
Separating Online Scheduling Algorithms with the Relative Worst Order
Ratio

Leah Epstein1, Lene M. Favrholdt2, and Jens S. Kohrt2

1 Department of Mathematics, University of Haifa, Israel, lea@math.haifa.ac.il
2 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark,

{lenem,svalle}@imada.sdu.dk

Abstract. The relative worst order ratio is a measure for the quality of online algorithms. Unlike the competitive
ratio, it compares algorithms directly without involving an optimal offline algorithm. The measure has been suc-
cessfully applied to problems like paging and bin packing. In this paper, we apply it to machine scheduling. We
show that for preemptive scheduling, the measure separates multiple pairs of algorithms which have the same com-
petitive ratios; with the relative worst order ratio, the algorithm which is “intuitively better" is also provably better.
Moreover, we show one such example for non-preemptive scheduling.

1 Introduction

The relative worst order ratio is a relatively new quality measure for online algorithms, inspired by the
Max/Max ratio (Ben-David and Borodin, 1994) and the random order ratio (Kenyon, 1996) and defined
in (Boyar and Favrholdt, 2003). Since it compares two algorithms directly, it sometimes gives more de-
tailed information than the competitive ratio. So far, the results on the relative worst order ratio have been
either consistent with competitive analysis or closer to empirical results and/or intuition than results on the
competitive ratio.

In this paper we analyze several scheduling problems where the competitive ratio does not give the right
separation of algorithms, in the hope that the relative worst order ratio would do better. In most of the cases
considered, the relative worst order ratio prefers the intuitively best algorithm whereas the competitive ratio
does not distinguish the algorithms. Analyzing the relative worst order ratio is often more straightforward
than competitive analysis. Unlike the optimal offline algorithm, which is generally not known, we know
exactly what the two compared algorithms do on a given input. In many cases, this can simplify the analysis.

We first define the two quality measures.

The Quality Measures. For any algorithm A and any sequence σ of jobs, let A(σ) be the makespan
obtained by A when scheduling σ. Similarly, let OPT(σ) be the makespan obtained by an optimal offline
algorithm.

The general definition of the competitive ratio of an algorithm A is

CRA = inf {c | ∃b : ∀σ : A(σ) ≤ c · OPT(σ) + b} .

However, scheduling problems are typically scalable. This means that all job lengths of an adversarial in-
stance can be scaled by any factor, and thus the additive constant b has no effect. Hence, for the problems
considered in this paper, the definition reduces to

CRA = sup
σ

A(σ)
OPT(σ)

.

2 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

For the problems considered in this paper, the relative worst order ratio is defined in the following
way (a general, and thus slightly more involved, definition can be found in (Boyar et al, 2005)). For any
algorithm A and any input sequence σ, let AW(σ) be the makespan of A on its worst permutation of σ, i.e.,
AW(σ) = maxp A(p(σ)), where p is a permutation on |σ| elements. If AW(σ) ≥ BW(σ) for every sequence
σ, we say that the two algorithms are comparable, and the relative worst order ratio of A to B is

WRA,B = sup
σ

AW(σ)
BW(σ)

.

For some pairs of algorithms, there are sequences σ such that AW(σ) > BW(σ) and other sequences σ′

such that AW(σ′) < BW(σ′). In this case we say that the two algorithms are incomparable. For compa-
rable algorithms, the measure is transitive. Specifically, it is shown in (Boyar and Favrholdt, 2003) that
given three algorithms A,B, C such that WRC,B ≥ 1 and WRB,A ≥ 1, then WRC,A ≥ 1 and moreover
min{WRC,B, WRB,A} ≤ WRC,A ≤ WRC,B · WRB,A.

The relative worst order ratio has previously been applied to bin packing (Boyar and Favrholdt, 2003),
paging (Boyar et al, 2005), seat reservation (Boyar and Medvedev, 2004), and bin coloring (Kohrt, 2004).
In this paper, the measure is applied to scheduling.

The Scheduling Problems. In the basic scheduling problem, we are given m machines and a sequence
of jobs, each characterized by the time it takes to execute it on a unit speed machine. For problems where
the machines have different speeds, a job of size p requires time p

s when run on a machine of speed s.
The load of a machine is the total size of jobs or parts of jobs scheduled on this machine. The goal is to
minimize the makespan, i.e., the time when all jobs are completed. The jobs arrive one by one. Each job
must be scheduled at arrival, and this schedule cannot be changed afterwards. In the non-preemptive case, a
job has to run without interruption on a single machine. In the preemptive case, the algorithms are allowed
to preempt the job and run parts of it on different machines, as long as two parts of a job are never run at the
same time. For preemptive algorithms it may make sense to use idle time. However, the algorithms stated
and defined in this paper do not use idle time.

We study four scheduling problems, preemptive and non-preemptive scheduling on identical machines
and on two uniformly related machines.

Results. We first consider the preemptive problems. For identical machines, we define a class of algorithms.
This class generalizes two previously known algorithms, those of (Seiden, 2001) and of (Chen et al, 1995).
For any pair of algorithms in this class, one algorithm A is better than the other algorithm B in the sense
that A is never worse than B and on some sequences it is better. In contrast to the competitive ratio which is
the same for all these algorithms, the relative worst order ratio shows this separation. The previously known
algorithms are the two extremes of this class, being the best and the worst algorithms in the class. For two
uniformly related machines we again consider two previously known algorithms, of (Wen and Du, 1998)
and (Epstein et al, 2001). We generalize the first of them into a class of algorithms, all having the optimal
competitive ratio. All the new algorithms in the class turn out to be better than the original one. We compare
all these algorithms to the second one, and find that this algorithm is strictly better than all the algorithms in
the class. Again, we show a clear separation between any two algorithms in the presented class.

For non-preemptive scheduling on two related machines, we again show a clear separation between two
algorithms having the same competitive ratio. For non-preemptive scheduling on identical machines, the
three algorithms considered are shown to be incomparable.

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 3

2 Preemptive scheduling to minimize makespan

We use the following notation. For any sequence σ of n jobs with sizes p1, p2, . . . , pn, we let P and pmax
denote the total and maximum size of the jobs in σ, respectively. Similarly, P t and pt

max denote the total and
maximum size of the first t jobs J1, J2, . . . , Jt in σ. For any machine mi and any job Jt, Lt

i denotes the load
of machine mi just after scheduling J1, J2, . . . , Jt. For any algorithm A, A(σ) denotes the makespan of A’s
schedule for σ. In particular, OPT(σ) denotes the makespan of an optimal offline algorithm OPT.

2.1 Identical machines

For the scheduling problem studied in this section, we have m ≥ 2 identical machines available, and pre-
emption is allowed. We study two known algorithms and a generalization of the two.

Two algorithms with optimal competitive ratio. Two online algorithms with optimal competitive ratio
have been suggested for this problem, PREEMPTIVE (PRE) by Chen, van Vliet, and Woeginger (1995) and
MODIFIED PREEMPTIVE (MPRE) by Seiden (2001). In short, they both keep track of a maximal allowable
makespan M t, where M t is defined differently for the two algorithms. The algorithm MPRE is defined
so that it uses at most one preemption per job. The other algorithm PRE is defined to use up to m − 1
preemptions for each job. It is explained in (Chen et al, 1995), however, that it is not difficult to adapt it
so that it also uses at most one preemption per job. Moreover, with the same definition of M t, the two
algorithms would maintain the same set of loads.

MPRE schedules each job Jt in the following way. Let m be the currently most loaded machine just
before Jt is scheduled. The job is scheduled completely on m, if this gives a makespan of at most M t.
Otherwise, as much as possible of the job is scheduled on the least loaded machine m′ among those on
which the job cannot finish earlier than M t, and the rest of it is scheduled on the most loaded machine
among those that have load less than m′, giving a makespan of exactly M t.

Let m1, . . . ,mm be the sequence of machines sorted by non-decreasing load. PRE assigns the (t + 1)st

job Jt+1 as follows. First, a new maximal allowable makespan M t+1 is computed. Then, on each machine
mj , the time interval Ij is reserved for job Jt+1, where

Im = [Lt
m , M t+1] and Ij = [Lt

j , Lt
j+1], for 1 ≤ j ≤ m− 1 .

Those intervals are disjoint. The total processing time that can be assigned on all intervals is

m−1∑
j=1

(Lt
j+1 − Lt

j) + M t+1 − Lt
m = M t+1 − Lt

1.

To assign Jt+1, go from Im to I1, putting a part of the job, as large as possible in each interval, until all the
job is assigned. After the assignment there will be some fully occupied intervals Iz+1, · · · , Im, some empty
intervals I1, · · · , Iz−1 and a partially or fully occupied interval Iz .

Chen, van Vliet, and Woeginger (1995) prove that using this strategy always results in a feasible sched-
ule, if

M t
PRE = max

{
β

P t

m
, β pt

max

}
, where β =

θm

θm − 1
, θ =

m

m− 1

4 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

is used as M t. Since the optimal offline makespan is max
{

P
m , pmax

}
(McNaughton, 1959), the competitive

ratio obtained is β. Even if randomization is allowed, this is the optimal competitive ratio. As m approaches
infinity, β approaches e

e−1 ≈ 1.58 from below. Note that β/m < 1, for m ≥ 2.
Seiden (2001) proves that using

M t
MPRE = max

{
β

P t

m
,

m− β

m− 1
pt

max +
β − 1
m− 1

P t

}
also gives a feasible schedule for any job sequence. For any input sequence, the makespan of MPRE is never
more, and sometimes less, than the makespan of PRE, since

for pmax >
P

m
,

m− β

m− 1
pmax +

β − 1
m− 1

P < β pmax .

In contrast to the competitive ratio, the relative worst order ratio reflects the fact that MPRE is never
worse than PRE and sometimes better (Corollary 1).

A generalized algorithm. We define a generalized algorithm with a parameter b, 0 ≤ b ≤ β−1
m−1 , ADAPTED

PREEMPTIVEb (APREb), and use

M t
b = max

{
β

P t

m
, (β −mb) pt

max + bP t

}
as M t. In the analysis of the algorithm, we assume that the algorithm, like PRE, may use several preemptions
per job (but, of course, the results are also valid for the algorithm using at most one preemption per job, like
MPRE). Note that, for b = 0, M t

b = M t
PRE, whereas using b = β−1

m−1 leads to M t
b = M t

MPRE. Also note that
β −mb is always positive.

We prove that APREb is well-defined and has competitive ratio β (Theorem 1). The relative worst order
ratio shows that a larger value of b implies a better algorithm (Theorem 2) even though all these algorithms
have the same competitive ratio.

The algorithms maintain the following three invariants. These invariants are the same as the invariants
defined in (Seiden, 2001), except the change of M into M t

b .

1. At any time t, Lt
1 ≤ Lt

2 ≤ · · · ≤ Lt
m.

2. At any time t, Lt
m ≤ M t

b .

3. At any time t, for every 1 ≤ k ≤ m,
k∑

i=1

Lt
i ≤

θk − 1
θm − 1

· P t

The first two invariants follow from the definition of the algorithms. The third is proved in Lemma 3.
First, we use the invariants to show that it is always possible to partition a job among its designated intervals
(Lemma 2). Lemma 2 uses the following lemma, showing that which term is maximum in the definition of
M t

b depends only on P t, pt
max, and m; not on b.

Lemma 1. After t jobs, APREb has M t
b = β P t

m if and only if P t

m ≥ pt
max.

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 5

Proof. This follows from

β
P t

m
≥ (β −mb)pt

max + bP t ⇔
(

β

m
− b

)
P t ≥ (β −mb)pt

max ⇔ P t

m
≥ pt

max .

ut

Lemma 2. If the invariants are fulfilled at step t, then the reserved intervals are sufficient to assign Jt+1.

Proof. We consider two cases and show that the assignment is successful in both cases.

– Case 1: pt+1 > P t+1

m . The total size of the reserved intervals is

M t+1
b − Lt

1 ≥ (β −mb) pt+1
max + bP t+1 − θ − 1

θm − 1
P t, by Lemma 1 Mb and the third invariant

≥ (β −mb + b)pt+1 +
(

b− θ − 1
θm − 1

)
P t, since pt+1

max ≥ pt+1 and P t+1 = pt+1 + P t.

Note that b− θ−1
θm−1 = b− β−1

m−1 :

β − 1
m− 1

=
θ − 1

θm − 1

⇔ θm

θm − 1
− 1 =

θ − 1
θm − 1

(m− 1)

⇔ θm − (θm − 1) = (θ − 1)(m− 1)

⇔ 1 =
(

m

m− 1
− 1
)

(m− 1) = m− (m− 1)

Using P t < (m− 1)pt+1 (which follows from pt+1 > P t+1

m and P t+1 = pt+1 + P t), we get

M t+1
b − Lt

1 ≥ (β −mb + b)pt+1 +
(

b− β − 1
m− 1

)
(m− 1)pt+1 = pt+1 .

Therefore pt+1 can be assigned into the intervals.

– Case 2: pt+1 ≤ P t+1

m . The total size of the reserved intervals is

M t+1
b − Lt

1 ≥ β

m
P t+1 − β − 1

m− 1
P t =

β

m

(
P t + pt+1

)
− β − 1

m− 1
P t ≥ β

m
pt+1 +

m− β

m(m− 1)
P t .

Using P t ≥ (m− 1)pt+1 we get, M t+1
b −Lt

1 ≥ pt+1. Therefore pt+1 can be assigned into the intervals
in this case as well.

ut

To complete the proof that the algorithm is well-defined, we need to show that all invariants are kept
after an assignment of a new job. For the first two invariants, this is clear from the definition of the algorithm.
Since all loads are initially zero, it suffices to prove the following lemma for the last invariant.

6 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

Lemma 3. If the third invariant is fulfilled after step t, then it is also satisfied after step t + 1

Proof. According to the definition of the algorithm, there exists a machine mz such that for i < z, Lt+1
i =

Lt
i , for z < i ≤ m, Lt+1

i = Lt
i+1, and Lt

z < Lt+1
z ≤ Lt

z+1 (for convenience let Lt
m+1 = M t

b).

– For k < z,
k∑

i=1

Lt+1
i =

k∑
i=1

Lt
i ≤ θk − 1

θm − 1
P t ≤ θk − 1

θm − 1
P t+1 .

– For k ≥ z, it is sufficient to show the inequality

P t+1 −
k∑

i=1

Lt+1
i =

m∑
i=k+1

Lt+1
i ≥ θm − θk

θm − 1
P t+1 = P t+1 − θk − 1

θm − 1
P t+1 .

Since k + 1 > z, Lt+1
i = Lt

i+1, and the left hand side is equal to

m∑
i=k+1

Lt+1
i =

(
m∑

i=k+2

Lt
i

)
+ M t+1

b =

(
P t −

k+1∑
i=1

Lt
i

)
+ M t+1

b

≥ θm − θk+1

θm − 1
P t + M t+1

b ≥ θm − θk+1

θm − 1
(
P t+1 − pt+1

max
)

+ M t+1
b

Hence, it suffices to show

M t+1
b ≥ θm − θk+1

θm − 1
pt+1

max +
θk+1 − θk

θm − 1
P t+1.

This is proved using that by definition,

M t+1
b ≥ βP t+1

m
and M t+1

b ≥ (β −mb)pt+1
max + bP t+1.

Let α = θm−θk+1

(θm−1)(β−mb) and note that 0 ≤ α ≤ 1. Multiplying the second inequality is by α and the first
by 1− α and adding the two resulting inequalities, we arrive at

M t+1
b ≥ θm − θk+1

θm − 1
pt+1

max +
θm − θk+1

(θm − 1)(β −mb)
bP t+1 +

(
1− θm − θk+1

(θm − 1)(β −mb)

)
βP t+1

m

=
θm − θk+1

θm − 1
pt+1

max +
θm − θk+1

(θm − 1)(β −mb)

(
b− β

m

)
P t+1 +

βP t+1

m

=
θm − θk+1

θm − 1
pt+1

max −
θm − θk+1

(θm − 1)
P t+1

m
+

βP t+1

m

=
θm − θk+1

θm − 1
pt+1

max −
θm − θk+1 + β(θm − 1)

(θm − 1)
P t+1

m

=
θm − θk+1

θm − 1
pt+1

max +
θk+1

(θm − 1)
P t+1

m

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 7

Thus, we just need to prove that

θk+1

(θm − 1)
P t+1

m
≥ θk+1 − θk

θm − 1
P t+1 ,

which is equivalent to
θk+1

m
≥ θk+1 − θk .

Now,

θk+1

m
≥ θk+1 − θk ⇔ 1

m

(
m

m− 1

)k+1

≥
(

m

m− 1

)k+1

−
(

m

m− 1

)k

⇔ 1 ≥ 1 .

This completes the proof of the inequality

M t+1
b ≥ θm − θk+1

θm − 1
pt+1

max +
θk+1 − θk

θm − 1
P t+1 ,

concluding the case k ≥ z.
ut

We are now ready to prove Theorem 1.

Theorem 1. For every 0 ≤ b ≤ β−1
m−1 , APREb is well-defined and has competitive ratio β.

Proof. By Lemmas 2 and 3 and the discussion before Lemma 3, the algorithm is well-defined.
The competitive ratio is not better than β, since this is the optimal competitive ratio. For the upper bound

on the competitive ratio, consider any input sequence σ. If Mb(σ) = β P
m , then clearly the competitive ratio

is at most β, since OPT = max{ P
m , pmax}. Otherwise, by Lemma 1, P < m pmax and thus, Mb(σ) < βpmax.

ut

We can now find the relative worst order ratios of pairs of algorithms with optimal competitive ratio. For
this purpose, we prove the following lemma.

Lemma 4. Let σ be an input sequence with n jobs and let 0 ≤ b ≤ β−1
m−1 . A permutation, σw, of σ where the

jobs appear in order of non-increasing sizes is a worst order for APREb, and

APREb(σw) = min {P, Mb(σ)} .

Proof. Note that Lt+1
m = min{Lt

m + pt+1, M t+1
b }. Since Lt

m + pt+1 as well as M t+1
b are maximized when

P t+1 is maximized, we can prove by induction that the largest makespan after i jobs is achieved if the first
i jobs are the largest ones. Therefore, no order can be worse than a non-increasing order. Thus, it is enough
to show that a non-increasing order gives APREb(σ) = Ln

m = min{P,Mb(σ)}. Let P = p1, . . . , pn be the
sorted list of job sizes.

We prove that if Lt
m = M t

b then Lt+1
m = M t+1

b . Assume that Lt
m = M t

b . Then, the interval reserved for
job Jt+1 on the most loaded machine is M t+1

b −M t
b .

8 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

– If M t+1
b = β P t+1

m , then

M t+1
b −M t

b = β
P t+1

m
−M t

b ≤ β
P t+1

m
− β

P t

m
=

β

m
pt+1 < pt+1, since

β

m
< 1.

Thus, the interval is filled completely, giving a makespan of M t+1
b = β P t+1

m .

– Otherwise, M t+1
b = (β −mb) pt+1

max + bP t+1, and since pt
max = pt+1

max = p1,

M t+1
b −M t+1

b ≤ bP t+1 − bP t = bpt+1 < pt+1, since b < 1.

Thus again, the interval is filled completely, giving a makespan of M t+1
b = (β −mb) pt+1

max + bP t+1.

We are now ready to prove the lemma. As long as jobs are assigned so that the designated interval on the
most loaded machine is not filled, there are no jobs assigned to other machines, and the makespan is P t at
time t. Once this interval is filled completely, we showed that it will be filled in the next steps as well. This
proves the claim. ut

Lemma 5. For every pair of values 0 ≤ b1 < b2 ≤ β−1
m−1 , APREb1 and APREb2 are comparable, and

APREb2 is never worse than APREb1 .

Proof. Consider any input sequence σ. By Lemma 4, it is sufficient to prove that Mb2(σ) ≤ Mb1(σ), and
by Lemma 1, it is sufficient to consider the case when P < mpmax. The claim then immediately follows by
the definition of Mb, since Mb2(σ)−Mb1(σ) = (P −mpmax)(b2 − b1) < 0. ut

Lemma 6. For any pair of values 0 ≤ b1 < b2 ≤ β−1
m−1 , WRAPREb1

,APREb2
≥ β −mb1

β(1 + b2 − b1)−mb2
.

Proof. By Lemma 5, it is sufficient to find an input sequence giving the stated ratio. Let λ1 = 1− b1,
λ2 = β − 1− b1(m− 1). Note that λ1 > λ2, since 2 − b1(2 − m) > β as β < 2. Moreover, since
b1 < β−1

m−1 , we have λ2 > 0.
Consider the input sequence σ = 〈λ1, λ2〉. By Lemma 4, it is sufficient to consider this ordering of the

two jobs. We have P = β −mb1, and pmax = λ1 = 1− b1. Note that, for any b, we get the same result with
APREb, if the last job of size λ2 is split into smaller jobs of total size λ2.

We have P
pmax

= β−mb1
1−b1

< m (since β < m), and thus P
m < pmax. Hence, by Lemma 1, we must have

Mbi
(σ) = (β−mbi) pmax + biP . Now, by Lemma 4, APREbi

(σ) = Mbi
(σ) if any only if (β−mbi) pmax +

biP ≤ P . This is equivalent to P
pmax

≥ β−mbi

1−bi
, which holds for b1 with equality by the definitions of λ1 and

λ2. Moreover, β−mbi

1−bi
is a monotonically decreasing function of bi, and hence β−mb2

1−b2
≤ β−mb1

1−b1
.

Thus,

APREb1(σ)
APREb2(σ)

=
(β −mb1)(λ1) + b1(λ1 + λ2)
(β −mb2)(λ1) + b2(λ1 + λ2)

=
(β −mb1)(1− b1) + b1(β −mb1)
(β −mb2)(1− b1) + b2(β −mb1)

=
β −mb1

β(1− b1 + b2)−mb2
.

ut

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 9

The following lemma gives a matching upper bound on the relative worst order ratio.

Lemma 7. For any pair of values 0 ≤ b1 < b2 ≤ β−1
m−1 , WRAPREb1

,APREb2
≤ β −mb1

β(1 + b2 − b1)−mb2
.

Proof. Consider any input sequence σ. By Lemma 4, there are three possible cases:

– If APREb2(σ) = P , then APREb1(σ) ≤ APREb2(σ).
– If APREb2(σ) = β

mP , then by Lemma 1, pmax ≤ P
m , and APREb1(σ) = APREb2(σ).

– Finally, if APREb2(σ) = (β −mb2) pmax + b2P , then by Lemma 1, pmax ≥ P
m .

By the same lemma we get M t
b1

= (β − mb1) pmax + b1P , and thus APREb1(σ) = min{P, (β −
mb1) pmax + b1P}. If APREb1(σ) = P , we have P

pmax
≤ β−mb1

1−b1
. Consequently,

APREb1(σ)
APREb2(σ)

=
P

(β −mb2) pmax + b2P
≤ P

(β −mb2) P 1−b1
β−mb1

+ b2P
=

β −mb1

β(1− b1 + b2)−mb2
.

Otherwise, P
pmax

≥ β−mb1
1−b1

and APREb1(σ) = (β −mb1) pmax + b1P . We have,

APREb1(σ)
APREb2(σ)

=
(β −mb1) pmax + b1P

(β −mb2) pmax + b2P
=

(β −mb1) + b1
P

pmax

(β −mb2) + b2
P

pmax

.

This is a function which is monotonically decreasing in P
pmax

. Thus, we can substitute P
pmax

= β−mb1
1−b1

to

find its maximum, which is again β−mb1
β(1−b1+b2)−mb2

.
ut

As the ratios proved in the two lemmas match, we arrive at the following theorem.

Theorem 2. For any pair of values 0 ≤ b1 < b2 ≤ β−1
m−1 ,

WRAPREb1
,APREb2

=
β −mb1

β(1 + b2 − b1)−mb2
> 1 ,

where β = θm

θm−1 and θ = m
m−1 .

Proof. The ratio follows directly from Lemmas 6 and 7. It is easily checked that the ratio is greater than 1:

β −mb1

β(1 + b2 − b1)−mb2
> 1

⇔ β −mb1 > β(1 + b2 − b1)−mb2, since β(1 + b2 − b1)−mb2 > 0
⇔ m(b2 − b1) > β(b2 − b1)

ut

Substituting b1 = 0 and b2 = β−1
m−1 in β−mb1

β(1−b1+b2)−mb2
, we get the following corollary.

Corollary 1. WRPRE,MPRE = β m−1
m+β2−2β

, where β = θm

θm−1 and θ = m
m−1 .

For m = 2, 3, and 4, the ratio WRPRE,MPRE is 6
5 = 1.2, 171

131 ≈ 1.365, and 11200
8203 ≈ 1.466, respectively.

As m approaches infinity, the ratio approaches β, the competitive ratio of the two algorithms. Note that for
any other pair of algorithms considered in this section, the relative worst order ratio is smaller.

10 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

2.2 Two related machines

We now turn to the case of two uniformly related machines, m1 of speed 1 and m2 of speed s ≥ 1. As in
the previous section, the goal is to minimize the makespan, and preemption is allowed.

For any input sequence σ, a straightforward optimal offline algorithm was found by Gonzalez and
Sahni (1978). The makespan found by this algorithm is

OPT(σ) = max
{

P

s + 1
,
pmax

s

}
.

Two algorithms with optimal competitive ratio. Two slightly different deterministic online algorithms
found independently by Wen and Du (1998), and by Epstein et al (2001) both have an optimal competitive
ratio of

CR = α =
(s + 1)2

s2 + s + 1
= 1 +

s

s2 + s + 1
.

This is 4
3 for s = 1, and decreases for increasing s. The ratio is optimal even if randomization is allowed.

The algorithm of Wen and Du (1998) works similarly to the algorithm PRE (Chen et al, 1995). For job
Jt+1, it reserves the time interval

[
Lt

2
s , α OPTt+1

]
on the fast machine, and the interval

[
Lt

1,
Lt

2
s

]
on the

slow machine. Each job is assigned first to the reserved interval on the fast machine, and the remainder if
any, to the other reserved interval.

The algorithm of Epstein et al (2001) is different in the sense that on assignment of a job, it always
assigns to the slow machine as much as possible, but not more than P t+1

s2+s+1
, and not more than Lt

2
s (to avoid

overlap). The remainder of the job is assigned to the fast machine.

A class of algorithms with optimal competitive ratio. We define a class of algorithms called TWO-PREEMPTIVEc

(TPREc) which use a parameter c, such that 0 ≤ c ≤ cmax, cmax = s2

s2+s+1
. Whenever a new job J t+1 arrives,

schedule as large a fraction as possible on the fast machine within the time interval
[

1
sLt

2,
1
sM t+1

c

]
, where

M t+1
c = max

{
α

s

s + 1
P t+1, pt+1

max

(
1 +

c

s

)
+
(
P t+1 − pt+1

max

)
(cmax − c)

}
.

Schedule the remaining part of Jt+1 on the slow machine, within the time interval
[
Lt

1,
Lt

2
s

]
.

In some cases, TPREc achieves a makespan which is better than that of the algorithm of Wen and
Du (1998). Later, we also compare it to the algorithm of Epstein et al (2001). First, we prove that the
algorithm is well-defined and has an optimal competitive ratio of α (Theorem 3). For that we need the
following lemma.

Lemma 8. After t jobs, TPREc has M t
c = α s

s+1 P t if and only if P t ≥ s+1
s pt

max.

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 11

Proof. This follows from

s(s + 1)
s2 + s + 1

P t ≥ pt
max

(
1 +

c

s

)
+
(
P t − pt

max

)(s2

s2 + s + 1
− c

)
⇔ s + c(s2 + s + 1)

s2 + s + 1
P t ≥

(
s + 1

s2 + s + 1
+ c

s + 1
s

)
pt
max

⇔
(
s + c(s2 + s + 1)

)
P t ≥ s + 1

s

(
s + c(s2 + s + 1)

)
pt
max

⇔ P t ≥ s + 1
s

pt
max

ut

Theorem 3. For any c, 0 ≤ c ≤ cmax, TPREc is well-defined and has competitive ratio α.

Proof. First, we prove that the algorithm is well-defined, i.e., the reserved time intervals are always suffi-
ciently long. To this end we show that the algorithm maintains the following two invariants.

1. Lt
2 ≤ M t

c

2. Lt
1 ≤

P t

s2 + s + 1

We consider the jobs to be scheduled one at a time, and show that each job can be scheduled observing
the two invariants. For J1, the invariants clearly hold, since the job is completely scheduled on the fast
machine, and M1

c = p1(1 + c
s) ≥ p1.

Now consider Jt+1, t ≥ 1, and assume that the invariants hold just before Jt+1 is assigned. By the
definition of the algorithm, the first invariant still holds after assigning Jt+1. As for the second invariant, if
Lt+1

1 = Lt
1 then it is clearly maintained. Otherwise Lt+1

1 ≤ P t+1 − M t+1
c ≤ P t+1 − α sP t+1

s+1 = P t+1

s2+s+1
.

This is exactly the second invariant.
The amount of time available for the new job is

(
M t+1

c − Lt
2

)
+
(

Lt
2

s
− Lt

1

)
= M t+1

c +
Lt

2

s
− P t.

To complete the proof that the algorithm is well-defined, we just need to prove that this amount is at least
pt+1, or equivalently, that

M t+1
c ≥ −Lt

2

s
+ P t + pt+1 =

Lt
1 − P t

s
+ P t + pt+1 =

Lt
1

s
+ P t+1 − P t

s
.

We consider two cases depending on which of the two terms in the definition of M t+1
c is maximum.

– If M t+1
c = α sP t+1

s+1 then By Lemma 8, P t+1 ≥ s+1
s pt+1

max. Thus,

P t = P t+1 − pt+1 ≥ P t+1 − pt+1
max ≥ 1

s
pt+1
max ≥ 1

s
pt+1 .

12 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

Further, by using the invariant Lt
1 ≤ P t

s2+s+1
it suffices to prove

M t+1
c = α

sP t+1

s + 1
=

s2 + s

s2 + s + 1
(
P t + pt+1

)
≥ P t

s(s2 + s + 1)
+ P t+1 − P t

s
.

By rearranging the terms and using P t+1 = P t + pt+1, we get

s

s2 + s + 1
P t ≥ 1

s2 + s + 1
pt+1 ,

which follows directly from P t ≥ 1
spt+1.

– In the second case, by the definition of M t+1
c we need to show

M t+1
c = pt+1

max

(
1 +

c

s

)
+
(
P t+1 − pt+1

max

)(s2

s2 + s + 1
− c

)
≥ Lt

1

s
+ P t+1 − P t

s
.

Rearranging we get(
s + 1

s2 + s + 1
+

s + 1
s

c

)
pt+1
max ≥ Lt

1

s
+
(

s + 1
s2 + s + 1

+ c

)
P t+1 − P t

s
.

By Lemma 8, pt+1
max ≥ s

s+1P t+1. Substituting s
s+1P t+1 for pt+1

max on the left hand side, we get P t

s(s2+s+1)
≥

Lt
1

s , which is implied immediately by the second invariant.

Next, we show that TPREc(σ) ≤ α OPT(σ). This is clear in the first case. In the second case, P ≤
s+1

s pmax, i.e., P − pmax ≤ pmax
s . Thus,

TPREc(σ) ≤ pmax

s

(
1 +

c

s

)
+

pmax

s2

(
s2

s2 + s + 1
− c

)
=

pmax

s

(
1 +

c

s
+

s

s2 + s + 1
− c

s

)
= α

pmax

s
≤ α OPT(σ) .

ut

We first establish the relative worst order ratio between pairs of algorithms in the class TPREc. Similarly
to Lemma 4, we can show the following lemma in which we identify the properties of the outputs of the
algorithms defined above and find an order which is always a worst ordering.

Lemma 9. For TPREc and for every c, and any input sequence σ, a non-increasing order is always a worst
order. The makespan for a worst permutation, σw, of σ is

TPREc(σw) = min
{

P

s
,
1
s
Mc(σ)

}
.

Proof. Note that no order can give a larger makespan, so it is enough to show that a non-increasing order
actually gives this makespan. Let σ be any input sequence, where the job sizes are given in non-increasing
order, i.e., p1 = pmax and pi−1 ≥ pi for i ≥ 2. Note that pt

max = pmax = p1 for all t.
First, we prove the following claim. If the makespan of TPREc after job Jt is assigned is 1

sM t
c , then the

makespan after Jt+1 is assigned must be 1
sM t+1

c . We have two cases:

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 13

– If M t+1
c = α sP t+1

s+1 , then using M t
c ≥ α sP t

s+1 , we get that the total load that can be scheduled within the
designated interval on the fast machine for Jt+1 is at most

M t+1
c −M t

c ≤ α
sP t+1

s + 1
− α

sP t

s + 1
= α

s

s + 1
pt+1 =

s2 + s

s2 + s + 1
pt+1 < pt+1 ,

i.e., the interval is filled completely.
– If M t+1

c = pt+1
max

(
1 + c

s

)
+
(
P t+1 − pt+1

max

)
(cmax − c) , then the total load that can be scheduled within

the designated interval on the fast machine for Jt+1 is

M t+1
c −M t

c ≤ pt+1 (cmax − c) < pt+1 ,

i.e., the interval is again filled completely. The claim is thereby proved.

We are now ready to prove the lemma. As long as jobs are assigned so that the designated interval on
the fast machine is not filled, there are no jobs assigned to the slow machine, and the makespan is P t

s after
job Jt. Once this interval is filled completely, we showed that it will be filled in the next steps as well. This
proves the lemma. ut

Lemma 10. For every pair of values 0 ≤ c1 < c2 ≤ cmax, TPREc1 and TPREc2 are comparable, and
TPREc1 is never worse than TPREc2 .

Proof. Consider any input sequence σ. By Lemma 9, we only need to check the relation between the
makespans of the two algorithms for a non-increasing sorted order of jobs with makespan as shown in
the Lemma.

We claim that TPREc2 is never better than TPREc1 according to the relative worst order ratio. By
Lemma 9, there are three cases:

– If TPREc2(σ) = P
s , then clearly TPREc1(σ) ≤ TPREc2(σ).

– If TPREc2(σ) = α P
s+1 , then by Lemma 8, pmax ≤ s P

s+1 and thus, TPREc1(σ) ≤ Mc(σ)
s = α P

s+1 =
TPREc2(σ).

– If the makespan of TPREc2 is given by the second term in the maximum, then by Lemma8, pmax ≥ sP
s+1 .

Therefore the makespan of TPREc1 can either be given by the second term in the maximum, or it can
be less (i.e., equal to P

s). The second term in the maximum is a function which is monotonically non-
decreasing as a function of c for the case pmax ≥ sP

s+1 , therefore the makespan of TPREc1 is not larger
than the one of TPREc2 .

ut

Lemma 11. For any pair of values 0 ≤ c1 < c2 ≤ cmax,

WRTPREc2 ,TPREc1
≥ c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

Proof. Consider the input sequence σ =
〈
s2 + s + s(s2 + s + 1)c2, (s2 + s + 1)c2

〉
. By Lemma 9, it is

enough to consider this permutation of the sequence.

14 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

We have P = s2 + s + c2(s + 1)(s2 + s + 1), pmax = s2 + s + c2 · s(s2 + s + 1), and s+1
s pmax =

(s + 1)(s + 1 + c2(s2 + s + 1)) > P . Thus, by Lemma 8,

Mc2 = pmax

(
1 +

c2

s

)
+ (P − pmax)

(
s2

s2 + s + 1
− c2

)
= s2 + s + c2 · s(s2 + s + 1) + c2(s + 1 + c2(s2 + s + 1)) + c2s

2 − c2
2(s

2 + s + 1)

= s2 + s + c2(s + 1)(s2 + s + 1) = P .

This function is monotonically increasing as a function of c2, hence Mc1 < Mc2 = P . Thus, a lower bound
on WRTPREc2 ,TPREc1

is given by Mc2
Mc1

. We have

Mc1 = pmax

(
1 +

c1

s

)
+ (P − pmax)

(
s2

s2 + s + 1
− c1

)
= s2 + s + c2 · s(s2 + s + 1) + c1(s + 1 + c2(s2 + s + 1)) + c2s

2 − c1c2(s2 + s + 1)

= s2 + s + c2s(s2 + 2s + 1) + c1(s + 1)
= (s + 1) (s + c2s(s + 1) + c1) .

This gives the stated lower bound. ut

Lemma 12. For any pair of values 0 ≤ c1 < c2 ≤ cmax,

WRTPREc2 ,TPREc1
≤ c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

Proof. Consider any input sequence σ. By Lemma 9, we only need to consider the sequence in non-
increasing size order. By Lemma 9, there are three possible cases:

– If TPREc1(σ) = P
s , then TPREc2(σ) ≤ TPREc1(σ) (and thus, by Lemma 10, TPREc2(σ) = TPREc1(σ)).

– If TPREc1(σ) = α P
s+1 , then by Lemma 8, pmax ≤ sP

s+1 , and TPREc2(σ) = TPREc1(σ).
– Finally, if the makespan of TPREc1 is given by the second term in the maximum (with the parameter c1),

by Lemma 8, P ≤ s+1
s pmax, and thus by the same lemma, the makespan of TPREc2 is either given by

the second term in the maximum (with the parameter c2) or equal to P
s .

– If TPREc2(σ) = P
s , we get

WRTPREc2 ,TPREc1
=

P

pmax

(
1 + c1

s

)
+ (P − pmax) (cmax − c1)

=
P

pmax(
1 + c1

s

)
+
(

P
pmax

− 1
)

(cmax − c1)
.

This function is monotonically non-decreasing in the ratio P
pmax

, and thus we calculate the maximum

ratio. Since TPREc2(σ) = P
s , P ≤ pmax

(
1 + c2

s

)
+ (P − pmax)

(
s2

s2+s+1
− c2

)
, which is equivalent

to

P

(
c2 +

s + 1
s2 + s + 1

)
≤ pmax

(
c2

(
1 +

1
s

)
+

s + 1
s2 + s + 1

)
.

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 15

Thus,

P

pmax

≤
c2

(
1 + 1

s

)
+ s+1

s2+s+1

c2 + s+1
s2+s+1

=
c2

(
s2 + s + 1

)
+ s

c2 (s2 + s + 1) s
s+1 + s

=
x + s
s

s+1x + s
,

where x = c2

(
s2 + s + 1

)
. Substituting this in the upper bound on WRTPREc2 ,TPREc1

we get

WRTPREc2 ,TPREc1
≤

x+s
s

s+1
x+s(

1 + c1
s

)
+
(

x+s
s

s+1
x+s −

s
s+1

x+s
s

s+1
x+s

)
(cmax − c1)

=
x + s(

1 + c1
s

) (
s

s+1 x + s
)

+
(
x− s

s+1 x
)

(cmax − c1)
=

x + s

N(x)
,

where

N(x) =
s

s + 1
x + s +

(
1

s + 1
x + 1− x +

s

s + 1
x

)
c1 +

(
x− s

s + 1
x

)
cmax

=
s

s + 1
x + s + c1 + x cmax −

s

s + 1
x cmax

=
s

s + 1
x (1− cmax) + s + c1 + x cmax

=
s

s + 1
c2 (s2 + s + 1)

(
1− s2

s2 + s + 1

)
+ s + c1 + c2 (s2 + s + 1)

s2

s2 + s + 1
= c2 s + s + c1 + c2 s2

This gives the stated upper bound.
– If TPREc2(σ) < P

s , we get

WRTPREc2 ,TPREc1
=

pmax

(
1 + c2

s

)
+ (P − pmax) (cmax − c2)

pmax

(
1 + c1

s

)
+ (P − pmax) (cmax − c1)

=

(
1 + c2

s

)
+
(

P
pmax

− 1
)

(cmax − c2)(
1 + c1

s

)
+
(

P
pmax

− 1
)

(cmax − c1)
.

This function is monotonically non-increasing as a function of the ratio P
pmax

, and thus we calculate

the maximum ratio. Since TPREc2(σ) < P
s , we get P ≥ pmax

(
1+ c2

s

)
+(P − pmax)

(
s2

s2+s+1
− c2

)
.

Thus, similarly to the previous case we get

P

pmax

≥
c2

(
s2 + s + 1

)
+ s

c2 (s2 + s + 1) s
s+1 + s

= 1 +
1
s

c2(s2 + s + 1)
c2(s2 + s + 1) + s + 1

,

16 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

Substituting this in the upper bound on WRTPREc2 ,TPREc1
we get (using the definition of cmax and

simple algebra),

WRTPREc2 ,TPREc1
≤

(s + c2)
(
c2(s2 + s + 1) + s + 1

)
+ c2(s2 + s + 1)(cmax − c2)

(s + c1)
(
c2(s2 + s + 1) + s + 1

)
+ c2(s2 + s + 1)(cmax − c1)

=
s
(
c2(s2 + s + 1) + s + 1

)
+ c2(s + 1) + c2s

2

s
(
c2(s2 + s + 1) + s + 1

)
+ c1(s + 1) + c2s2

=
c2(s + 1)(s2 + s + 1) + s2 + s

c2(s3 + s2 + s) + c1(s + 1) + s2 + s

=
c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

ut

Theorem 4. For any pair of values 0 ≤ c1 < c2 ≤ cmax , WRTPREc2 ,TPREc1
=

c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

By substituting c1 = 0 and c2 = cmax we get the following corollary.

Corollary 2. WRTPREcmax ,TPRE0 ≥ 1 +
s

s3 + 2s2 + s + 1
.

Next, we would like to compare the above class of algorithms to the algorithm of Epstein et al (2001)
called BEST PREEMPTIVE (BPRE). We first show that the best algorithm in the class, TPRE0, is worse
than BPRE. Due to the transitivity of the relative worst order ratio, this implies that BPRE is better than all
algorithms TPREc for any c.

The algorithm BPRE is different from the above algorithms in the sense that it, except for the first job
which is scheduled completely on the fast machine, BPRE always schedules as large a part on the slow
machine as possible while maintaining the following two invariants:

1. Lt
1 ≤

Lt
2

s2 + s
.

2. If Lt
1 <

Lt
2

s2 + s
, then also Lt

2 ≤ α pt
max.

Note that the first invariant implies that Lt
1 ≤

Lt
2

s , i.e., the makespan of BPRE is always Lt
2

s . Also note that
by the same invariant, P t = Lt

1 + Lt
2 ≤

(
1

s2+s
+ 1
)
Lt

2 = s2+s+1
s2+s

Lt
2, i.e.,

s + 1
s2 + s + 1

P t ≤ 1
s
Lt

2 . (1)

We prove that TPRE0 can never have a smaller makespan than BPRE, on any sequence. Note that BPRE

does not necessarily have the worst makespan in the case that the sequence is sorted by non-increasing job
size. As an example, consider the case s = 2 and the jobs 2, 12. In the order 12, 2, the job 12 is scheduled on
the fast machine. The job 2 fits perfectly on the slow machine, and the makespan is 12

2 = 6. However, if the
job 2 is assigned first, then the slow machine can receive at most size 1 in the next step, since otherwise the
two parts of the second job scheduled on the slow and the fast machine, respectively, will overlap in time.
Therefore, the makespan is 2+11

2 = 61
2 .

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 17

Lemma 13. For any input sequence σ, BPRE(σ) ≤ TPRE0(σ).

Note that the claim of the lemma is stated for any sequence without any reordering.

Proof. Given a sequence of jobs, σ, we show that the lemma holds at every step using induction. Clearly,
the lemma holds before any job is assigned.

Next, assume that the lemma holds for the previous part of the input sequence, and consider the next
job, Jt+1. We now have several cases:

– If the job is assigned such that Lt+1
2 of BPRE does not change, then the lemma holds by induction.

– If TPRE0 assigns the job completely to the fast machine, then since BPRE may assign at most that
much to the fast machine, and has a makespan which is not larger than the one of TPRE0 before the
assignment, this situation remains after the assignment.

– Invariant 2 for TPRE0, Lt+1
1 ≤ 1

s2+s+1
P t+1, can be rewritten to Lt+1

1 ≤ 1
s2+s

Lt+1
2 . Hence, if BPRE

assigns the job such that Lt+1
1 = 1

s2+s
Lt+1

2 , TPRE0 must have at least the same value of Lt+1
2 as BPRE,

i.e., the makespan of TPRE0 is at least the same as the makespan of BPRE.
– Finally, the last case is when for BPRE Lt+1

1 < 1
s2+s

Lt+1
2 and it was impossible for BPRE to put

everything on the slow machine, i.e., Lt+1
1 = 1

sLt
2. Putting this together we obtain Lt

2 < 1
s+1Lt+1

2 ,

and subsequently P t+1 = Lt+1
2 + Lt+1

1 > (s + 1)Lt
2 + 1

sLt
2 = s2+s+1

s Lt
2. Using this we get that

pt+1 = P t+1 − P t > s2+s+1
s Lt

2 − P t ≥ (s + 1)P t − P t = sP t, where the second inequality holds by
(1). We conclude that pt+1 = pt+1

max. By Lemmas 8 and 9 and since we know that TPRE0 did not schedule
job pt+1 on the fast machine only, the makespan of TPRE0 must be M t+1

0 (σ) = 1
spt+1 + s

s2+s+1
P t.

For BPRE by the Invariant 1, the makespan is at most

Lt+1
2

s
=

P t + pt+1 − 1
sLt

2

s
≤

P t + pt+1 − s+1
s2+s+1

P t

s
=

pt+1

s
+

sP t

s2 + s + 1
.

Therefore, the claim is proved. ut

By Lemma 9 and since Mc(σ) is non-decreasing as a function of c, we immediately obtain the following
corollary.

Corollary 3. For every c and any input sequence σ, BPRE(σ) ≤ TPREc(σ).

Next, we establish the relative worst order ratio between BPRE and each algorithm TPREc. We prove
the following theorem.

Theorem 5. The relative worst order ratio between BPRE and TPREc is

WRTPREc,BPRE = max
{

c(s4 + 2s3 + 2s2 + s) + s3 + s2

c(s4 + 2s3 + s2 − 1) + s3 + s2
,
(s2 + s + 1)(s3 + s + c) + s4

s2(s2 + s + 1)(s + 1)

}
.

For s=1 and c = cmax = s2

s2+s+1
= 1

3 , this value is α = 4
3 . For s > 1, this value is smaller than α. For all

values of s the relative worst order ratio is a strictly monotonically increasing function of s.

Proof. To prove the lower bound, consider two input sequences.

18 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

– The first sequence consists of two jobs of sizes s and s2 + 1. Here P = s2 + s + 1 and pmax = s2 + 1.
Since Mc(σ) ≤ P , and since P ≤ s+1

s pmax, and using Lemma 8, the makespan of TPREc is Mc(σ)
s =

(s2 + 1)(1
s + c

s2) + s2

s2+s+1
− c.

Next, we claim that the makespan of BPRE is s + 1 for both possible permutations of the jobs in
the sequence. Both cases result in the same makespan since in both cases we have a similar situation as
follows. The first job is assigned to the fast machine, and out of the second job, a part of size 1 is assigned
to the slow machine, to get a balance between the loads of the two machines as the the definition of the
algorithm states. In total, we get the ratio

(s2 + s + 1)(s3 + s + c) + s4

s2(s2 + s + 1)(s + 1)
.

– The second sequence is defined for c > 0. It consists of the two jobs c(s2 + s + 1) and sc(s2 +
s + 1) + s2 + s. Here P = c(s + 1)(s2 + s + 1) + s2 + s and pmax = sc(s2 + s + 1) + s2 + s.
Since Mc(σ) ≤ P , using Lemma 8 we need to consider the second term in the maximum to find
Mc(σ). We have Mc(σ) = c(s3 + 2s2 + 2s + 1) + s2 + 1 = P . Therefore, the makespan of TPREc is
Mc(σ)

s = P
s = c(s2 + 2s + 2 + 1

s) + s + 1.
For BPRE, if the smaller job is assigned first, then the part of the second job that can be assigned on the
slow machine is at most c

(
s + 1 + 1

s

)
which is consistent with Invariant 1. If the larger job is assigned

first, the part assigned to the slow machine can only be larger. Thus we get that the makespan of BPRE

is at most L2
s = P

s − c(s2+s+1)
s2 = c(s2 + 2s + 1− 1

s2) + s + 1. By dividing the two, we get the ratio

c(s4 + 2s3 + 2s2 + s) + s3 + s2

c(s4 + 2s3 + s2 − 1) + s3 + s2
.

To prove the upper bound, we start with giving lower bounds on the makespan of BPRE. Given an
input sequence σ let R = P − pmax, i.e., the sum of all jobs except the largest. By Invariant 1, we have
BPREW(σ) ≥ s+1

s2+s+1
(R + pmax).

Now consider an ordering of the jobs, such that pmax is last. Let µ be the makespan before pmax is
assigned. After pmax is assigned the makespan is at least µ plus the time to run pmax minus the amount
that can be scheduled on the slow machine, which is at most µ − (R − sµ), i.e., the makespan is at least
µ + pmax−µ+R−sµ

s = pmax−µ+R
s . Since µ ≤ R

s , we get at least BPREW(σ) ≥ spmax+sR−R
s2 .

The makespan of TPREc (for any possible order) never exceeds

max
{

α
P

s + 1
, pmax

(
1
s

+
c

s2

)
+ R

(
s

s2 + s + 1
− c

s

)}
.

If the first option is the maximum then BPRE has at least the same makespan by (1). For the second option,
we consider several cases.

– If pmax ≤ R(s + 1
s), we use the first lower bound, and get a ratio between the two algorithms of at most

pmax

(
1
s + c

s2

)
+ R

(
s

s2+s+1
− c

s

)
s+1

s2+s+1
(R + pmax)

.

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 19

Let ρ = pmax
R . If R = 0, we have P = pmax and thus there is only one job. In this case all algorithms act

in the same way, therefore we do not consider this option. Dividing the numerator and the denominator

by R and substituting we get the function
ρ

“
1
s
+ c

s2

”
+ s

s2+s+1
− c

s
s+1

s2+s+1
(1+ρ)

. This function is monotonically non-

decreasing as a function of ρ. Hence, we substitute pmax = R
(
s + 1

s

)
, since this corresponds to the

maximum value of ρ. Thus, we find the maximal value to be (s2+s+1)(s3+s+c)+s4

s2(s2+s+1)(s+1)
.

– If pmax ≥ R(s + 1
s), we use the second lower bound and get a ratio between the two algorithms of at

most

pmax

(
1
s + c

s2

)
+ R

(
s

s2+s+1
− c

s

)
spmax+sR−R

s2

=
pmax (s + c) + R

(
s3

s2+s+1
− cs

)
spmax + sR −R

.

Let ρ = pmax
R . We get the function

ρ(s+c)+ s3

s2+s+1
−cs

sρ+s−1 . We now have two cases depending on the value of
c:

– For c ≤ s
(s2+s+1)(s2+s−1)

, the function above is monotonically non-increasing (and otherwise mono-

tonically non-decreasing). Therefore in this case we can substitute pmax = R(s + 1
s) or ρ = s + 1

s

to find the maximum, which turns out to be (s2+s+1)(s3+s+c)+s4

s2(s2+s+1)(s+1)
.

– For larger values of c, we consider first the case when ρ ≥ sc(s2+s+1)+s2+s
c(s2+s+1)

. Note that this value is

strictly larger than 1 + 1
s for any value of c > 0. The makespan of TPREc is also at most pmax+R

s ,

and the ratio can be bounded by
pmax+R

s
spmax+sR−R

s2

= spmax+sR
spmax+sR−R .

Using ρ = pmax
R we get the function sρ+s

sρ+s−1 which is monotonically non-increasing as a func-

tion of ρ. We substitute using ρ = sc(s2+s+1)+s2+s
c(s2+s+1)

to find the maximum which gives the value
c(s4+2s3+2s2+s)+s3+s2

c(s4+2s3+s2−1)+s3+s2 .

Otherwise, if s+1
s ≤ ρ ≤ sc(s2+s+1)+s2+s

c(s2+s+1)
, we substitute ρ = sc(s2+s+1)+s2+s

c(s2+s+1)
into

ρ(s+c)+ s3

s2+s+1
−cs

sρ+s−1 ,
which is monotonically non-decreasing for the current values of c, to get the maximum. This again
gives c(s4+2s3+2s2+s)+s3+s2

c(s4+2s3+s2−1)+s3+s2 .

ut

To find the relative worst order ratio between BPRE and TPREcmax , which are the algorithms of Epstein
et al (2001) and Wen and Du (1998), we substitute the value of c and get the following corollary

Corollary 4. WRTPREcmax ,BPRE = 1 + 1
s(s+2) . This value is smaller than α for every s > 1.

3 Non-preemptive scheduling to minimize makespan

For completeness, we consider non-preemptive algorithms as well.

20 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

3.1 Identical machines

First, we consider the scheduling problem for m identical machines where preemption is not allowed, i.e.,
a job cannot be interrupted and run on more than one machine. For this problem, a classical result was
presented by Graham (1966). Graham considers the natural greedy algorithm LIST, which always schedules
a job on the least loaded machine. By (Graham, 1966), LIST is (2 − 1

m)-competitive. This is optimal when
m ≤ 3 (Faigle et al, 1989).

For m ≥ 4, this result was later improved. First by Galambos and Woeginger (1993) with an (2 −
1
m − εm)-competitive algorithm RLS. Unfortunately for m approaching infinity, εm tends to 0, i.e., for
general m, this result is not better. Later Bartal et al (1995) gave an algorithm which is 1.986-competitive,
but only for at least 70 machines. Karger, Philips, and Torng (1996) generalized this and gave a 1.945-
competitive algorithm CHASMα. Albers (1999) improved this even further, and gave a 1.923-competitive
algorithm M2. The current best result is by Fleischer and Wahl (2000). They present an algorithm MR with
a competitive ratio of 1 +

√
(1 + ln 2) /2 < 1.92009, but only for m ≥ 64.

The currently best lower bound for the problem was established by Gormley et al (2000) at 1.85358.
This is a slight improvement of the previous lower bound by Albers (1999).

Whereas the first algorithm LIST keeps the load of all machines as close as possible to the average load,
essentially all the later algorithms always keep a certain fraction of the machines sufficiently below the
average load, such that they can accept a large job without violating the competitive ratio.

In this Section, we show that Graham’s algorithm, LIST, and the two most recent algorithms, M2 and
MR, are pairwise incomparable using the relative worst order ratio. This is done using the following two
input sequences: σ1 consists of m(m − 1) unit sized jobs, and σ2 consists of the same jobs as σ1 with an
additional large job of size m. Note that all the jobs of σ1 are the same size, hence all permutations are
equal. For σ2, we only need to consider the location of the large job in the sequence.

The optimal algorithm distributes the jobs in σ1 evenly among the m processors and gets a makespan of
m−1. For σ2, the large job is put on a machine by itself, and all the unit-sized jobs are put on the remaining
m− 1 machines, yielding a makespan of m.

LIST distributes the jobs in σ1 similar to OPT with a makespan of m − 1. For σ2, the large job of size
m is placed on one of the machines with a load of m− 1, i.e., a total makespan of 2m− 1. This is the worst
possible permutation for LIST.

For the last two algorithms, we only give a sketch of the proof and we only consider the case for m
approaching infinity, since this simplifies the calculations. If necessary, the calculations can be done for any
specific m with the same conclusion as a result, namely that the three algorithms are pairwise incomparable.

M2 and MR both divide the machines into two groups: the s least loaded (small) machines (m1, m2,
. . . , ms) and the remaining m− s (large) machines (ms+1, ms+2, . . . , mm). We have:

sM2 =
⌊m

2

⌋
≈ m

2
and sMR = m−

⌈
5c− 2c2 − 1

c
m

⌉
+ 1 ≈ 2c2 − 4c + 1

c
m + 1

where c = 1 +
√

1+ln 2
2 , the competitive ratio of MR.

Depending on different conditions the algorithms choose between putting a new job on the least loaded
small machine, m1, or the least loaded large machine, ms+1. When only considering unit-sized jobs, it can
be shown that at any time the difference in load for the least and most loaded small machine is at most one.
The same results hold for the large machines. It can also be shown that for both algorithms a worst ordering

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 21

of σ2 is when the large job appears as the last job, and in this case this job is placed on the least loaded
machine, m1.

For M2 and σ1, the ratio between L1 and Lm approaches α for m approaching infinity, where

α =
0.923sM2 − 0.145 m

0.923(m− sM2)
≈ 0.923m/2− 0.145 m

0.923(m−m/2)
=

633
923

.

Next, for σ1, we get m(m−1) ≈ sM2L
σ1
1 +(m−sM2)Lσ1

m = m
2 (α+1)Lσ1

m , and hence Lσ1
m ≈ 2

α+1(m−1) ≈
923
778 OPT(σ1) ≈ 1.18638 OPT(σ1).

For σ2, the load of Lm can be found as

Lσ2
m = Lσ1

1 + m ≈ αLσ1
m + m ≈ 2α

α + 1
(m− 1) + m ≈ 1411

778
m− 633

778
=

1411
778

OPT(σ2)−
633
778

.

For MR and σ1, the ratio between L1 and Lm approaches β for m approaching infinity, where

β =
2c− 3

2(c− 1)
= 1− 1

2c− 2
,

with c = 1 +
√

1+ln 2
2 , the competitive ratio of MR.

Now, for σ1, we have,

m(m− 1) ≈ sMRLσ1
1 + (m− sMR)Lσ1

m

≈ (sMRβ + (m− sMR))Lσ1
m

= (m + sMR(β − 1))Lσ1
m

≈
(

m−
(

2c2 − 4c + 1
c

m + 1
)(

1
2c− 2

))
Lσ1

m

=
(

(2c− 2)m− 2c2 − 4c + 1
c

m− 1
)

Lσ1
m

2c− 2

= ((2c− 1)m− c)
Lσ1

m

c(2c− 2)

Hence, Lσ1
m ≈ m(m−1)c(2c−2)

(2c−1)m−c ≈ 2c2−2c
2c−1 (m− 1) = 2c2−2c

2c−1 OPT(σ1) ≈ 1.24405 OPT(σ1).
For σ2, the load of Lm can be found as

Lσ2
m = Lσ1

1 + m

= βLσ1
m + m

≈ 2c− 3
2(c− 1)

2c2 − 2c

2c− 1
(m− 1) + m

=
(2c− 3)c
2c− 1

(m− 1) + m

=
2c2 − c− 1

2c− 1
m− (2c− 3)c

2c− 1

=
2c2 − c− 1

2c− 1
OPT(σ2)−

(2c− 3)c
2c− 1

≈ 1.56801 OPT(σ2)− 0.56801

22 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

The results for m approaching infinity are summarized in the following table. Recall that ALGW(σ)
denotes the makespan of ALG on the worst permutation of σ. Note that for any pair of the three algorithms,
the order of the two is different for σ1 when compared to σ2.

ALG
ALGW(σ1)
OPT(σ1)

ALGW(σ2)
OPT(σ2)

LIST 1 2
M2 1.18638 1.81362
MR 1.24405 1.56801

Theorem 6. LIST, M2, and MR are pairwise incomparable.

It is not surprising that LIST is incomparable to M2 and MR. The two latter algorithms are designed to
do slightly bad on some input sequences, like the sequence with unit sized jobs, in order to avoid even worse
performance on other input sequences.

3.2 Two related machines

Assume now that we have two machines available, and one machine is a factor of s times faster than the
other, s ≥ 1. Preemption is still not allowed.

Let POST-GREEDY be the algorithm that schedules each job on the machine where it will finish first.
By (Cho and Sahni, 1980; Epstein and Sgall, 2000; Epstein et al, 2001), POST-GREEDY has an optimal
competitive raito of 2s+1

s+1 , if s ≤ φ, and s+1
s , if s ≥ φ, where φ ≈ 1.618 is the golden ratio. It is easy to see

that the algorithm FAST that simply schedules all jobs on the fastest machine is s+1
s -competitive (Epstein et

al, 2001). Hence, for s ≥ φ, both algorithms have the optimal competitive ratio. However, POST-GREEDY

seems to be the more reasonable algorithm: it never gives a larger makespan than FAST, and in many cases
it even has a much smaller makespan. This is reflected by the relative worst order ratio:

For any n ≥ 1, consider the input sequence consisting of bn(s + 1)c jobs of unit size. On this input se-
quence, FAST has a makespan of

⌊
n(s+1)

s

⌋
and POST-GREEDY has a makespan of at most n. Since

⌊
n(s+1)

s

⌋
approaches s+1

s as n approaches infinity, WRFAST,POST-GREEDY ≥ s+1
s , and since this ratio cannot be larger

than the competitive ratio of FAST, the result is tight.

Theorem 7. WRFAST,POST-GREEDY = s+1
s .

4 Conclusion

In this work we have applied the relative worst order ratio to a few online problems.
For most of the considered scheduling problems, competitive analysis does not distinguish between

different optimal algorithms, whereas using the relative worst order ratio we are able to distinguish the
algorithms, and in all cases the ratio prefers the intuitively better algorithm.

For non-preemptive scheduling on identical machines, the considered algorithms are incomparable using
the relative worst order ratio, even when the algorithms have different competitive ratios. The reason for
this is that, except for the first algorithm LIST, the algorithms have been specially tailored to get good

Separating Online Scheduling Algorithms with the Relative Worst Order Ratio 23

competitive ratios, i.e., to work well on worst-case sequences. This is done at the expense of getting a
bad makespan for many normal input sequences, where the algorithms with a worse competitive ratio are
better. The competitive ratio measure in this case prefers certain non-preemptive algorithms whereas the
relative worst order ratio allows us to see that the algorithms are incomparable. The order of their relative
performance depends on the type of input sequence given, and it is impossible to say that one algorithm is
generally better than the other for all input sequences.

In general, our results show that, in many cases, the relative worst order ratio can motivate searching for
better algorithms, even when an algorithm with optimal competitive ratio has been found. We saw that in
many cases, a very small change in the algorithm, without changing the competitive ratio, can be immedi-
ately seen in the resulting relative worst order ratio.

Bibliography

S. Albers. Better bounds for online scheduling. SIAM J. Comput., 29(2):459–473, 1999.
Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem. J. Comput.

System Sci., 51(3):359–366, 1995.
S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms. Algorithmica, 11(1):73–

91, 1994.
J. Boyar and L.M. Favrholdt. The relative worst order ratio for on-line algorithms. In Proc. 5th Italian

Conf. on Algorithms and Complexity, vol. 2653 of Lect. Notes Comp. Sci., pp. 58–69. Springer-Verlag,
2003.

J. Boyar, L.M. Favrholdt, and K.S. Larsen. The relative worst order ratio applied to paging. In Proc. 16th
Annu. ACM-SIAM Symp. Discrete Algorithms, pp. 718–727, 2005.

J. Boyar and P. Medvedev. The Relative Worst Order Ratio Applied to Seat Reservation. In Proc. of the
9th Scand. Workshop on Algorithm Theory, vol. 3111 in Lect. Notes Comp. Sci., pp. 90–101, 2004.

B. Chen, A. van Vliet, and G.J. Woeginger. An optimal algorithm for preemptive on-line scheduling. Oper.
Res. Lett., 18(3):127–131, 1995.

Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM J. Comput., 9(1):91–103,
1980.

L. Epstein, J. Noga, S.S. Seiden, J. Sgall, and G.J. Woeginger. Randomized online scheduling on two
uniform machines. J. Sched., 4(2):71–92, 2001.

L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related machines. Oper. Res.
Lett., 26(1):17–22, 2000.

U. Faigle, W. Kern, and G. Turán. On the performance of on-line algorithms for partition problems. Acta
Cybernet., 9(2):107–119, 1989.

R. Fleischer and M. Wahl. On-line scheduling revisited. J. Sched., 3(6):343–353, 2000.
G. Galambos and G.J. Woeginger. An on-line scheduling heuristic with better worst case ratio than Gra-

ham’s list scheduling. SIAM J. Comput., 22(2):349–355, 1993.
T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor systems. J. ACM, 25(1):92–101,

January 1978.
T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-answer games.

In Proc. 11th Annu. ACM-SIAM Symp. on Discrete Algorithms, pp. 564–565, 2000.
R.L. Graham. Bounds for certain multiprocessing anomalies. Bell Systems Techn. J., 45:1563–1581, 1966.

24 L. Epstein, L.M. Favrholdt, and J.S. Kohrt

D.R. Karger, S.J. Philips, and E. Torng. A better algorithm for an ancient scheduling problem. J. Algo-
rithms, 20(2):400–430, 1996.

C. Kenyon. Best-fit bin-packing with random order. In Proc. 7th Annu. ACM-SIAM Symp. on Discrete
Algorithms, pp. 359–364, 1996.

J.S. Kohrt. Online algorithms under new assumptions, p. 78. PhD thesis, Dept. Math. and Comp. Sci.,
Univ. South. Den., 2004.

R. McNaughton. Scheduling with deadlines and loss functions. Manag. Sci., 6(1):1–12, 1959.
S.S. Seiden. Preemptive multiprocessor scheduling with rejection. Theoret. Comp. Sci., 262(1–2):437–458,

2001.
J. Wen and D. Du. Preemptive on-line scheduling for two uniform processors. Oper. Res. Lett., 23:113–116,

1998.

