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Abstract

The relative worst order ratio, a new measure for the quality of on-
line algorithms, was defined in [3]. Classical bin packing algorithms
such as First-Fit, Best-Fit, and Next-Fit were analyzed using this mea-
sure, giving results that are consistent with those previously obtained
with the competitive ratio or the competitive ratio on accommodating
sequences, but also giving new separations and easier results.

In this paper we consider newer algorithms; for the Classical Bin
Packing Problem we analyze Harmonic(k) [13] and some of its vari-
ants, and for the Dual Bin Packing Problem we introduce a new,
simple, unfair variant of First-Fit.

1 Introduction

The standard measure for the quality of on-line algorithms is the competitive
ratio [8, 15, 10], which is, roughly speaking, the worst-case ratio, over all
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possible input sequences, of the on-line performance to the optimal off-line
performance. The definition of the competitive ratio has been taken rather
directly from that of the approximation ratio. This seems natural in that on-
line algorithms can be viewed as a special class of approximation algorithms.
However, for approximation algorithms, the comparison to an optimal off-line
algorithm, OPT, is very natural, since one is comparing to another algorithm
of the same general type, just with more computing power, while for on-line
algorithms, the comparison to OPT is to a different type of algorithm.

Although the competitive ratio has been an extremely useful notion, in many
cases it has appeared inadequate at differentiating between on-line algo-
rithms. When this is the goal, doing a direct comparison between the al-
gorithms, instead of involving an intermediate comparison to OPT, seems
the obvious choice. A direct comparison on exactly the same sequences will
produce the result that many algorithms are incomparable because one algo-
rithm does well on one type of ordering, while the other does well on another
type. With the relative worst order ratio, on-line algorithms are compared
directly to each other on their respective worst orderings of multi-sets. In
this way, the relative worst order ratio [3] combines some of the desirable
properties of the Max/Max ratio [2] and the random order ratio [11].

The Max/Max Ratio

The Max/Max ratio allows direct comparison of two on-line algorithms for
an optimization problem, without the intermediate comparison to OPT, as is
necessary with the competitive ratio. Rather than comparing two algorithms
on the same sequence, they are compared on their respective worst-case se-
quences of the same length. The Max/Max Ratio applies only when the
length of an input sequence yields a bound on the profit/cost of an optimal
solution.

The Random Order Ratio

The random order ratio gives the possibility of considering some randomness
of the request sequences without specifying a complete probability distribu-
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tion. For an on-line algorithm A, the random order ratio is the worst-case
ratio, over all multi-sets of requests, of the expected performance of A on
a random permutation of the multi-set, compared with an optimal solution.
If, for all possible multi-sets of requests, any ordering of these requests is
equally likely, this ratio gives a meaningful worst-case measure of how well
an algorithm can do.

The Relative Worst Order Ratio

With the relative worst order ratio, one considers the worst-case performance
over all permutations instead of the average-case performance as with the
random order ratio. Thus, when comparing two on-line algorithms, one con-
siders a worst-case multi-set and takes the ratio of how the two algorithms
do on their worst orderings of that multi-set. Note that the two algorithms
may have different “worst orderings” for the same multi-set. Two algorithms
A and B are said to be incomparable under the relative worst order ratio,
if there exists a family of multi-sets where A is strictly better than B and
another family of multi-sets where B is strictly better than A.

The Bin Packing Problems

In the Classical Bin Packing Problem we are given an unlimited number of
unit sized bins and a sequence of items each with a non-negative size of at
most one, and the goal is to minimize the number of bins used to pack all the
items. In contrast, in the Dual Bin Packing Problem, we are given a fixed
number n of unit sized bins, and the goal is to maximize the number of items
packed in the n bins.

Algorithms

For Dual Bin Packing, algorithms sometimes have to reject an item because
it does not fit in any of the n bins. An algorithm that never rejects an item
unless it has to is called a fair algorithm.
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For both problems, one can define the class of Any-Fit algorithms [9], which
use an empty bin, only if there is not enough space in any partially full bin.
For Dual Bin Packing, Any-Fit algorithms are defined to be fair.

Lee and Lee [13] defined a family of algorithms Harmonic(k) which have
a better competitive ratio than First-Fit. Harmonic(k) is not an Any-Fit
algorithm. It divides the items into classes based on their size, such that
items with size in the range ( 1

j+1
, 1

j
] are in class Cj for 1 ≤ j ≤ k− 1, and all

other items are in class Ck. Bins only contain items from a single class, and
the items within a single class are packed using Next-Fit.

For the Dual Bin Packing Problem, we define a simple “unfair” variant of
First-Fit, First-Fitn. This algorithm behaves exactly as First-Fit would un-
less the item x is larger than 1

2
and would be placed in the last bin, bin n.

First-Fitn rejects such an item and is thus not fair.

Other Measures

The results we obtain using the relative worst order ratio are compared to the
standard competitive ratio and to the competitive ratio on accommodating
sequences. Let A(I) be the cost (profit) of running the on-line algorithm A
on I, and OPT(I) be the optimal cost (profit) that can be achieved on I. For
a minimization (maximization) problem, an on-line algorithm A is said to be
c-competitive if there exists a constant b such that for all input sequences I,
A(I) ≤ c ·OPT(I)+ b (A(I) ≥ c ·OPT(I)− b). The competitive ratio of A is
the infimum (supremum) over all c such that A is c-competitive. For the Dual
Bin Packing Problem, the competitive ratio on accommodating sequences [7]
is the same as the competitive ratio, except that the only request sequences
considered are those for which all items could have been accepted in the n
bins by an optimal off-line algorithm, so it is the worst case ratio over a
restricted set of request sequences.
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Previous Results

The Relative Worst Order Ratio. Previous study [3] of the relative
worst order ratio for the two bin packing problems seems promising in that
most results are consistent with those obtained with the competitive ratio,
but new separations and easier results are possible.

More specifically, for the Classical Bin Packing Problem, First-Fit and Best-
Fit are better than Worst-Fit, which is better than Next-Fit. This latter
result is in contrast to the competitive ratio, where there appears to be no
advantage to Worst-Fit being able to use empty space in earlier bins, since
both have a competitive ratio of 2 [9]. First-Fit is still the best Any-Fit
algorithm and Next-Fit is strictly worse than any Any-Fit algorithm.

For the Dual Bin Packing Problem, First-Fit is better than Best-Fit, which
is better than Worst-Fit. Worst-Fit is at least as bad as any fair on-line
algorithm. This contrasts favorably with the competitive ratio, where, for
the restricted problem where all item sizes are multiples of some constant f ,
Worst-Fit is better than First-Fit [7].

The Competitive Ratio. Lee and Lee [13] have shown that the com-
petitive ratio of Harmonic(k) approaches about 1.691 as k approaches in-
finity. This is strictly better than First-Fit’s competitive ratio of 1.7. Lee
and Lee [13] also proposed the algorithm Refined Harmonic and showed
that its competitive ratio is close to 1.636. Seiden defined the class of
Super Harmonic algorithms, which includes both Refined Harmonic
and his own algorithm Harmonic++, which has an asymptotic performance
ratio of 1.58889.

New Results

Classical Bin Packing. We show that according to the relative worst or-
der ratio, if the sequences can have arbitrarily small items, Harmonic(k)
is incomparable to First-Fit. However, when Harmonic(k) is worse than
First-Fit, it is only by a factor of at most k

k−1
. On the other hand, if
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all items in the input sequences considered are restricted to having sizes
greater than 1

k+1
, then First-Fit is strictly worse than Harmonic(k), by

a factor of 6
5
. The variants of Harmonic(k) defined by Seiden, including

Refined Harmonic, will place some of the items in certain size ranges in
empty bins, where most of the space in those bins is reserved for items of
other sizes. This can be done very cleverly, as Seiden did for Harmonic++,
guaranteeing that the algorithm never does more than a factor 1.58889 worse
than OPT. These variants are not designed, however, to always do at least
as well as First-Fit or Harmonic(k). We show that these variants are in-
comparable to First-Fit and Harmonic(k), using the relative worst order
ratio. Thus, depending on the application and expected request sequence
distribution, either Harmonic(k) or Harmonic++ could be the better
algorithm.

Dual Bin Packing. For the Dual Bin Packing Problem, we define a new
algorithm, First-Fitn. In [3] First-Fit was shown to be the best Any-Fit
algorithm and shown to be incomparable to one algorithm, Unfair-First-Fit,
which has a better competitive ratio on accommodating sequences than First-
Fit. The algorithm First-Fitn is a simple “unfair” variant of First-Fit which
can clearly do much better than First-Fit in some cases. According to the
relative worst order ratio, First-Fitn is unboundedly better than First-Fit,
but it cannot be separated from First-Fit using either the competitive ratio
or the competitive ratio on accommodating sequences.

2 The (Relative) Worst Order Ratio

The definition of the relative worst order ratio uses AW(I), the performance of
an on-line algorithm A on the “worst ordering” of the multi-set I of requests,
formally defined in the following way.

Definition 1 Consider an on-line problem P and let I be any request se-
quence of length n. If σ is a permutation on n elements, then σ(I) denotes
I permuted by σ. Let A be any algorithm for P .
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If P is a maximization problem, A(I) is the profit of A’s solution on I, and

AW(I) = min
σ

A{σ(I)}.

If P is a minimization problem, A(I) is a cost, and

AW(I) = max
σ

A{σ(I)}.

2

Definition 2 Let S1 and S2 be statements defined in the following way.

S1(c) : There exists a constant b such that AW(I) ≤ c · BW(I) + b for all I

S2(c) : There exists a constant b such that AW(I) ≥ c · BW(I)− b for all I.

The relative worst order ratio WRA,B of on-line algorithm A to algorithm B
is defined if S1(1) or S2(1) holds. Otherwise the ratio is undefined and the
algorithms are said to be incomparable.

If S1(1) holds, then WRA,B = sup {r | S2(r)} .

If S2(1) holds, then WRA,B = inf {r | S1(r)} .

2

Note that if S1(1) holds, the supremum involves S2 rather than S1, and
vice versa. A ratio of 1 means that the two algorithms perform identically
with respect to this quality measure; the further away from 1 the greater
the difference in performance. The ratio may be greater than or less than
one, depending on whether the problem is a minimization or a maximization
problem and on which of the two algorithms is better. These possibilities are
illustrated in Table 1.

Although not all pairs of algorithms are comparable with the relative worst
order ratio, for algorithms which are comparable, the measure is transitive,
i.e., for any three algorithm A, B, and C, WRA,B ≤ 1 and WRB,C ≤ 1 implies
WRA,C ≤ 1, and similarly, WRA,B ≥ 1 and WRB,C ≥ 1 implies WRA,C ≥ 1
[3].
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minimization maximization
A better than B < 1 > 1
B better than A > 1 < 1

Table 1: Values of WRA,B for minimization and maximization problems

Although one of the goals in defining the relative worst order ratio was to
avoid the intermediate comparison of any on-line algorithm to the optimal
off-line algorithm OPT, it is still possible to compare on-line algorithms to
OPT. In this case, the measure is called the worst order ratio.

Definition 3 The worst order ratio WRA of an on-line algorithm A is the
relative worst order ratio of A to an optimal off-line algorithm OPT, i.e.,
WRA = WRA,OPT. 2

Note that for many problems, the worst order ratio is the same as the com-
petitive ratio, since the order in which requests arrive does not matter for
an optimal off-line algorithm. However, for the Fair Bin Packing Problem [1]
where the algorithms are required to be fair, the order does matter, even
for OPT. The same is true for bounded space bin packing [9] where only a
limited number of bins are allowed open at one time.

Clearly, the worst order ratio is never worse than the competitive ratio.
However, for the Dual Bin Packing Problem, the result for the class of fair
algorithms is as negative as with the competitive ratio; any fair algorithm
has a worst order ratio of O(s), where s is the smallest possible item size [3].

3 Classical Bin Packing

The Classical Bin Packing Problem is a minimization problem, so algorithms
which do well compared to others have relative worst order ratios of less than
1 to the poorer algorithms.
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Harmonic(k) can perform worse than First-Fit on sequences which have
very small items. The statement of the following lemma gives a tight result
using some very small items, but the proof also demonstrates what happens
for slightly larger items.

Lemma 1 For any k ≥ 1, there exists a family of multi-sets In such that

Harmonic(k)W (In) ≥ k

k − 1
FFW (In)− k + 1

k − 1
for all n

and lim
n→∞

FFW (In) = ∞.

Proof Let ε < 1
kn

. The sequence In consists of the following repeated n
times: k − 1 items of size 1

k
, followed by one item of size ε. All of these

items will be in the same class for Harmonic(k), so they will be packed
using Next-Fit, which uses n bins. First-Fit, on the other hand, combines
the small items, so if ε is sufficiently small,

FFW(In) =

⌈
n

(
k − 1

k
+ ε

)⌉
<

k − 1

k
n +

k + 1

k
.

Thus,
k

k − 1
FFW(In)− k + 1

k − 1
< n = Harmonic(k)W(In).

Note that even if items as small as 1
nk

cannot occur, we can obtain a ratio
larger than 1. Let ε ≤ 1

2k
, so that at least two of the small items can be

combined with k− 1 items of size 1
k
. In First-Fit’s packing, the empty space

in each bin, except for possibly one, will have size less than ε. Thus,

FFn
W(In) ≤

⌈
n

(
k − 1

k
+ ε

)
+ εFFn

W(In)

⌉
.

We solve for n which is the number of bins used by Harmonic(k).

FFW(In) ≤ n

(
k − 1

k
+ ε

)
+ εFFW(In) + 1 ⇔

(1− ε)FFW(In)− 1 ≤ n
k − 1 + kε

k
⇔

k − kε

k − 1 + kε
FFW(In)− k

k − 1 + kε
≤ n = Harmonic(k)W(In)

2
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The result of Lemma 1 is tight up to an additive constant.

Lemma 2 For any sequence, I,

Harmonic(k)W (I) ≤ k

k − 1
FFW (I) + k + 1.

Proof Consider Harmonic(k)’s packing of I. Let Lj, for 1 ≤ j ≤ k− 1, be
the set of items from I in class Cj which Harmonic(k) places in bins with
fewer than j items in all, and let C ′

j be the remaining items in Cj. Initially,
let C ′

k be the items in class Ck, except for those put in the last bin of that
class, and let Lk contain the items from this last bin for items in class Ck.
Consider First-Fit’s packing of the sequence consisting only of those items
in C ′

k in the order in which they appear in I. Remove those items from
C ′

k which First-Fit places in its last bin and place them in Lk instead. Let
L = ∪k

i=1Li and C ′ = ∪k−1
i=1 C ′

i. Thus, I consists of the items in L, C ′ and C ′
k.

Create a sequence I ′ beginning with the items in C ′
k in the order in which

they appear in I, followed by the items from C ′ in nondecreasing order, and
then those from L in any order. When First-Fit packs I ′, none of the items in
C ′ will fit in any of the bins First-Fit uses for C ′

k, so all of the items from C ′ in
any class Cj will be packed j per bin. Thus, First-Fit and Harmonic(k) will
use the same number of bins for the items in C ′. Suppose C ′

k is nonempty,
and the items in C ′

k were placed in l bins by Harmonic(k). Since the items
in class Ck have size at most 1

k
and since there are items in Ck which did not

fit in the l bins used for C ′
k, Harmonic(k) fills each of those l bins to more

than 1− 1
k
. Hence, the sum of the sizes in C ′

k is at least l(k−1
k

), so First-Fit
must use at least l(k−1

k
) bins for the items in C ′

k. The result follows since
Harmonic(k) uses at most k + 1 bins for the items in L. 2

Thus, for reasonably large k, Harmonic(k) never does much worse than
First-Fit. In fact, however, if all of the items in a sequence have sizes greater
than 1

k+1
, then Harmonic(k) does at least as well as First-Fit, except for a

possible additive constant.
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Lemma 3 For any sequence, I, where all items have size greater than 1
k+1

,

Harmonic(k)W (I) ≤ FFW (I) + k.

Proof The proof is a simplification of the proof of Lemma 2. The set C ′
k only

has items which are larger than 1
k+1

, so they can be put in C ′, since First-Fit
and Harmonic(k) will both put exactly k of them in each bin. In addition,
the items moved from C ′

k to L can be put in C ′. Thus, Harmonic(k) can
use more bins than First-Fit only for the items in L, and there are at most
k such bins. 2

Furthermore, on these sequences without very small items, Harmonic(k)
does strictly better than First-Fit with respect to the relative worst order
ratio.

Theorem 1 For any fixed k ≥ 2, for the Classical Bin Packing Problem
restricted to sequences where all items have size greater than 1

k+1
,

WRFF,Harmonic(k) =
6

5
.

Proof By lemma 3, WRFF,Harmonic(k) ≥ 1. For the lower bound, we consider
the family of sequences, In, containing 6n items of size 1

2
and 6n of size 1

3
,

where the items of size 1
2

and of size 1
3

alternate. First-Fit uses 6n bins to
pack In. Harmonic(k) places items of sizes 1

2
and 1

3
in different bins since

they are in different classes and thus uses only 5n bins.

To show the upper bound, we use a result from [6] showing that for the lazy
bin packing problem, First-Fit-Increasing (FFI) has an approximation ratio
of 6

5
. For that problem, the goal is to use as many bins as possible, subject

to the restriction that no item in a later bin would fit in an earlier bin. This
means that OPT packs a sequence I as First-Fit packs its worst ordering of
I. Both Harmonic(k) and FFI pack most of the items in any class Cj with
j per bin, though FFI may use as many as k− 1 fewer bins since it does not
always start a new bin for a new class. 2
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The idea behind the variants of Harmonic(k) defined in [13] and [14] is
to sub-partition some of the classes of Harmonic(k) further, and then use
some of the empty space which would necessarily occur in bins reserved for
intervals with a right endpoint that cannot be expressed as 1

j
for any integer

j. A certain fraction of the items from some classes are thus designated to
be placed in bins which are primarily reserved for other classes.

For example, in Refined Harmonic [13], two of the intervals defining
classes are Ja = (1

2
, 59

96
] and Jb = (1

3
, 37

96
]. The third item with size in Jb and

every seventh after that is placed in a bin reserved for class Ja items. Thus,
for a sequence consisting of n items of size s ∈ Jb, Refined Harmonic
will place approximately 6n

7
items with two per bin and n

7
with one per bin,

using 4n
7

bins asymptotically. First-Fit or Harmonic(k), on the other hand,
would pack them all two per bin using only n

2
bins. This gives a ratio of

8
7

in First-Fit’s (or Harmonic(k)’s) favor. The family of multi-sets show-
ing that Harmonic(k) is better than First-Fit contained only items of sizes
1
2

and 1
3
, so Refined Harmonic would do the same as Harmonic(k) on

that sequence, thus out-performing First-Fit by a factor 6
5
. This shows the

following:

Theorem 2 Refined Harmonic and First-Fit are incomparable.

There also exist multi-sets where Refined Harmonic does better than
Harmonic(k). Consider the family of multi-sets In consisting of 2n items in
class Ja and 14n items in class Jb. Regardless of the order, Harmonic(k) for
k ≥ 2 will place the items in class Ja one per bin, and those in class Jb two per
bin, using 9n bins in all. The algorithm Refined Harmonic will place 12n
of the items in class Jb two per bin, but place the others with an item from
class Ja, using 8n bins. This gives a factor of 9

8
in Refined Harmonic’s

favor, showing:

Theorem 3 Refined Harmonic and Harmonic(k) are incomparable for
k ≥ 2.

Similar arguments show that any instance of Seiden’s Super Harmonic
algorithms [14], including Harmonic++, are incomparable to both First-
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Fit and Harmonic(k). Thus, depending on the application and expected
request sequence distribution, either Harmonic(k) or Harmonic++ could
be the better algorithm.

4 Dual Bin Packing

When switching to the Dual Bin Packing Problem, which is a maximization
problem, algorithms which do well compared to others have relative worst
order ratios greater than 1, instead of less than 1, to the poorer algorithms.

It was shown in [3] that First-Fit is best possible among Any-Fit algorithms
and incomparable to the only algorithm considered which was not fair. There
is, however, an algorithm which does strictly better than First-Fit with re-
spect to the relative worst order ratio. Recall that First-Fitn (FFn) is the
algorithm which behaves exactly as First-Fit would unless the item x is larger
than 1

2
and would be placed in the last bin, bin n. First-Fitn rejects such

an item and is thus not fair. Intuitively, First-Fitn partially avoids a major
pit-fall with respect to First-Fit’s performance: large items at the beginning
of the sequence can cause the rejection of many small later items. Clearly,
the constant 1

2
in the definition of First-Fitn could be changed to something

smaller if this seems appropriate for the given application.

Theorem 4 For any constant c > 1, WRFFn,FF > c.

Proof Clearly, on any sequence First-Fit accepts at most one more item
than First-Fitn, an item of size greater than 1

2
which First-Fit puts in the

last bin, so WRFFn,FF ≥ 1.

Define Ic to be the sequence containing n items of size 1 followed by cn items
of size 1

cn
. First-Fit accepts only n items, while FFn accepts n − 1 items of

size 1 and all cn items of size 1
cn

, regardless of the ordering. Thus, for every
sequence Ic,

FFn(Ic) = cn + n− 1 = (c + 1)FF(Ic)− 1.

2
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It was shown in [5] that no deterministic or randomized algorithm for Dual
Bin Packing is competitive. For completeness, we give a simpler, direct proof
to show that First-Fitn is not competitive.

Theorem 5 First-Fitn is not competitive.

Proof Let 0 < ε ≤ 1
2
. An adversary gives the following request sequence,

divided into three phases:

1. n− 1 items of size 1;

2. 2 items of size 1
2
;

3. n · b1
ε
c items of size ε.

First-Fitn accepts the first two phases, since the second phase is designed for
the last bin. An optimal off-line algorithm accepts only the requests in phase
3, giving a performance ratio of approximately ε. 2

To show that First-Fitn has the same competitive ratio on accommodating
sequences as First-Fit asymptotically, we use the sequences from [1] showing
that First-Fit’s competitive ratio on accommodating sequences is asymptot-
ically 5

8
.

Theorem 6 If the given number of bins, n, is of the form n = 9 · 2q − 5 for
some positive integer q, then First-Fitn’s competitive ratio on accommodat-
ing sequences is at most 5

8
+ O( 1

n
).

Proof Let ε > 0 be small enough. An adversary can give the following
sequence, Iq, of items, divided into q + 3 phases:
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Phase 1. 3 items of size A = 1
3
− 23qε.

Phases 2 . . . (q + 1). In phase j + 1 (1 ≤ j ≤ q), 3 · 2j pairs, each with
one item of size Bj = 1

3
+ 23q−3j+2ε followed by an

item of size Cj = 1
3
− 23q−3jε.

Phase q + 2. 3 · 2q items of size D = 2
3

+ ε.
Phase q + 3. 9 · 2q − 6 items of size E = 1

3
.

In each phase j + 1, 1 ≤ j ≤ q, First-Fitn will pair each item of size Bj with
one item of size Cj, thus using 3 · (2q+1 − 2) + 1 = 6 · 2q − 5 bins for these q
phases and the first phase. After this, the first 3 · 2q − 1 items of phase q + 2
will be packed in separate bins, giving a total of n − 1 used bins. Since the
last item of phase q + 2 is larger than 1

2
, it will be rejected and three of the

items from phase q+3 will be packed in the last bin. The remaining 9 ·2q−3
from phase q + 3 items do not fit in any bin and are rejected. This gives a
total of 3 + 2 · 3 · (2q+1 − 2) + (3 · 2q − 1) + 3 = 15 · 2q − 7 accepted items.

OPT, on the other hand, pairs each item from phase 1 with two items of size
B1 and each item of size Cj, 1 ≤ j ≤ q − 1, with two items of size Bj+1.
Each item of size Cq is paired with an item from phase q + 2. This uses
3 · (2q+1− 1) = 6 · 2q − 3 bins, leaving room for all of the items of phase q +3.
Thus, OPT accepts all (15 · 2q − 9) + (9 · 2q − 6) = 24 · 2q − 15 items.

This gives a ratio of

FFn(Iq)

OPT(Iq)
=

15 · 2q − 7

24 · 2q − 15
=

5 · (3 · 2q − 7
5
)

8 · (3 · 2q − 15
8
)

=
5 · (3 · 2q − 15

8
) + 5 · (15

8
− 7

5
)

8 · (3 · 2q − 15
8
)

∈ 5

8
+ O

(
1

n

)
.

2

Theorem 6 considers special values of n. As in [1], it can be shown that, in
general, First-Fitn’s competitive ratio on accommodating sequences is 5

8
+

O( 1√
n
).
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5 Conclusion

The investigation of the relative worst order ratio, as applied to bin packing,
has been continued. Using the relative worst order ratio, Harmonic(k) has
been compared to First-Fit, which is theoretically the best Any-Fit algorithm
for the Classical Bin Packing Problem, according to both the competitive
ratio and the relative worst order ratio. Harmonic(k) was found to be
incomparable to First-Fit, but this was only the case if the sequences had
very small items. When First-Fit was better than Harmonic(k), it was only
by a factor of at most k

k−1
. For sequences where all items are larger than

1
k+1

, the relative worst order ratio shows that Harmonic(k) is better than

First-Fit by a factor of 6
5
. This is consistent with the results obtained using

the competitive ratio, showing that Harmonic(k) is the better algorithm
asymptotically.

The variants of Harmonic(k), Refined Harmonic and Harmonic++,
were found to be incomparable to First-Fit and Harmonic(k) using the
relative worst order ratio. This differs from the results using the competitive
ratio, where these variants are strictly better. This means that, depending
on the expected distribution of the request sequence, either Harmonic(k) or
Harmonic++ may have the better performance. In the case, for example,
where one expects no items of size greater than 1

2
, there is no reason to use

Refined Harmonic, since Harmonic(k) will perform at least as well and
possibly better.

With respect to the Dual Bin Packing Problem, the relative worst order ratio
has inspired the discovery of a new algorithm, First-Fitn. This new algorithm
partially avoids a problem with fair algorithms, that large earlier items could
cause the rejection of many later, small items. According to the relative
worst order ratio, First-Fitn is unboundedly better than First-Fit, though it
cannot be distinguished from First-Fit using either the competitive ratio or
the competitive ratio on accommodating sequences.

Thus, this second investigation of the relative worst order ratio supports the
promising results of the first [3]. The new performance measure gives the
advantages that one can compare two on-line algorithms directly, that it is
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intuitively suitable for some natural problems where any ordering of the input
is equally likely, and that it is easier to compute than the random order ratio.

Work in progress [4] shows that for the paging problem, the relative worst
order ratio of LRU (FIFO) to LRU (FIFO) with lookahead l is min(k, l +
1) when there are k pages in fast memory. This compares well with the
competitive ratio, where these algorithms have the same competitive ratio.
This result is similar to that which Koutsoupias and Papadimitriou obtained
using comparative analysis [12], and stronger than that obtained with the
Max/Max ratio [2]. The relative worst order ratio should be applied to other
on-line problems to see if it is also useful for those problems.
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