The zero-one principle for switching networks *

Yosst Azar | Yosst RICHTER ¥

Abstract

Recently, approximation analysis has been extensively used to study algorithms for routing
weighted packets in various network settings. Although different techniques were applied in the
analysis of diverse models, one common property was evident: The analysis of input sequences
composed solely of two different values is always substantially easier, and many results are known
only for restricted value sequences. Motivated by this, we introduce our zero-one principle
for switching networks which characterizes a wide family of algorithms for which achieving c-
approximation (as well as c-competitiveness) with respect to sequences composed of 0’s and
1’s implies achieving c-approximation. The zero-one principle proves to be very efficient in the
design of switching algorithms, and substantially facilitates their analysis. We present three
applications. First, we consider the Multi-Queue Switching model and design a 3-competitive
algorithm, improving the result from [12]. Second, we study the Dynamic Routing problem on a
line topology of length k£ and present a k-competitive algorithm, which improves and generalizes
the results from [2, 21]. As a third application, we consider the work of [20], that compares
the performance of local algorithms to the global optimum in various network topologies, and
generalize their results from 2-value sequences to arbitrary value sequences.

1 Introduction

Overview: Packet routing networks, most notably the Internet, have become the preferred plat-
form for carrying data of all kinds. Due to the steady increase of network traffic, and the fact
that Internet traffic tends to constantly fluctuate, Quality of Service (QoS) networks, which allow
prioritization between different traffic streams have gained considerable attention within the net-
working community. As network overloads become frequent, intermediate switches have to cope
with increasing amounts of traffic, while attempting to pass forward more “valuable” packets, where
values correspond to the required quality of service for each packet. We can measure the quality of
the decisions made within a network by considering the total value of packets that were delivered
to their destination.

Traditionally, network routing algorithms were studied within the stability analysis framework,
either by a probabilistic model for packet injection (queuing theory, see e.g. [15, 28]) or an adver-
sarial model (adversarial queuing theory, see e.g. [8, 16]). In stability analysis we usually consider

*A preliminary version of this paper appears in the proceedings of the 36th Annual ACM Symposium on Theory
of Computing (STOC), 2004, pp. 64-71.

fCorresponding author. Phone: +972-3-6406354, Fax:4+972-3-6409357, azar@tau.ac.il. School of Computer
Science, Tel Aviv University, Tel Aviv, 69978, Israel. Research supported in part by the Israeli Ministry of Industry
and Trade and by the Israel Science Foundation.

tyo@tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Research supported in
part by the Israeli Ministry of industry and trade.

networks with unit-value packets, and the goal is to measure the largest amount of packets ever
waiting for transmission on a link, as a function of the network topology and the packet injection
model, thereby bounding the buffer size needed to prevent packet drop. Since it seems inevitable to
drop packets in real-world networks, approximation analysis framework, which avoids any assump-
tions on the input sequence and compares the performance of algorithms to the optimal solution,
has been adopted recently for studying throughput maximization problems. In particular, com-
petitive analysis has been applied lately to investigate online routing algorithms. Researchers have
investigated single-queue switches in various settings [1, 5, 6, 7, 14, 21, 22, 24, 27|, multi-queue
switches [4, 10, 12, 11, 19, 23, 25, 29] and multiple-node networks [2, 9, 13, 18, 20].

The zero-one principle: While different techniques were used to analyze algorithms in various
switching models, there was one common property: Analysis of 2-value sequences, in which packets
can take only 2 distinct values, was always substantially easier compared with arbitrary packet
sequences. Moreover, many results are known only for restricted value sequences, due to the fact
that handling the state of a system containing packets with arbitrary values is significantly more
involved. Motivated by this, we introduce the zero-one principle for switching networks. This
principle applies to all comparison-based switching algorithms, that base their decisions on the
relative order between packet values. The principle says that in order to prove that an algorithm
achieves c-approximation it is sufficient to prove that it achieves c-approximation with respect
to sequences composed solely of 0’s and 1’s, where ties between packets with equal values may
be broken arbitrarily. We note that one can assume that without loss of generality there are no
0-value packets in the input sequence since such packets could have been dropped. Indeed, the
optimal solution may ignore all the 0-value packets, however, the comparison-based algorithm may
not, since it only regards the relative order between values.

A zero-one principle has been already introduced for sorting networks in the comparison model [3,
17, 26], and it has been proved that a sorting network, that sorts correctly all sequences that are
composed of 0’s and 1’s, is guaranteed to sort correctly an arbitrary sequence. In a similar manner
to the zero-one principle for sorting networks, our principle turns out to be very useful in the de-
sign of a wide range of approximation algorithms for different switching models, and considerably
facilitates their analysis, due to the fact that it allows to focus on 0/1 sequences. We note that
in contrast with sorting networks where sorting 0’s and 1’s is equivalent to sorting any two dis-
tinct values, the analysis of 0/1 sequences in switching networks is easier compared with arbitrary
2-value sequences. In addition, we note that there is a myriad of research papers on throughput
maximization problems in networks transmitting unit-value packets. Our paper provides a linking
step between previous analysis of unit-value networks and QoS networks, by allowing to modify
previous analysis only for 0/1 sequences, which are in many cases not very different from uniform
sequences. We present three applications to the zero-one principle.

Applications: We first consider the preemptive Multi-Queue QoS Switching model that was
originally introduced in [12]. In this model we have a switch with m incoming FIFO queues with
bounded capacities and one output port. At each time step new packets arrive to the queues, each
associated with a value. Additionally, at each time step the switch selects one non-empty queue
and transmits the packet at its head through the output port. The goal is to maximize the total
value of transmitted packets. We present a 3-competitive algorithm for this problem, improving
upon the 3.5-competitive algorithm that was shown in [12].

Our second application is the Dynamic Routing problem on a line. We consider a network

with a topology of a line of length & , i.e. node i (¢ = 1,...,k — 1) is connected to node 7 + 1
by a unidirectional link, and contains a fixed-size FIFO queue to store the packets waiting to be
transmitted. At each time step new packets may arrive online to the network nodes, each packet
is associated with a value and a destination node. Additionally, each node can transmit the packet
at the head of its queue to the next node. The goal is to maximize the total value of packets that
were delivered to their destination. Special cases of this model were studied in [2, 21]. Kesselman
et al. [21] studied the single-queue model, that corresponds to the k = 2 case in our formulation,
and proved that the natural greedy algorithm is asymptotically 2-competitive. The unweighted
version of our model, in which all packets have unit value, was investigated by Aiello et al. [2] who
proved that the greedy algorithm is O(k)-competitive. We prove that the natural greedy algorithm
is k-competitive for the weighted problem, therefore generalizing the results in [2, 21].

Kesselman et al. [20] analyzed the performance of local off-line and on-line algorithms in some
network topologies compared with the performance of the global optimal solution, with the ad-
ditional restriction that algorithms are work-conserving. Their strongest results applied only to
2-value sequences composed of 1 and a > 1 values. As a third application, we employ our zero-one
principle to generalize their results to arbitrary value sequences.

Related results: Initially, online algorithms for single-queue switches were studied, for both the
preemptive case (in which packets stored in the queue can be discarded) and the non-preemptive
case (where an accepted packet can no longer be discarded). Aiello et al. [1] initiated the study of
different queuing policies for the 2-value non-preemptive model, in which each packet has a value
of either 1 or @ > 1. Andelman et al. [6, 7] later showed a tight bound (up to an additive
factor) of Ina (where o > 1 is the ratio between the largest value to the smallest one) for the
general non-preemptive model. The preemptive 2-value model was initially studied by Kesselman
and Mansour [22], followed by Lotker and Patt-Shamir [27] who presented a 1.3-competitive deter-
ministic algorithm, which almost matches the known lower bound of 1.28. Finally, Andelman [5]
introduced a randomized 1.25-competitive algorithm that beats the deterministic lower bound. The
general preemptive single-queue model, where packets can take arbitrary values, was investigated
by Kesselman et al. [21], who proved that the natural greedy algorithm is 2-competitive (more
specifically 2a/(1 + «)-competitive). Later on, Bansal et al. [14] presented a 1.75-competitive algo-
rithm (which is an improvement over an algorithm previously suggested by Kesselman et al. [24]),
that achieves the best ratio known today. The best lower bound for the general preemptive model
is currently 1.419 ([24]).

In the multi-queue model the switch contains multiple incoming queues but only a single output
port. This model was introduced in [12] where it is shown how it can be reduced to the single queue
model. Specifically, a 3.5-competitive algorithm was presented in [12] for the general preemptive
setting. Albers and Schmidt [4] introduced a deterministic 1.89-competitive algorithm for the
unit-value model (improving upon the natural 2-competitive algorithm), followed by Azar and
Litichevskey [10] that showed a 1.58-competitive algorithm for switches with large buffers. A
randomized 1.58-competitive algorithm was presented in [12] for the unit-value model, and later
improved by Schmidt [29] to a 1.5-competitive randomized algorithm. An alternative model to the
multi-queue switch is the shared memory switch, in which memory is shared among all queues.
Hahne et al. [19] studied buffer management policies in this model while focusing on deriving upper
and lower bounds for the natural Longest Queue Drop policy. Improved results were later obtained
by Kesselman and Mansour [23].

Aiello et al. [2] studied the Dynamic Routing problem with unit packets and investigated the

performance of various greedy algorithms with comparison to their stability guarantees. In par-
ticular, they showed that the natural greedy algorithm is O(k)-competitive for a line topology.
A different version of the problem assumes that the queues are non-FIFO (note that this makes
sense even for the unit-value case since packets can be transmitted out of order according to their
distance from destination for example). For the unit-value non-FIFO version of the line problem,
Aiello et al. [2] showed an O(k%/?)-competitive algorithm. Recently, this result was improved to
O(log k) independently in [9] and [13].

Paper structure: The paper is organized as follows. Section 2 includes formal definitions and
notations. In section 3 we prove our zero-one principle and its extensions. We apply our zero-one
principle to three different switching models in sections 4, 5 and 6.

2 Definitions and notations

In this section we formally define the three problems we consider throughout the paper and intro-
duce some notations.

2.1 Multi-Queue Switch

In the online Multi-Queue Switch problem we are given a switch with m FIFO queues, where queue
1 has size B;, and one output port. Packets arrive online, each packet is destined to one of the
queues and is associated with a non-negative value. Initially, the m queues are empty. We assume
that time is discrete, and each time step ¢ > 0 is divided into two phases: At the beginning of the
first phase of time ¢ a set of packets arrive to the queues. Packets can be inserted to each queue
without exceeding its capacity. Remaining packets must be discarded. In the second phase of time
t, the switching algorithm may select one of the non-empty queues and transmit the packet at its
head. The goal is to maximize the total value of transmitted packets. We consider the preemptive
case, in which packets that are stored in the queues may be discarded.

2.2 Dynamic Routing

In the problem of Dynamic Routing on a line we have a network organized in a line topology of
length k£ > 2,i.e. node 7 =1,...,k—1 is connected to node 7+ 1 via a unidirectional link with unit
capacity. Node i =1,...,k—1 contains a FIFO queue of size B;, which is initially empty, to buffer
the packets waiting to be transmitted via its outgoing link. We assume time proceeds in discrete
steps, and each time step ¢ > 0 is divided into two phases: At the first phase new packets may
arrive to nodes i = 1,...,k—1, each packet p is associated with a value v(p) and a destination node
d(p). Note that packets cannot originate at the last node, which can only serve as a destination.
Therefore, the single queue model is a special case obtained for k£ = 2. During the second phase of
time step t, node i = 1,...,k — 1 may transmit the packet at the head of its queue to node 7 + 1.
If a packet reaches its destination it is absorbed. Otherwise, arriving packets (from both phase 1
and phase 2) can be enqueued without exceeding the queues capacities. Remaining packets must
be discarded. We allow preemption, i.e. packets that are stored in the queues may be discarded.
The goal is to maximize the total value of packets that reach their destination.

The Dynamic Routing problem can be generalized to an arbitrary directed graph G = (V| E),
where nodes represent the network switches, and edges represent unidirectional links. In the general
case each packet arrives with a predefined path from its source to destination, and each directed

link e € F is associated with a capacity c¢(e), and a FIFO queue Q. to store the packets waiting for
transmission on e.

2.3 Work-Conserving Dynamic Routing

We also consider the dynamic routing problem described in the previous paragraph under the
work-conserving restriction. A schedule is called work-conserving if for every time t and link e,
the number of packets transmitted over e at time ¢ is the minimum between c(e) and the number
of packets in Q.. Following [20], we consider two network topologies: A directed line topology,
identical to the one defined in the previous paragraph, and a directed tree topology, where packets
are only injected at the leaves and are destined to the root. An algorithm is called local on-line if
its action at time ¢ at node v depends only on the packets arriving to v until time ¢. An algorithm
is called local off-line if its action at time t at node v depends only on the sequence of packets
arriving at node v (possibly after time ¢). We denote by OptL, the local off-line optimal solution,
that maximizes the total value transmitted out of v. For any acyclic network we denote by OptL the
algorithm that exercises OptL, in topological order. We denote by Opt the global work-conserving
optimal algorithm that knows all the information in the system (all nodes, all times).

2.4 Additional notations

We denote by o = {p1,...,pn} the finite sequence of incoming packets, and by v : ¢ — RT the
packets value function. Let A be a switching algorithm, we denote by A(c) the set of packets
delivered by A given the sequence o (also referred to as the output sequence). Given a packet
sequence o, we denote by V(o) the total value of packets in the sequence, i.e. V(o) =3 o, v(p).
Given a function f: RT — R and a packet sequence o, we denote by f(c) the packet sequence o
with the modified value function f owv. In particular, for a given switching algorithm A we use the
notation f(A(c)) to denote the set of transmitted packets with modified values.

A deterministic (resp. randomized) approximation algorithm A achieves c-approximation (¢ >
1) for a maximization problem iff for every packet sequence o we have: V(Opt(c)) < ¢ V(A(0))
(resp. V(Opt(o)) < c- E[V(A(0))]), where Opt denotes the optimal solution. The definition of the
competitive ratio with respect to online algorithms is the same.

3 The zero-one principle and its extensions

In this section we introduce our zero-one principle for switching networks and its extensions. We
focus on comparison-based algorithms which are defined as follows.

Definition 3.1 A switching algorithm A (on-line or off-line) is called comparison-based if it bases
its decisions on the relative order between packet values (by performing only comparisons), with no
regard to the actual values.

The following theorem shows that in order to prove a certain approximation ratio for a comparison-
based algorithm, it is sufficient to consider only 0/1 sequences, that are composed of packets whose
values are either 0 or 1.

Theorem 3.1 [zero-one principle] Let A be a comparison-based switching algorithm (determin-
istic or randomized). A is a c-approximation algorithm if and only if A achieves c-approximation

for all packet sequences whose values are restricted to {0,1} for every possible way of breaking ties
between equal values.

Proof: The “only if” direction is straightforward (even if .4 breaks ties between equal packet values
in a specific way), thus it remains to prove the other direction. We define the monotonically
increasing step function fi(x) by: fi(z) = 1 if > ¢, and otherwise fi(z) = 0. Given a packet
sequence o, we denote by A(c) the set of packets delivered by A. We further denote by A(f: (o))
the set of packets delivered by A when given the 0/1 sequence fi(c), where we break ties between
packets with equal values according to their original values in o. Therefore, since A is comparison-
based, the sets A(c) and A(fi(0)) contain the same packets, but with different values.

In the following claims we first show that the value of a set of packets can be broken into a
sum of 0/1 sequences by using f;. We then show that when A is comparison-based, a monotonic
transformation can be applied to either the output or input sequence, yielding the same result.

Claim 3.2 Let o be any packet sequence. Then the following holds: ft oV))dt.
Proof:
Vo) =3 o) =3 [ptetode= [S st = [Vi
pEoC pEo pea t=0

where the second equality follows from fto:oo fi(z)dt = x. |

Claim 3.3 Let A be a comparison-based switching algorithm and let f be any monotonically in-
creasing function. Then the following holds for any packet sequence o: V(f(A(0))) = V(A(f(0)))-

Proof:
V(f Z fm) = > fod)=V(Af(0).

pEA(o pEA(f(0))

We can now show for every sequence o:
BV A@) = £ | [

=0

- [v easioniaz [~ vomena

0

o0

. / " V(Ju(Opt(o)))dt = - V(Opt(o))

C =0

where the first and last steps follow from claim 3.2, the second step follows from linearity of
expectation, the third step follows from claim 3.3, the fourth step follows since f;(o) is a 0/1
sequence, and the fifth step follows since Opt(f¢(c)) maximizes the number of delivered packets
with original value at least ¢. [

Given Theorem 3.1, if we wish to prove that a comparison-based algorithm A achieves c-
approximation, it is enough to show that for every 0/1 packet sequence o, and for every possible
way of breaking ties between equal values, we have: V(Opt(0)) < ¢ E[V(A(0))].

In many cases, the approximation ratio of a switching algorithm is given in terms of the ratio
between the largest to smallest packet values, denoted by a. In the following theorem we extend the
zero-one principle to this case, and prove that it is sufficient to consider packet sequences composed
solely of two values: 1 and .

Theorem 3.4 [1/a principle] Let A be a comparison-based switching algorithm (deterministic
or randomized). A is a c(a)-approzimation algorithm if and only if A achieves c(«)-approzimation
for all packet sequences whose values are restricted to {1,a} for every possible way of breaking ties
between equal values.

Proof: The “only if” direction is straightforward, thus it remains to prove the other direction. We
define the monotonically increasing step function g;(z) : [1,a] — {1,a} for 1 < ¢ < « as follows:
gi(z) = aif 1 <t <z < a, otherwise g:(z) = 1. As in the proof of Theorem 3.1, we denote by
A(gt(0)) the set of packets delivered by A when given the 1/a sequence g;(o), where we break ties
between packets with equal values according to their original values in 0. We begin by restating
claim 3.2.

Claim 3.5 Let o be any packet sequence whose values lie in the interval [1,a]. Then the following
holds: V(o) = ﬁ ftil V(gi(o))dt.

Proof:

Vo) = o =3 [atht == [S aww)a

peo pET

- / V(ge(o))dt,

a—1 -1

where the second equality follows since [, gi(z)dt = a(z — 1)+ (a —) = (a — 1)z, for z € [1,0].
|

We can now show for every sequence o whose values lie in [1, a:

1 «
a—1J2

E[V(A(om:E[! av<gt<«4<a>>>dt]= E[V (A(gi(o)))]dt

a—1J)—

> L[Lvionatonanz - [viaopena

a—1Ji_1¢c a—1 ¢ Ji—

=~ V(Opt(o),

where the first and last steps follow from claim 3.5, the second step follows from claim 3.3 and
linearity of expectation, the third step follows since g;(0) is a 1/« sequence, and the fourth step
follows since Opt(g:(0)) maximizes the total value (with respect to ¢;) of the packets transmitted.
|

As a second extension to the zero-one principle, we define a set of switching algorithms that
achieve c-approximation if and only if they achieve c-approximation for all unit-value sequence, in
which all packet have a value of 1.

Definition 3.2 A switching algorithm A is called work-conserving if it always transmits a packet
whenever a packet is available for transmission (i.e. it does not hold back packets).

Definition 3.3 A switching algorithm A is called greedy if it exercises a greedy admission control
and a greedy transmission policy in all queues (i.e. it always accept the largest packets, and always
transmits the largest packet).

In particular, note that Definition 3.3 is valid only in non-FIFO models, in which packets can
be transmitted in any order out of the queues.

Theorem 3.6 [One principle] Let A be a comparison-based work-conserving greedy switching
algorithm. A is a c-approximation algorithm if and only if A achieves c-approximation for all
unit-value packet sequences for every possible way of breaking ties between equal values.

Proof: The “only if” direction is straightforward, thus it remains to prove the other direction.
Since A is comparison-based, by Theorem 3.1 it suffices to show that it achieves c-approximation
for every 0/1 sequence, under every possible tie-breaking. Let us denote by ¥, /1 the set of all
finite 0/1 sequences, and by 3; the set of all finite unit-value sequences. We define the operator
7 Yo/ — %1 that deletes all the packets with value 0 from a given 0/1 sequence. The theorem
will follow immediately from the next claim.

Claim 3.7 Let o be any 0/1 sequence, and apply any tie-breaking between equal values. Then
m(A(0)) = A(n(9)).

Proof: By a simple induction on the time steps. For each time step, each queue will hold the
same 1l-packets (since it is greedy) and will transmit the same 1-packet whenever a 1-packet is
transmitted (since it is work-conserving), when A is given o or 7(o) as inputs. Therefore, the same
set of 1-packets will be delivered for o and 7(o) and the claim follows.]

To complete the proof of Theorem 3.6 we notice that for every 0/1 sequence o under any
tie-breaking, we obtain using Claim 3.7:

V(A(@) = V(r(A()) = V(A(x(9))) = - V(Opt(r(#))) = - V(Opt(o))

where the second step follows from Claim 3.7, the third step follows since (o) is a unit-value
sequence, and the last step follows since we may assume w.l.o.g that Opt discards all 0-packets
from the input sequence. [

4 Application 1: Multi-queue switch

In this section we present the first application of our zero-one principle. We consider the online
problem of a multi-queue switch (see Section 2.1 for a formal definition) and design a 3-competitive
algorithm for the problem, improving upon the 3.5-competitive algorithm presented in [12]. Our
algorithm, named TransmitLargestHead (abbreviated TLH), is given in figure 1.

Algorithm TLH [Multi-Queue]
1. Admission control: Use algorithm GR for admission control in all m incoming queues.

2. Scheduling: At each time step, transmit the packet with the largest value among all
packets at the head of the queues.

Figure 1: Algorithm TLH.

Before we proceed to prove the competitive ratio of algorithm TLH, we state the following well-
known observation, which allows us to assume without loss of generality that the optimal solution
does not use preemption.

Observation 4.1 The optimal solution is the same for the preemptive and non-preemptive models
and for the FIFO and non-FIFO models.

Proof: The optimal (off-line) algorithm knows in advance all the packets that will be eventually
transmitted. Therefore, only transmitted packets will be enqueued, hence preemption is redundant.
Similarly, since only transmitted packets are enqueued, transmitting in FIFO order compared to
non-FIFO order can only change the relative order of packets, but not their accumulated value. m

Theorem 4.1 Algorithm TLH is 3-competitive for the Multi-Queue QoS Switching problem.

Proof: Clearly, algorithm TLH bases its admission control and scheduling decisions solely on rel-
ative order between values, therefore is it comparison-based. According to our zero-one principle
(Theorem 3.1) we need only show that the algorithm is 3-competitive for 0/1 sequences, under
every possible tie-breaking. Let o be any 0/1 sequence. With slight abuse of notation we denote
by TLH(o) the set of packets with value 1 (1-packets in short) transmitted by the algorithm, and
by Opt(o) the set of packets transmitted by the optimal solution (note that we may assume that
the optimal solution discards all 0-packets). Theorem 4.1 directly follows from the next lemma.

Lemma 4.2 For every 0/1 sequence o under every possible tie-breaking we have: |Opt(c)\TLH(o)| <
2 |TLH(o)].

Proof: We first note that preemption of a 1-packet can only occur when the entire queue is full with
1-packets, hence the contents of the queue remain unchanged. We can therefore analyze the TLH
algorithm while assuming without loss of generality that preemption of 1-packets does not occur
(i.e. we exchange preemption of a 1-packet with rejection of a 1-packet). We prove the lemma by
providing a matching from (Opt(o) \ TLH(¢)) to TLH(o) in which each 1-packet from TLH(o) is
matched at most twice. This is done by a marking scheme that marks one of the 1-packets stored
in the queues according to TLH operation, whenever a 1-packet is accepted by Opt but rejected by
TLH, and when transmissions take place. A description of the marking scheme follows (figure 2).

Marking scheme

For each time step ¢ do:
1. For each incoming 1-packet to queue ¢ do:

(a) If the packet is accepted by TLH, consider it as an unmarked packet.
(b) Otherwise, if the packet is accepted by Opt, look for the first unmarked 1-packet,
starting from the head of the queue and moving to its tail, and mark it.

2. In the transmission phase, whenever Opt transmits a packet do:

(a) If Opt and TLH use the same queue for transmission, do nothing.

(b) Otherwise, let i # j be the queues used by Opt and TLH, respectively. If queue i
contains marked packets, unmark the marked 1-packet closest to the tail in queue @
and mark the packet transmitted from queue j.

Figure 2: Marking scheme for TLH.

Clearly, each 1-packet in TLH(o) can be marked at most twice, once while it resides in the
queue and once while it is transmitted. The following claims prove that each 1-packet transmitted

by Opt but not by TLH is matched through the marking scheme to a 1-packet in TLH(o). We begin
by proving that whenever we change a marking (step 2b) a 1-packet is transmitted, and therefore
the change is possible.

Claim 4.3 For each time step t, if the queues hold any marked packets, then a 1-packet is trans-
mitted.

Proof: Let queue i hold a marked packet p at time t. When p was marked, queue ¢ contained no
0-packets, hence all the packets closer to the head than p are 1-packets. In particular, since FIFO
order is maintained, the packet at the head of queue ¢ at time ¢ is a 1-packet. Therefore, a O-packet
can not be transmitted at time ¢. [

Before we proceed we introduce some notations. For a time step ¢, and a queue ¢ = 1,...,m
we denote by U} the number of unmarked packets in queue 7 at time ¢. We further denote by TLH!
and Opt! the number of 1-packets in queue 7 at time ¢ in TLH and Opt, respectively. For simplicity
of notation we drop the superscript ¢ whenever the time is clear from context. To complete the
proof of Lemma 4.2, it remains to show that whenever a 1-packet destined to queue 7 is rejected
by TLH but accepted by Opt, queue i contains unmarked packets (step 1b).

Claim 4.4 For each time step t and queue i, the following properties hold:
e Ul > TLH! — Optt.
e There are available unmarked packets if required by the marking scheme (step 1b).

Proof: First, recall that we assume w.l.o.g that preemption of 1-packets does not occur. Addition-
ally, our marking scheme is not concerned with 0-packets, hence we may ignore any operation that
involves 0-packets.

We prove the claim by induction on the time steps. For time step ¢ = 0 the properties clearly
hold. We assume correctness by time step ¢t and prove that the properties hold for the beginning
of time step t 4+ 1. Consider a 1-packet p arriving to queue 4. If p is accepted by TLH, no marking
is required, U; increases and the inequality holds. Otherwise, if p is rejected by TLH and accepted
by Opt, then by the induction hypothesis U; > TLH; — Opt; and since TLH; = B; and Opt; < B;
(we assume w.l.o.g that Opt does not preempt packets, see Observation 4.1) we have an unmarked
packet in queue i. After we mark a 1-packet both sides of the inequality decrease by 1. Now,
consider the transmission phase. Let ¢ and j be the queues used for transmission by Opt and
TLH, respectively. The inequality clearly holds for queue j if it does not hold any marked packets.
Otherwise, a marked packet is transmitted from queue j (since we mark packets in the direction
from the head to the tail), U; is unchanged while the right hand side of the inequality can only
decrease. If i # j, we increase U; by unmarking a packet (step 2b), and the inequality continues to
hold for queue 7. [

This concludes the proofs of Lemma 4.2 and Theorem 4.1. [
The following lemma proves that our analysis of TLH is asymptotically tight.

Lemma 4.5 Algorithm TLH is at least (3 — L — %}—competitive.
i=1""1

Proof: We construct the following sequence o:

10

1. At t =0, B; packets with value ¢ arrive to queue i (i = 1,...,m).

2. For 1 <i < m — 1, during time steps Z;;ll(Bj -1),.. '72;':1(33’ —1) — 1, B; — 1 packets
with value 1+ § arrive to queue i, one packet at a time. Then, during the next B,,, — 1 time
steps, B,, — 1 packets with value 1 arrive to queue m, one packet at a time.

3. When phase 2 is completed, a set of Y ;" | B; packets arrives at the same time, B; packets to
queue i (i =1,...,m). All packets destined to queues {1,...,m — 1} have value 1 + 4, while
packets destined to queue m have value 1.

4. During the next Z?l_ll B; time steps, a packet with value 1 arrives at each time step to queue
m.

5. No more packets arrive.

We now analyze the competitive ratio of TLH while we assume w.l.o.g B, = mini<i<,, B;
and we take £, — 0, thereby considering o to consist of 0’s and 1’s. Algorithm TLH accepts all
the packets that arrive at step 1. During phase 2, B; — 1 e-packets are transmitted from queue
i (i = 1,...,m) while the queues are filled with 1-packets. We may assume w.l.o.g that all the
packets that arrive in step 3 are enqueued while all the 1-packets from phase 2 are discarded.
During phase 4 TLH empties queues {1,...,m — 1} first, therefore rejecting all the packets that
arrive during this phase to queue m. In contrast, Opt discards all the e-packets that arrive at the
beginning, and can therefore transmit all subsequent packets. Hence:

Opt(o) 3-3> ", Bi—=Bn—m 1 m

_ >3_—__"
TLH(o) >iey Bi N m Yt B

5 Application 2: Dynamic Routing

In this section we present our second application of the zero-one principle. We consider the online
problem of weighted dynamic routing on a line (see section 2.2 for a formal definition) and present
a k-competitive algorithm called PF for the problem (figure 3).

Algorithm PF (PushForward)

For each node¢=1,...,k —1 do:
1. Arrival phase: Use the GR algorithm to accept packets into the queue.

2. Transmission phase: If the queue is not empty, transmit the packet at the head of the
queue to the next node.

Figure 3: Algorithm PF.

Theorem 5.1 Algorithm PF is k-competitive for the Dynamic Routing problem on a line of length
k.

11

Proof: Clearly, algorithm PF bases its admission control decisions solely on relative order between
values, therefore it is comparison-based. According to our zero-one principle (Theorem 3.1) we need
only show that the algorithm is k-competitive for 0/1 sequence, given any possible tie-breaking.
Let o be a 0/1 sequence. With slight abuse of notation we denote by PF(c) the set of 1-packets
that were delivered by PF, and by Opt(c) the set of packets delivered by Opt. Theorem 5.1 directly
follows from the next lemma.

Lemma 5.2 For every 0/1 sequence o under every possible tie-breaking we have: |Opt(o)\PF(o)| <
(k—1) - [PF(o)].

Proof: By the same considerations given in the proof of Lemma 4.2 we assume w.l.o.g that preemp-
tion of 1-packets does not occur. We prove the lemma by providing a matching from (Opt(co)\PF(o))
to PF(o) in which each packet from PF(o) is matched at most k—1 times. This is done by a marking
scheme that marks one of the 1-packets in PF queues whenever a 1-packet is accepted by Opt but
rejected by PF. A description of the marking scheme follows (figure 4).

Marking scheme
For each nodei=1,...,k—1 do:
1. For each incoming 1-packet do:

(a) If the packet is accepted by PF, consider it as an unmarked packet.

(b) Otherwise, if the packet is accepted by Opt, look for the first unmarked 1-packet,
starting from the head of queue i and moving to its tail, and mark it.

2. In the transmission phase:
If a 1-packet arrives from the previous node, it is considered to be unmarked.

Figure 4: Marking scheme for PF.

We observe that each 1-packet is marked at most & — 1 times (at most once in each of the
intermediate nodes on its path), and that packets are not dropped during the transmission phase
since all nodes that store packets push a packet forward. Therefore, it remains to prove that we
always have an available unmarked packet when we reject a packet that is accepted by Opt (step 1b
in the marking scheme). In the following we use the notations U}, PF} and Opt} (i = 1,...,k — 1)
with similar meanings to those used in the proof of Claim 4.4.

Claim 5.3 For each time step t and queue i, the following properties hold:
e U! > PF, — Opt..
e There are available unmarked packets if required by the marking scheme (step 1b).

Proof: First, recall that we assume w.l.o.g that preemption of 1-packets does not occur. Addition-
ally, our marking scheme is not concerned with 0-packets, hence we may ignore any operation that
involves 0-packets.

We prove the claim by induction on the time steps. At the beginning of time step ¢ = 0 the
queues are empty, hence the inequality clearly holds. We assume correctness for time step ¢ and
prove that the inequality continues to hold for at t + 1. We first consider the packet arrival phase.

12

Consider a 1-packet p arriving to queue ¢. If p is accepted by PF, U; increases and the inequality
holds. Otherwise, if p is rejected by PF and is accepted by Opt, then by the induction hypothesis
U; > PF; — Opt; and since PF; = B; and Opt; < B; (we again assume that Opt does not preempt
packets, see Observation 4.1) we have an unmarked 1-packet in queue i. After we mark a packet
both sides of the inequality decrease by 1. Next, consider the transmission phase. Recall that
no packets are dropped during this phase. We examine the changes in both the transmitting end
and the receiving end. At the transmitting end, note that if queue ¢ does not contain marked
packets then the inequality clearly holds. Otherwise, U; remains unchanged (since a marked packet
is transmitted) while the right hand side of the inequality can only decrease (if Opt chooses not to
transmit). At the receiving end, we first observe that a packet that reaches its destination has no
effect. A 1-packet enqueued into queue ¢ in PF causes U; to increase; A packet enqueued by Opt
causes the right hand side of the inequality to decrease. In either case, the inequality continues to
hold. |

This concludes the proofs of Lemma 5.2 and Theorem 5.1. [
Theorem 5.1 can be generalized as follows. The proof is obtained using the same marking scheme.

Theorem 5.4 Let G = (V, E) be a directed graph with uniform edge capacities such that for each
vertex v, din(v) = 1. The competitive ratio of algorithm PF on networks with topology G is ¢(G)+1
(where £(G) is the length of the longest acyclic directed path in G).

Observe that in particular Theorem 5.4 implies that algorithm PF is k-competitive for a cycle
topology of length k. The following lemma shows that our analysis of PF is tight up to a factor of
2.

Lemma 5.5 Algorithm PF is at least k/2-competitive on a line topology of length k.

Proof: Consider the following packet sequence ¢ arriving to a network with queues of uniform size
B:

1. At time t = 0, 2B packets are injected at node i (i = 1,...,k — 1), the first B packets have
value 1 + ¢ and are destined to node k, the last B packets have value 1 and are destined to
node 7 + 1.

2. Packets with value 1 and destination i + 1 are injected at node ¢ (i = 2,...,k — 1) during
time steps 1,...,(i—1)- B — 1.

Algorithm PF accepts the B more valuables packets injected at step 1 at each node and rejects
all other packets in the sequence. In contrast, Opt rejects the valuable packets injected at step 1,
and can therefore deliver all other packets. Taking € — 0 we obtain:

Opt(o) _ ¥isii-B _k

PF(c) (k—1)B 2

13

6 Application 3: Work-Conserving Dynamic Routing

Kesselman et al. [20] studied the dynamic routing problem under the work-conserving restriction.
Specifically, they compared the performance of the local on-line GR algorithm and the local off-line
OptL algorithm to the global work-conserving optimum, in networks with line and tree topologies
(see section 2.3 for exact definitions). The strongest results in [20] are shown only for sequences
restricted to two values: 1 and a > 1, while the bounds for arbitrary sequences remain as open
questions. Using our zero-one principle we can generalize their results to arbitrary sequences as
follows. First, we observe that the local off-line algorithm, OptL,, is in fact a comparison-based
algorithm that sorts the sequence of packets according to their values and then attempts to schedule
the packets starting from the largest value (see e.g. [27]). The local on-line GR algorithm is clearly
comparison-based. In the proofs given in [20] the number of valuable packets (of value a > 1) that
were delivered is compared against the global optimum. In fact, the proofs follow as-is for 0/1
sequences and arbitrary tie-breaking. Before we proceed to restate the main results from [20] in
their general form, we need to introduce some additional definitions and notations from [20].

Definition 6.1 For a given link e in a given network, define the delay of e, denoted D(e), to be
the ratio [size(Q.)/c(e)]. The delay of a given path is the sum of the edge delays on that path.

Definition 6.2 Let e = (u,v) be any directed link in a given tree topology. The height of e, denoted
h(e), is the maximum path delay, over all paths starting at a leaf and ending at v. The weakness

of e, denoted \(e), is defined to be \(e) = %.

We are now ready to restate the main results from [20] in their generalized form, for arbitrary
sequences. We emphasize that all other results in [20] restricted to sequences with two values can
be generalized as well. As mentioned before, proofs follow as-is, given the zero-one principle.

Theorem 6.1 Under the work-conserving restriction, the competitive ratio of GR for any given

tree topology G = (V, E) is O(max{A(e) | e € E}).

Theorem 6.2 Under the work-conserving restriction, the approximation ratio of OptL for a com-
plete binary tree of depth h is at most O(h/logh).

Theorem 6.3 Under the work-conserving restriction, the approrimation ratio of OptL for a line
of length h is O(V/h).

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén. Competitive queue policies for differ-
entiated services. In Proc. of IEEE INFOCOM, pages 431-440, 2000.

[2] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. Dynamic routing on networks with
fixed-size buffers. In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
771-780, 2003.

[3] M. Ajtai, J. Komlds, and E. Szemerédi. An o(nlogn) sorting network. In Proc. 15th ACM
Symp. on Theory of Computing (STOC), pages 1-9, 1983.

14

[4]

[10]

[11]

[12]

[13]

[14]

[15]

S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering. In
Proc. 36th ACM Symp. on Theory of Computing (STOC), pages 35-44, 2004.

N. Andelman. Randomized queue management for diffserv. In Proc. of the 17th Annual ACM
Symp. on Parallel Algorithms and Architectures (SPAA), pages 1-10, 2005.

N. Andelman and Y. Mansour. Competitive management of non-preemptive queues with
multiple values. In Proc. 17th International Symp. on Distributed Computing (DISC), pages
166-180, 2003.

N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches. In
Proc. 14th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 761-770, 2003.

M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu. Universal
stability results for greedy contention-resolution protocols. J. of the ACM, 48(1):39-69, 2001.

S. Angelov, S. Khanna, and K. Kunal. The network as a storage device: Dynamic rout-
ing with bounded buffers. In Proc. 8th. International Workshop on Approx. Algorithms for
Combinatorial Optimization Problems (APPROX), pages 1-13, 2005.

Y. Azar and M. Litichevskey. Maximizing throughput in multi-queue switches. In Proc. 12th
Annual European Symp. on Algorithms (ESA), pages 53—64, 2004.

Y. Azar and Y. Richter. An improved algorithm for CIOQ switches. In Proc. 12th Annual
European Symp. on Algorithms (ESA), pages 65-76, 2004.

Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. Algorithmica,
43(1-2):81-96, 2005.

Y. Azar and R. Zachut. Packet routing and information gathering in lines, rings and trees. In
Proc. 13th Annual European Symp. on Algorithms (ESA), pages 484-495, 2005.

N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, and M. Sviridenko. Further
improvements in competitive guarantees for QoS buffering. In Proc. 31st International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 196-207, 2004.

A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal service policy for
buffer systems. J. of the ACM, 42(3):641-657, 1995.

A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial queuing
theory. J. of the ACM, 48(1):13-38, 2001.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

E. Gordon and A. Rosén. Competitive weighted throughput analysis of greedy protocols on
dags. In Proc. 24th ACM Symp. on Principles of Distrib. Computing (PODC), pages 227-236,
2005.

E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive buffer management for shared-
memory switches. In Proc. of the 13th Annual ACM Symp. on Parallel Algorithms and Archi-
tectures (SPAA), pages 53-58, 2001.

15

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

A. Kesselman, Z. Lotker, Y. Mansour, and B. Patt-Shamir. Buffer overflows of merging
streams. In Proc. 11th Annual European Symp. on Algorithms (ESA), pages 349-360, 2003.

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. STAM J. on Comput., 33(3):563-583, 2004.

A. Kesselman and Y. Mansour. Loss-bounded analysis for differentiated services. J. of Algo-
rithms, 46(1):79-95, 2003.

A. Kesselman and Y. Mansour. Harmonic buffer management for shared-memory switches.
Theoret. Computer Sci., 324(2-3):161-182, 2004.

A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS buffer-
ing. Algorithmica, 43(1-2):63-80.

A. Kesselman and A. Rosén. Scheduling policies for CIOQ switches. In Proc. of the 15th
Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 353-362, 2003.

D. E. Knuth. The Art of Computer Programming, Sorting and Searching, volume 3. Addison-
Wesley, Reading, MA, 1973.

Z. Lotker and B. Patt-Shamir. Nearly optimal fifo buffer management for two packet classes.
Computer Networks, 42(4):481-492, 2003.

M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated
services for the internet. In Proc. of IEEFE INFOCOM, pages 1385-1394, 1999.

M. Schmidt. Packet buffering - randomization beats deterministic algorithms. In Proc. 22nd
Symp. on Theoretical Aspects of Comp. Science (STACS), pages 293-304, 2005.

16

