
A note on semi-online machine covering

Tomáš Ebenlendr1, John Noga2, Jǐŕı Sgall1, and Gerhard Woeginger3

1 Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, The Czech Republic.
Email: ebik,sgall@math.cas.cz.

2 Department of Computer Science, California State University,
Northridge, CA 91330, U.S.A. Email: jnoga@ecs.csun.edu.

3 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Email:

gwoegi@win.tue.nl.

Abstract. In the machine cover problem we are given m machines and
n jobs to be assigned (scheduled) so that the smallest load of a machine
is as large as possible. A semi-online algorithm is given in advance the
optimal value of the smallest load for the given instance, and then the
jobs are scheduled one by one as they arrive, without any knowledge of
the following jobs. We present a deterministic algorithm with competitive
ratio 11/6 ≤ 1.834 for machine covering with any number of machines
and a lower bound showing that no deterministic algorithm can have a
competitive ratio below 43/24 ≥ 1.791.

1 Introduction

In the machine cover problem we are given m identical machines and n jobs to
be assigned (scheduled) so that the smallest load of a machine is as large as
possible.

The motivation for this objective function comes from applications where
the jobs correspond to supplies (like fuel tanks) needed to keep the machines
alive, and the overall goal is to keep the whole system alive as long as possible.
The same objective was studied before for example in [5], where some additional
motivation can be found.

Similarly to the classical makespan problem, the ideal schedule is perfectly
balanced. Thus the exact solution is NP-hard, and using similar techniques as
for makespan scheduling, approximation schemes can be constructed even for
uniformly related machines [6, 2, 1, 4].

It is easy to see that in the online setting with jobs arriving one by one,
no non-trivial deterministic algorithm is possible [3]. If m jobs with processing
times equal to 1 arrive, the algorithm has to assign them to distinct machines,
as this may be the whole sequence. Then m − 1 jobs with processing time m
arrive, and the online algorithm achieves objective 1 while the optimum is m.

With this in mind, Azar and Epstein [3] considered semi-online algorithms
which are given in advance the value of the optimum. Among other results, they
showed that a simple greedy algorithm is 2 − 1/m competitive, this is optimal



for m = 2, 3, 4 for deterministic algorithms, and no semi-online deterministic
algorithm for m ≥ 4 is better than 1.75-competitive.

Our results

We focus on semi-online algorithms for large m. We present a deterministic
algorithm with competitive ratio 11/6 ≤ 1.834 for machine covering with any
number of machines. This is the first semi-online algorithm whose competitive
ratio is strictly smaller than 2.

We also present a lower bound showing that no deterministic algorithm can
have a competitive ratio below 43/24 ≥ 1.791. This improves the previous lower
bound of 1.75 and is reasonably close to the upper bound.

2 Preliminaries

We are given m machines and n jobs with processing times (or size) pj ≥ 0. A
schedule is an assignment of jobs to machines S : {1, . . . , n} → {1, . . . , m}.

The load of machine i is the sum of the processing times of the jobs assigned
to that machine, denoted by Li =

∑

j∈S−1(i) pj . A machine is L-covered (for a

number L) if its load is at least L in the given schedule (Li ≥ L).

The objective is to maximize the minimal load of a machine, mini Li. An
optimal schedule for the given instance I is denoted OPT (I) and its objective
value is denoted LOPT(I).

A semi-online algorithm A is given in advance the value LOPT = LOPT(I)
(and the value m). Then the jobs of the instance I are scheduled one by one
as they arrive, without any knowledge of the following jobs. Its objective on
the given instance I is denoted LA(I). The algorithm is called R-competitive if
LOPT(I) ≤ R · LA(I) for any instance I .

Note that, given the desired competitive ratio R, a semi-online algorithm
knows the covering level LOPT/R which it needs to achieve. After some partial
sequence, if there exists an assignment with m′ of LOPT-covered machines, then
the algorithm actually needs to guarantee that it has at least m′ of LOPT/R-
covered machines. The reason is that the instance can continue with m − m′

jobs with pj = LOPT. Intuitively, this means that if the number of machines is
sufficiently large, the exact value of m does not really matter.

Since the value LOPT is known to the algorithm, we may always assume that
the instances are rescaled so that LOPT and LOPT/R are convenient numbers
(as specified later in the paper).

We call a job huge if pj ≥ LOPT/R. Every reasonable algorithm schedules
huge jobs on separate machines, because scheduling such a job in any other way
wastes the jobs that are assigned to the same machine.



3 The Upper Bound

We analyze our algorithm using an appropriate weight function—a classical tech-
nique used for bin packing and related problems.

A weight function w : R+ → R+ assigns a weight to each job, based on its
processing time. The weight of job j is denoted wj = w(pj), the total weight of
jobs is denoted W =

∑

j wj . Finally, the weight of machine i is defined as

Wi =
∑

j∈S−1(i)

wj .

We illustrate the use of weight functions on a greedy algorithm Init which is
known to be (2−1/m)-competitive [3]. Assume that LOPT = 2−1/m (otherwise
scale the instance). Fill schedules all jobs greedily on one machine, called an
active machine, until it is 1-covered; then it uses a new active machine. As an
exception, huge jobs (with pj ≥ 1) are always scheduled on a new machine. If
no new machine is available, all the remaining jobs are scheduled on the last
machine. (This description slightly deviates from [3], however, the behavior is
different only when all machines are already 1-covered, so it does not matter for
the analysis.)

We define the weight function as wj = 2 for huge jobs (i.e., for jobs with
pj ≥ 1) and wj = pj otherwise. Now every (2−1/m)-covered machine has weight
Wi ≥ 2−1/m. Since OPT covers all the machines, it follows that W ≥ 2m−1. On
the other hand, every 1-covered machine generated by Fill has weight Wi ≤ 2,
possibly with the exception of the last machine. Assume that only m′ < m
machines are 1-covered at the end of the algorithm. Then the 1-covered machines
have weight Wi ≤ 2 each, the last active machine has weight Wi < 1, and
the remaining machines are empty. Thus the total weight is strictly less than
2m′ + 1 ≤ 2m − 1, a contradiction.

To improve upon Fill, we use two active machines in place of a single one.
This allows us to avoid the situation when the active machine is almost 1-covered
by small jobs and a job of size 1 − ε arrives, causing the final load to be close
to 2 in Fill.

Theorem 3.1. There exists a semi-online algorithm for machine cover which

is 11/6-competitive.

Proof. Without loss of generality, we assume that LOPT = 11 (otherwise scale
the instance). We design an algorithm A so that each machine is 6-covered.

The weight function and the total weight. We define the weight function as
follows:

wj =

{

10 if pj ≥ 6 (huge jobs)
min(5, pj) otherwise

Every 11-covered machine has weight Wi ≥ 10: It contains either a single huge
job, or two jobs of weight 5 (with pj ∈ [5, 6)), or one job of weight 5 and some



jobs with pj < 5 and total weight at least 5, or only jobs with pj < 5 of total
weight at least 11.

Since OPT has all the m machines 11-covered, the total weight is at least
W ≥ 10m.

The invariants of the algorithm. Our algorithm is designed so that at any time,
the total weight of 6-covered machines is at most 10 times their number. In
addition, the total weight of jobs on machines that are not 6-covered is strictly
less than 10.

Strictly speaking, the invariants may be violated when all the machines but
the last one are 6-covered. This final phase of the algorithm needs to be handled
separately.

The algorithm. Intuitively, we would like to design the algorithm so that the
weight of each machine is at most 10. However, it is not possible to maintain
this for each machine. In some cases the algorithm creates pairs of machines with
weights at most 9 and 11. The key is to try to create a machine with load (and
thus weight) between 2 and 4; upon arrival of a job with pj ≥ 4 it is 6-covered
with weight at most 9.

The main part of the algorithm is described in Table 1. The algorithm main-
tains two active machines i and h. All the other machines are at all times either
6-covered or empty.

The leftmost three columns describe four different types of configurations of
the algorithm by the conditions on the active machines. The remaining columns
describe where a new job is scheduled, depending on its size, and which actions
are taken to get back to one of the permitted type of configuration. If a new active
machine is requested by the algorithm and none is available, the algorithm enters
its final phase described later.

As a rule not included in Table 1, whenever a huge job (pj ≥ 6) arrives, it
is scheduled on an empty machine, which is 6-covered afterwards. If no empty
machine is available, the algorithm enters its final phase described later.

Initially, the active machines are chosen arbitrarily; they are empty and the
configuration is INIT. BIG denotes a configuration in which the active machine
h actually always contains a single job with pj ∈ [4, 6) (as is easily verified by the
inspection of Table 1); this guarantees the condition Wh ≤ 5. GOOD denotes the
safe configuration from the intuitive description above with Lh ∈ [2, 4). Finally,
SPEC is a possible successor configuration of GOOD where h is 6-covered with
weight at most 9; we still consider this machine active even though no more jobs
are scheduled on it. The condition Wh ≤ 9 in SPEC follows since h contains
a single job with pj ∈ [4, 6) and possibly some other jobs with total load and
weight less than 4.

It is easily verified that when an active machine is closed in BIG or GOOD
configurations, its weight is at most 10. When both machines are closed in SPEC,
we have Wh ≤ 9 and Wi ≤ 11. Also the active 6-covered machine h in SPEC
has Wh ≤ 9. Summarizing, the invariant concerning the weight of 6-covered



Old configuration New Action New
Label Active machines job j Put j on config.

INIT Lh = 0 Li < 2 pj < 2 i if Li + pj < 2 INIT
otherwise swap i ↔ h GOOD

pj ∈ [2, 4) h GOOD
pj ≥ 4 h BIG

BIG Lh ≥ 4 Li < 2 pj < 2 i if Li + pj < 2 BIG
Wh ≤ 5 otherwise swap i ↔ h GOOD

pj ≥ 2 h close h, get a new active ma-
chine h

INIT

GOOD Lh ∈ [2, 4) Li < 6 pj < 4 i if Li + pj < 6 GOOD
otherwise close i, get a new
active machine i

GOOD

pj ≥ 4 h SPEC

SPEC Lh ≥ 6 Li < 6 any i if Li + pj < 6 SPEC
Wh ≤ 9 otherwise close i and h, get

new machines i and h
INIT

Table 1. The main loop of the 11/6-competitive algorithm

machines is always preserved. Finally, note that in each state, the weight of all
the not 6-covered machines is less than 10, as required by the second invariant.

The final phase. It remains to describe and analyze the final phase of the algo-
rithm.

If all the machines are 6-covered upon reaching the final phase, then schedule
the remaining jobs on any of the machines.

If a single machine is not 6-covered, schedule all the remaining jobs on this
machine. By the invariants, the 6-covered machines have total weight at most
10(m − 1), the total weight of all jobs is W ≥ 10m, thus after all jobs are
scheduled, the last machine has weight at least 10 and thus it is 6-covered.

If two machines are not 6-covered upon reaching the final phase, then the new
machine was requested for a huge job. Schedule this huge job on the machine
with the smallest load and all the remaining jobs on the remaining not 6-covered
machine. Inspecting the possible configurations, the huge job is scheduled on an
active machine with load and weight at most 4. Consequently, similarly to the
previous case, after all jobs are scheduled, the last machine has weight at least
6 and thus is 6-covered.

In all the cases, at the end all the machines are 6-covered by the semi-online
algorithm, and we conclude that the algorithm is 11/6-competitive.

4 The Lower Bound

Theorem 4.1. Any deterministic semi-online algorithm for machine cover has

competitive ratio at least 43/24.



Proof. Let ε be such that 1/ε is a large integer, let m be sufficiently large (m =
44+6 ·43/ε works). Without loss of generality, assume that LOPT = 43. Assume
for a contradiction that there exists semi-online algorithm A with competitive
ratio 43/(24 + ε). We construct a counterexample, i.e., an instance for which
LA < 24 + ε.

We formulate the counterexample as a strategy for the adversary, based on
how the algorithm A scheduled the jobs so far. The adversary wins the game
when it is possible to modify the schedule produced by the algorithm A to get
some (possibly suboptimal) schedule which has more 43-covered machines than
is the number of (24+ε)-covered machines of A. Strictly speaking, after this the
adversary continues with jobs of size 43 until all the machines are covered.

Finally, we can assume without loss of generality that the algorithm A never
schedules a job on any (24 + ε)-covered machine. (A new machine is always
available as m is large.)

Throughout the proof, the content of a machine is written in braces as num-
bers denoting jobs of those sizes In addition, a number in square brackets denotes
a set of jobs with this total size. Thus, for example, {9, 9, 10, [15]} denotes a ma-
chine with total load 43 which contains two jobs of size 9, one job of size 10 and
some other jobs.

Phase 0 The instance starts with a sequence of 2 · 43/ε jobs of size 24. The
optimum can create 43/ε of 43-covered machines, each containing two of the
jobs. Thus at the end of the phase, the algorithm A also has 43/ε machines with
two jobs, i.e., {24,24}, as otherwise the adversary wins.

Phase 1 The goal of phase 1 is to make the algorithm A to create 4·43/ε machines
of form {5, 15, 24} or alternatively 2 · 43 machines {9, 15, 19}. Table 2 shows
the strategy of the adversary for this phase. The table shows only nonempty
machines that are not (24+ε)-covered, or are newly covered (marked by a star).
The first column describes possible configurations of the schedule of A in this
phase. The second column gives the job submitted by the adversary for each
configuration, and the last column describes all the possible configurations of A
after the new job is scheduled.

It is easy to verify that all the machines (24 + ε)-covered by the algorithm A
so far are also 43-covered.

The adversary stops in the situations marked in the table as winning. If
the configuration is {5, 15}, {24} or {9, 15}, {5, 19} or {9, 15}, {5}, {19} then the
load on the uncovered machines is more than 43, and the adversary wins by
reassigning these jobs on a single 43-covered machine (all the other machines
stay as in the schedule of A). In configurations {15}, {9, 5} and {15}, {9}, {5}
the adversary submits two additional jobs, one of size 5 and one of size 4. The
algorithm A cannot cover another machine, but the adversary can convert the
schedule using one {24, 24} machine to a schedule with two machines {24, 15, 4}
and {24, 9, 5, 5}, so the adversary wins again.

If no such situation is encountered, then the adversary waits until the algo-
rithm A covers 4 · 43/ε machines by jobs {5, 15, 24} or 2 · 43 machines by jobs



Old configuration New job Possible new configurations

∅ 5 {5}
{5} 15 {5, 15}

{5}, {15}
{5, 15} 24 {5, 15, 24}∗, ∅

{5, 15}, {24} – the adversary wins

{5}, {15} 9 {5}, {9, 15}
{5, 9}, {15} – the adversary wins
{5}, {9}, {15} – the adversary wins

{5}, {9, 15} 19 {9, 15, 19}∗, {5}
{9, 15}, {5, 19} – the adversary wins
{9, 15}, {5}, {19} – the adversary wins

Table 2. The strategy of the adversary in phase 1. The machines marked by star are
newly covered (and thus removed from the configuration).

{9, 15, 19}, and then continues with phase 2. Note that in the final configuration,
either there is no non-empty (not covered) machine, or there is one machine {5}.

Phase 2 During this phase, let i1 and i2 be the indices of the two uncovered
machines with the largest loads. I.e., Li1 is the maximal load of an uncovered
machine.

The phase proceeds in 43/ε rounds. The adversary maintains a rearranged
schedule, starting with the schedule of the algorithm A after phase 1. After each
round, if the adversary has not yet won, it rearranges some of the machines from
the previous phases and the new jobs so that it has as many 43-covered machines
as A has (24+ε)-covered. In addition, in each such rearrangement the adversary
saves at least one job of size ε.

At the beginning of each round, we have some not covered machines with
loads at most 14, containing jobs of size ε and possibly one job of size 5. The
not covered machines in the rearranged schedule of the adversary may contain
jobs different from the jobs on the machines of A, but the loads are the same.

Now we describe one round of phase 2. The adversary submits jobs of size
ε until Li1 = 24. If Li2 ≥ 14, the adversary converts the schedule using one
machine {24, 24} to create two machines {24, [19]} and wins. Otherwise Li2 ≤
14 − ε and the adversary submits a job of size X = 24 − Li2 ≥ 10 + ε. The
algorithm A has to create a machine {X, [24]}, as otherwise the adversary uses
the jobs from not covered machines to create one 43-covered machine and wins.
Finally, the adversary submits jobs of size ε until Li1 ≥ 5.

Now we describe how the machines are rearranged. First, if the newly covered
machine {X, [24]} contains the job of size 5, then this job is exchanged with 5/ε
jobs of size ε from machine i1. At this point, the machine {X, [24]} contains
only X and jobs of size ε. Next, using this machine and some machines from the
previous phases, the adversary uses one of following conversions (see Figure 1
for an illustration of the conversion (1)):



M1 M2 M3 M4 M5 M6
0

24

43

24

24

5

15

24

5

15

24

5

15

24

5

15

24

[24]

X

M1 M2 M3 M4 M5 M6
0

24

43

[4]

5

5

5

24

[4]

15

24

[4]

15

24

[4]

15

24

[4]

15

24

[4 − ε]

5

X

24

Fig. 1. Conversion (1) of the schedule of the semi-online algorithm (left) to a better
schedule (right) with a saved job of size ε. Machine M1 is from phase 0, machines
M2, . . . M5 from phase 1, and machine M6 is created in phase 2.

{24, 24}, 4×{5, 15, 24}, {X, [24]}

→ {24, 5, 5, 5, [4]}, 4×{24, 15, [4]}, {24, X, 5, [4− ε]}, ε (1)

2×{24, 24}, 2×{9, 15, 19}, {X, [24]}

→ 2×{24, 19}, 2×{24, 15, [4]}, {9, 9, X, [15]}, [1] (2)

After this conversion, the number 43-covered machines in the schedule of the
adversary is equal to the number of (24 + ε)-covered machines in the schedule
of A. So the adversary may continue with another round of the phase 2.

The number of machines covered in phases 0 and 1 guarantees that 43/ε
conversions (1) or 43 conversions (2) are always possible in phase 2. When phase
2 is complete, the adversary saved at least 43/ε jobs of size ε. Now the adversary
uses these jobs to create a new 43-covered machine and wins.

As the adversary eventually always wins, we conclude that there is no 43/24-
competitive algorithm.

Acknowledgments.

We are grateful to anonymous referees for many useful comments. T. Eben-
lendr and J. Sgall were partially supported by Institutional Research Plan No.
AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of
MŠMT ČR), and grant 201/05/0124 of GA ČR.



References

1. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling on parallel machines. J. Sched., 1:55–66, 1998.

2. Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on
related machines. In APPROX, volume 1444 of Lecture Notes in Comput. Sci.,
pages 39–47. Springer, 1998.

3. Y. Azar and L. Epstein. On-line machine covering. J. Sched., 1:67–77, 1998.
4. L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related

and identical parallel machines. Algorithmica, 39:43–57, 2004.
5. D. Friesen and B. Deuermeyer. Analysis of greedy solutions for a replacement part

sequencing problem. Math. Oper. Res., 6:74–87, 1981.
6. G. J. Woeginger. A polynomial time approximation scheme for maximizing the

minimum machine completion time. Oper. Res. Lett., 20:149–154, 1997.


