds even if the machines may have initial loads.

Proof If i = 1, then the delay of M2 is 1−d
s . Consider a job of size y assigned to M1 in S. If this job is

moved to M2 then its delay becomes 1−d+y
s . Since S is a NE, it must satisfy 1−d+y

s ≥ d. If i = 2, then the
delay of M1 is 1 − d · s. Consider a job of size x assigned to M2 in S. If this job is moved to M1 then its
delay becomes 1− d · s+ x. Since S is a NE, it must satisfy 1− d · s+ x ≥ d. �

Lemma 5 The delay of M2 in every schedule (not necessarily a NE) is at most 1
s . The delay of M1 in S is

at most 1
s . In S, the machine of larger delay has at least one job assigned to it. These properties hold even

if there may be initial loads on the machines.

Proof The first part of Lemma 3 implies that the machine of larger delay has at least one job.
Since the sum of sizes of all jobs and the initial load is 1, in any possible schedule, the delay of M2 is

at most 1
s . Assume next that the delay of M1 in S is strictly above 1

s (and thus the delay of M2 is strictly
below 1

s ). Since M1 has a job assigned to it, then moving such a job to M2 still results in a delay of at most
1
s on M2. This contradicts S being a NE. �

The following lemma follows directly from Lemma 5, since OPT ≥ 1
s+1 .

Lemma 6 For any s ≥ 1, S ≤ s+1
s OPT. This holds even if the machines may have an initial load.

Lemma 7 If in S, the maximum delay d is achieved on M1, and d > 2
2s+1 , then M1 has exactly one job

assigned to it. This holds even if the machines may have initial loads. Under the same condition, if M1 has
no initial load, then the delay must satisfy d ≤ sOPT. This holds even if M2 may have an initial load.

Proof By Lemma 5, M1 has at least one job assigned to it in S. By Lemma 5, d ≤ 1
s . By Lemma 4, the

size of each job assigned to M1 in S is at least d(s+ 1)− 1. If there are two jobs assigned to Mi, then we
get 2(d(s+1)− 1) ≤ d, or equivalently, d(2s+1) ≤ 2, which does not hold for d > 2

2s+1 . By Lemma 3, if
M1 has no initial load and d > sOPT then M1 has at least two jobs assigned to it in S, so we conclude that
d ≤ sOPT. �

Lemma 8 For any s ≥ 1, if in S the machine M2 does not contain any initial load, and the delay of M2 is
no smaller than the delay of M1, we have S ≤ s+2

s+1OPT. This holds even if M1 may have an initial load.

Proof Let L be the set of jobs assigned to M2 in S and ℓ = d · s be their total size (recall that M2 does not
have an initial load). By Lemma 3, L contains at least two jobs, one of which is assigned to M2 in OPT and
the other one is assigned to M1 in OPT. Recall that we assume that we assume d = ℓ

s > (s+2)
(s+1)2

. By Lemma

4, any job in L has a size of at least (s+ 1) ℓs − 1 > s+2
s+1 − 1 = 1

s+1 .
Let x be a size of a job in L which is assigned to M1 in OPT. Since S is a NE, then 1− ℓ+x ≥ ℓ

s . Using
OPT ≥ x (since OPT runs this job on a machine of speed 1) and ℓ

s > s+2
s+1OPT, we get 1− ℓ+ x ≥ x · s+2

s+1 .

Reorganizing we have 1 − ℓ ≥ x
s+1 . Using the bound ℓ > s(s+2)

(s+1)2
gives 1

(s+1)2
> x

s+1 , or equivalently,

x < 1
s+1 , which is a contradiction. �
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Lemma 9 Consider a value of s such that ϕ ≤ s ≤ s1. If S is a SNE, and no machine has an initial load,
then S ≤ GA(s)OPT.

Proof In this interval we have

GA(s) = max

{
1

s− 1
,
s+ 2

s+ 1
,

s2

2s− 1

}
.

If M2 has a delay which is no smaller than the delay of M1, using Lemma 8 we have S ≤ s+2
s+1OPT ≤

GA(s)OPT. We therefore assume that M1 has a delay which is larger than the delay of M2. Let L be the set
of jobs assigned to M1 and ℓ > 1

s+1 be their total size. We assume ℓ = d > s+2
(s+1)OPT ≥ s+2

(s+1)2
, ℓ > OPT

s−1

and ℓ > s2

2s−1OPT. By Lemma 5, ℓ ≤ 1
s .

Note that s+2
(s+1)2

> 2
2s+1 , so by Lemma 7, L consists of a single job. By Lemma 3, OPT assigns this

job to M2. Let Ai be the set of jobs assigned to M2 in S which are assigned by OPT to Mi, and let ai be
the sum of sizes of jobs in Ai. We have OPT ≥ a2+ℓ

s and OPT ≥ a1. Therefore, using ℓ > OPT
s−1 , we get

a1 < (s− 1)ℓ.
In addition, we have ℓ > s2

2s−1OPT > s2

2s−1 · a2+ℓ
s = (a2 + ℓ) s

2s−1 . This gives s · a2 < (s − 1)ℓ. If we
have (s− 1)a2 ≥ a1, then we get 1 = a1+a2+ ℓ ≤ sa2+ ℓ < sℓ ≤ 1, which is a contradiction. Therefore,
it is left to take care of the case (s− 1)a2 < a1 < (s− 1)ℓ. In this case consider the coalition that consists
of all jobs of A2 ∪ L. If each one of these jobs moves to a different machine (that is, the jobs of A2 to M1

and the job of L to M2), we have that the delay of job of L changes from ℓ to a1+ℓ
s < ℓ. Since S is a SNE,

then the delay of jobs in A2 cannot decrease. This delay changes from a1+a2
s to a2. However a1+a2

s > a2,
which is a contradiction.. �

Lemma 10 For 1 ≤ s ≤ ϕ, if M1 does not contain any initial load, and M2 has a delay no smaller than
M1, then S ≤ s+2

s+1OPT. This holds even if M2 may have an initial load.

Proof Let b1 denote the total size of jobs assigned to M1 both in S and in OPT, b2 denotes the remaining
size of jobs assigned to M1 in S, a1 denotes the total size of jobs assigned to M2 is S but to M1 in OPT, and
a2 denotes the total size of jobs and the initial load assigned to M2 in both schedules. Thus, d = a1+a2

s . We
have a1 > 0 since otherwise, using OPT ≥ a2+b2

s ≥ a2
s = d we get that S is optimal, which contradicts out

assumption.
Since no job on M2 can benefit from moving, given a job of size y assigned to M2 in S, b1 + b2 + y ≥

a1+a2
s . Let y be a minimum size of a job. Since a1 > 0, 0 < y ≤ a1 must hold, and we get sb1+ sb2+(s−

1)a1 − a2 ≥ 0. Since a1 + a2 + b1 + b2 = 1 this is equivalent to s(1− a1 − a2) + (s− 1)a1 − a2 ≥ 0 or to
a1 + (s+ 1)a2 ≤ s ≤ s(s+ 1)OPT (using OPT ≥ 1

s+1 ). Since OPT ≥ b1 + a1 ≥ a1 we have sa1 ≤ sOPT.
Taking the sum of the last two inequalities on a1, a2 we get (s+ 1)(a1 + a2) ≤ (s2 + 2s)OPT which gives

d
OPT ≤ s+2

s+1 . �

Lemma 11 For 1 ≤ s ≤
√
2, if M1 does not contain any initial load, then S ≤ s+2

s+1OPT. This holds even if
M2 may have an initial load.

Proof By Lemma 10, if the delay of M2 is no smaller than the delay of M1 we are done. Otherwise,
assume that the delay of M1 is larger than the delay of M2.

We use the notations a1, a2, b1, b2 as in the proof of Lemma 10. We have b2 > 0 since otherwise
OPT ≥ a1 + b1 ≥ b1 = b1 + b2 = d. We also have b1 > 0, since otherwise we have d = b1 + b2 = b2 ≤
a2 + b2 ≤ sOPT ≤ s+2

s+1OPT, since s ≤ s+2
s+1 for s ≤

√
2. Thus M1 has at least two jobs. We use Lemma 7

as follows. b1 + b2 >
s+2

(s+1)2
> 2

2s+1 , so M1 can only have one job, which is a contradiction. �

11



Lemma 12 For
√
2 ≤ s ≤ ϕ, if M1 does not contain any initial load, then S ≤ sOPT. This holds even if

M2 may have an initial load.

Proof If M2 has a delay no smaller than the delay of M1, by Lemma 10 we get S ≤ s+2
s+1OPT ≤ sOPT. If

M1 has a delay larger than the one of M2, let ℓ be the total size of jobs assigned to M1, where ℓ = d, since
M1 has no initial load. We have ℓ > s · OPT ≥ s

s+1 . We use Lemma 7 and get ℓ > s
s+1 > 2

2s+1 , which
holds for s > 1.29. Thus we get ℓ ≤ sOPT which is a contradiction. �

Lemma 13 For 1 ≤ s ≤
√
2, if no machine contains any initial load, then S ≤ (1 + s

s+2)OPT.

Proof The maximum delay satisfies d > 2s+2
s+2 OPT ≥ 2

s+2 . We start with the case where M1 has a delay
no smaller than M2. Since for s ≤

√
2, 2s+2

s+2 ≥ s, we get d > sOPT. We use Lemma 7. We have
d > 2

s+2 ≥ 2
2s+1 , and so d ≤ sOPT which is a contradiction.

Consider next the case where M2 has a larger delay than the delay of M1. Let L be the set of jobs
assigned to M2 in S. By Lemma 3, |L| ≥ 2. By Lemma 4, the size of each job is at least d(s + 1) − 1 >
2(s+1)
s+2 − 1 = s

s+2 . Therefore, since 3s
s+2 ≥ 1, there cannot be three jobs and so |L| = 2. Let x ≥ y > s

s+2

denote the sizes of these jobs. Since S is a NE, moving the job of size x to M1 does not reduce its delay.
After moving this job, only the job of size y remains assigned to M2. We have 1 − y ≥ d > 2

s+2 , that is,
y < s

s+2 , which is a contradiction. �

Lemma 14 For s ≤ ϕ, S ≤ 2s+1
s+1 · OPT. This holds even if the machines may have an initial load.

Proof Let Mi be a machine with maximum delay in S. By Lemma 5, there is at least one job assigned
to Mi in S. Let x be the size of a such a job j. Remove j from the schedule and let ℓi denote the sum of
job sizes and the initial load (if exists) on M1 and on M2, respectively. j is assigned to a machine where
its delay is minimized (otherwise it would benefit from moving). If i = 1, then we have d = ℓ1 + x and
ℓ2+x
s ≥ ℓ1 + x. Otherwise we have d = ℓ2+x

s and ℓ1 + x ≥ ℓ2+x
s .

In both cases we get ℓ1 + ℓ2 + 2x ≥ (s + 1)d. On the other hand OPT ≥ ℓ1+ℓ2+x
s+1 and OPT ≥ x

s , thus
ℓ1 + ℓ2 + 2x ≤ (2s+ 1)OPT. We get d

OPT ≤ 2s+1
s+1 . �

Lemma 15 Assume that S is a SNE, and M2 has no initial load. For s ∈ (ϕ, s1), S ≤ GB(s) · OPT. This
holds even if M1 may have an initial load.

Proof In the interval s ∈ (ϕ, s1) we need to show

SPOA(s) ≤ max

{
1

s− 1
,
3s2 + s− 1

2s2 + s− 1

}
.

We use the notations a1, a2, b1, b2 as in the proof of Lemma 10, where the initial load of M1 (if exists)
is included in b1. The set of jobs whose sum is ai (respectively bi) is denoted by Ai (respectively Bi). We
have d > OPT

s−1 and d > 3s2+s−1
2s2+s−1

· OPT.
Consider first the case that d is the delay of M1. We have b2 > 0 since otherwise d = b1 + b2 =

b1 ≤ b1 + a1 ≤ OPT. In addition, we show a2 > 0. Assume a2 = 0. Since it is not beneficial for
any job j ∈ B2 of size x to move, we get b1 + b2 ≤ a1+x

s ≤ a1+b2
s . Since OPT ≥ a1 + b1 we get

s(b1 + b2) ≤ b2 + OPT − b1 ≤ b1 + b2 + OPT which gives b1 + b2 ≤ OPT
s−1 . We are therefore left with the

case where b2 > 0 and a2 > 0, so B2 ̸= ∅ and A2 ̸= ∅.
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We next consider the coalition B2 ∪ A2, and the deviation where each one of these jobs switches to the
other machine. Since S is a SNE, we either have that a1+a2

s ≤ b1 + a2 (it is not beneficial for a job in A2

to move) or b1 + b2 ≤ a1+b2
s (it is not beneficial for a job in B2 to move). We already saw that the second

case cannot hold, so the first option must hold. It is also not beneficial for only the jobs of B2 to move, thus
b1+b2 ≤ b2+a1+a2

s = 1−b1
s . We multiply the first inequality, which is equivalent to −sb1+a1+(1−s)a2 ≤ 0

or to −b1 + (s − 1)b2 + sa1 ≤ s − 1 (using a2 = 1 − b1 − b2 − a1) by 1, and the second one, which is
equivalent to (s + 1)b1 + sb2 ≤ 1 by 2s and get b1(2s2 + 2s − 1) + (2s2 + s − 1)b2 + sa1 ≤ 3s − 1.
Using OPT ≥ a2+b2

s = 1−b1−a1
s we get a1 ≥ 1 − sOPT − b1. Multiplying by −s and summing up with

the previous inequality we have (2s2 + 2s − 1)b1 + (2s2 + s − 1)b2 ≤ 3s − 1 − s + s2OPT + sb1. Thus
S = b1 + b2 ≤ 2s−1+s2OPT

2s2+s−1
. Using OPT ≥ 1

s+1 we get S ≤ (2s−1)(s+1)OPT+s2OPT
2s2+s−1

= 3s2+s−1
2s2+s−1

OPT.
Consider the case where the delay of M2 is no smaller than the delay of M1. By Lemma 8, the delay of

M2 is at most s+2
s+1OPT. Since for any s ≥ 1 we have s+2

s+1 ≤ 3s2+s−1
2s2+s−1

, we are done. �

SPOA0 POA0 SPOA1 POA1 SPOA2 POA2 SPOA3 POA3

[1,
√
2 ≈ 1.414) 13 13 14 14 11 11 14 14

[
√
2, ϕ ≈ 1.618] 12 12 14 14 12 12 14 14

(ϕ, s2 ≈ 1.691] 9 6 15 6 6 6 6 6

(s2,
√
3 ≈ 1.732] 9 6 15 6 6 6 6 6

(
√
3, 2] 9 6 15 6 6 6 6 6

(2, s1 ≈ 2.246) 9 6 15 6 6 6 6 6

[s1,∞) 6 6 6 6 6 6 6 6

Table 4: The indices of lemmas required to obtain the upper bound for each case.

We have proved the following theorem. Table 4 summarizes which lemmas need to be applied to achieve
each result (in addition to the usage of Proposition 1).

Theorem 4 The upper bounds indicated in Table 1 are valid.

5 Concluding remarks

We considered equilibria in scheduling games on two related machines and answered the question whether
the price of anarchy is equal to the strong price of anarchy. Surprisingly, we find that the answer depends on
the exact speed ratio, since the answer is negative for some speed ratios and positive for others. Specifically,
the values of s for which the POA is larger than the SPOA in some cases are the “intermediate” values of
s. A possible reason for this is that when s is small, the two machines are almost equal in speed, and if the
schedule is a Nash equilibrium, then the situation where a coalition of jobs can be formed, such that each of
them can reduce its delay, is more rare. Similarly, if s is large, then one of the machines is the dominant one,
and the other one is much slower. Note however, that the property that every Nash equilibrium is a strong
equilibrium is true only for s = 1 [12, 8].

We extended our results for cases where machines may have initial loads, and encountered a similar
situation in one of the cases. In other two variants we found that the two measures give the same result.
Thus we reconsidered the suggestion of [1] to study the SPOA rather than the POA, taking into account
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the possibility that players can form coalitions. The conclusion is again that in some cases the quality of
equilibria improves quite significantly (for example, in the case s =

√
3 ≈ 1.73, in the case without initial

load, it drops from approximately 1.577 to approximately 1.366), while in other cases, it remains relatively
high (for example, in the case s = ϕ ≈ 1.618, in the case without initial load, it is approximately 1.618).

Even though the POA and SPOA as a function of the number of machines are known (up to a constant
multiplicative factor) [23, 21, 6, 14], a number of other parameters are of interest. Such parameters, which
often give meaningful results, can be the number of distinct speeds [10] or the ratio of largest speed to the
smallest speed [9]. It was shown in [10] that the POA, as a function of the number of distinct speeds p, is
exactly p + 1, while the lower bound on the SPOA, implied by the results of [14] is Ω( p

log p). The current
study is involved with finding the POA and SPOA as a function of the maximum speed ratio between
machines.

In this paper we only considered pure equilibria. Even though mixed strong equilibria do not necessarily
exist [1] (and so strong equilibria are only defined to be pure equilibria), mixed equilibria do exist [26], and
it is interesting to find the tight mixed price of anarchy as a function of the speed ratio. The current status of
the problem is that even the overall bound is not known. Koutsoupias and Papadimitriou [23] conjectured
that the overall upper bound is ϕ and the function for s ≤ ϕ is 1 + s

s+1 , and proved a lower bound. The
questions whether this is indeed the tight bound on the mixed POA in this interval, whether ϕ is the overall
bound for the mixed POA, and finally, what is the exact mixed POA as a function of the speed ratio s,
remain open (see the survey of Heydenreich, Müller and Uetz [19] for details).
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