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Abstract. Following recent interest in the study of computer science
problems in a game theoretic setting, we consider the well known bin
packing problem where the items are controlled by selfish agents. Each
agent is charged with a cost according to the fraction of the used bin
space its item requires. That is, the cost of the bin is split among the
agents, proportionally to their sizes. Thus, the selfish agents prefer their
items to be packed in a bin that is as full as possible. The social goal is
to minimize the number of the bins used. The social cost in this case is
therefore the number of bins used in the packing.
A pure Nash equilibrium is a packing where no agent can obtain a smaller
cost by unilaterally moving his item to a different bin, while other items
remain in their original positions. A Strong Nash equilibrium is a pack-
ing where there exists no subset of agents, all agents in which can profit
from jointly moving their items to different bins. We say that all agents
in a subset profit from moving their items to different bins if all of them
have a strictly smaller cost as a result of moving, while the other items
remain in their positions.
We measure the quality of the equilibria using the standard measures
PoA and PoS that are defined as the worst case worst/best asymptotic
ratio between the social cost of a (pure) Nash equilibrium and the cost
of an optimal packing, respectively. We also consider the recently intro-
duced measures SPoA and SPoS, that are defined similarly to the PoA
and the PoS, but consider only Strong Nash equilibria.
We give nearly tight lower and upper bounds of 1.6416 and 1.6428, re-
spectively, on the PoA of the bin packing game, improving upon previous
result by Bilò, and establish the fact that PoS = 1. We show that the bin
packing game admits a Strong Nash equilibrium, and that SPoA=SPoS.
We prove that this value is equal to the approximation ratio of a natural
greedy algorithm for bin packing.

1 Introduction

Motivation and framework. In the last few decades, we have witnessed the
tremendous development of the Internet and its penetration into almost any
aspect of our lives, influencing the society on a scope not known before. The
emergence of the Internet created a major shift in our view of computational
networking systems. Traditional system design assumes that all participants be-
have according to some protocol that serves the intentions of the system design-
ers and the users often have to sacrifice some of their own performance for the
sake of the entire network. Unlike any other distributed system, the Internet is



built, operated and used by various autonomous and self-interested entities, in
different levels of competition and cooperation relationship with one another.
These entities (or agents) have diverse sets of interests and aim at achieving
their individual goals as opposed to obtaining a global optimum of the system.
Hence, selfishness is an inherent characteristic of the Internet. Also, there exists
no central authority that can enforce a certain policy or regulation on the partic-
ipants of the system. Under these assumptions, network optimization problems
that model situations where rational agents compete each other over network re-
sources while seeking to satisfy their individual requirements at minimum cost,
can be viewed as non-cooperative strategic games considered by the classical
Game Theory. It becomes natural to revisit various aspects concerning network-
ing under a Game-Theoretic perspective, using the tools that the Game Theory
provides us with. In particular, we are interested in quantifying the loss to the
system performance caused by the lack of cooperation and the selfishness of the
players. This is achieved by analyzing the Nash equilibrium (the main concept of
stability in Game Theory) of the game and comparing it to the social optimum.

In reality, in many networking applications the multitude of entities that use
and operate the system are not completely autonomous. They interact with each
other and form coalitions, members of which agree to coordinate their actions in
a mutually beneficial way. Of course, these entities still remain selfish. Thus, each
agent will agree to participate, if at all, in a coalition that ensures him a benefit
from participation in that coalition. This scenario evokes the Coalitional Game
Theory and the concept of Strong Nash equilibrium. Considering the possibility
of players to gather in coalitions allows us to separate the effect incurred to the
system performance due to selfishness from that of lack of coordination (which
disappears if we let the participants of the game to cooperate).

In this paper, we consider the well-known Bin Packing problem (see e.g. [16],
[17], [7] for surveys). The basic Bin Packing problem consists of packing a set of
objects with sizes in (0,1] into a set of unit-capacity bins while using as few bins
as possible. Among other important real-life applications, such as multiprocessor
scheduling and stock cutting, the Bin Packing problem can be met in a great
variety of network problems. For example, the packet scheduling problem (the
problem of packing a given set of packets into a minimum number of time slots for
fairness provisioning), the bandwidth allocation problem (signals have usually
a small size and several of them can be transmitted in the same frame so as
to minimize bandwidth consumption) and the problem of packing the data for
Internet phone calls into ATM packets (filling fixed-size frames to maximize the
amount of data that they carry), to mention only a few. Therefore, the study of
this problem from a Game-Theoretic standpoint is clearly well motivated.
Definitions and notations. To establish notation, we will briefly introduce
the basic concepts from Game Theory. A non-cooperative strategic game is a
tuple G = 〈N, (Si)i∈N , (ci)i∈N 〉, where N is a non-empty, finite set of players,
each player i ∈ N has a non-empty, finite set Si of strategies (actions) and a
cost function ci. Each player chooses a strategy independently of the choices of
the other players. The choices of all players can thus be thought to be made
simultaneously. It is assumed that each player has a full knowledge over all
strategy sets of all the players. In a setting of pure strategies, each player chooses



exactly one strategy (with probability one); in a setting of mixed strategies,
each player uses a probability distribution over the strategies. A combination
of strategies chosen by the players s = (xj)j∈N ∈ ×j∈NSj , is called a strategy
profile or a configuration. X = ×j∈NSj denotes the set of the strategy profiles.
Let i ∈ N . X−i = ×j∈N\{i}Sj denotes the strategy profiles of all players except
player i. Let A ⊆ N . XA = ×j∈ASj denotes the set of strategy profiles of
players in A. Strategy profiles s = (xj)j∈N ∈ X will be denoted by (xi, x−i)
or (xA, xN\A) if the strategy choice of player i or of the set A of players needs
stressing. The cost function ci : X → R specifies for each strategy profile s ∈ X
the cost charged from player i, ci(x) ∈ R. The cost charged from each player
depends not only on his own strategy but also on the strategies chosen by all
other players. Each player i ∈ N would prefer to chose a strategy that minimizes
his cost. The accepted concept of rationality in a game is the Nash equilibrium
[24]. Throughout the paper, the Nash equilibrium is considered only in the setting
of pure strategies.

Definition 1. A strategy profile s ∈ X is called a pure Nash equilibrium (NE)
if for every i and for all x′i ∈ Si, x′i 6= xi, ci(xi, x−i) ≤ ci(x′i, x−i) holds. That
is, no player can reduce his cost by unilaterally changing his strategy, while the
strategies of all other players remain unchanged.

Nash equilibrium (perhaps only in mixed strategies) exists in every finite game
[24]. A game can have several Nash equilibria, with different social cost values.
If only pure strategies are allowed, there may exist no Nash equilibrium at all.
The set of pure Nash equilibria of a game G is denoted by NE(G).

Games as defined above assume that players can not negotiate and cooperate
with each other. Coalitional Game Theory considers cooperative games, where
the notion of players is replaced by the set of possible coalitions (i.e., groups
of players) rather than individuals. A participation in a coalition is voluntary.
Each coalition can achieve a particular value (the smallest possible sum of costs
among players in the coalition, against worst-case behavior of players outside the
coalition). Aumann [4] introduced the concept of Strong Nash equilibrium. Since
each player can either participate or decline to participate in a coalition, given
the strategy he will be obligated to choose in case he does, and the cost he will be
charged with as a result, the Strong Nash equilibrium is studied only for settings
that involve no randomization, that is, only pure strategies are considered.

Definition 2. A strategy profile s ∈ X is called a Strong Nash equilibrium
(SNE) if for every S ⊆ N and for all strategy profiles yS ∈ XS, there is at
least one player i ∈ S such that ci(xS , x−S) ≤ ci(yS , x−S). That is, no subset of
players can deviate by changing strategies jointly in a manner that reduces the
costs charged from all its members, given that nonmembers stick to their original
strategies.

The set of Strong Nash equilibria of a game G is denoted by SNE(G). Every
Strong Nash equilibrium is a Nash equilibrium (by definition). Hence, SNE(G) ⊆
NE(G). The opposite does not usually hold. A game can have no Strong Nash
equilibrium at all. Several specific classes of congestion games were shown in
[15, 27] to possess Strong Nash equilibria. For any other game, the existence of



Strong equilibria should be checked specifically in each case. Other variants of
Strong equilibria studied consider static predefined coalitions [14, 12] and coali-
tions that are not subject to deviations by subsets of their own members [29].

The social cost of a game G, is an objective function SC(s) : X → R that
numerically expresses the ‘social cost” of an outcome of the game for a strat-
egy profile s ∈ X. The social optimum of a game G, is the game outcome that
optimizes the social cost function. It is denoted by OPT (G), and defined by
OPT (G) = min

s∈X
SC(s).

2 The bin packing game

The model. The bin packing problem consists of packing a set N of items, each
item i ∈ N having a size ai ∈ (0, 1], into a set of unit-capacity bins while using
as few bins as possible. The induced bin packing game BP is defined by a tuple
BP = 〈N, (Bi)i∈N , (ci)i∈N 〉, where N is the set of selfish players. Each player
i ∈ N controls a single item with size ai ∈ (0, 1] and selects the bin to which this
item is packed. We identify the player with the item he wishes to pack. Thus,
the set of players corresponds to the set of items. The set of strategies Bi for
each item i ∈ N is the set of all possible open bins. Each item can be assigned to
one bin only. Splitting items among several bins is not allowed. The outcome of
the game is a particular assignment (bj)j∈N ∈ ×j∈NBj of items to bins of equal
capacity. Let X denote the set of all possible assignments. All the bins have the
same fixed cost which equals their capacity and the cost of a bin is shared among
all the items it contains. The cost function of item i is ci. If we scale the cost and
the size of each bin to one, the cost paid by item i for choosing to be packed in
bin Bj such that j ∈ Bi is defined by ci(j, b−i) =

ai∑
k:bk=j ak

, when b−i ∈ X−i;

i.e, an item is charged with a cost which is proportional to the portion of the bin
it occupies in a given packing. We consider the cost charged from an item for
being packed in a bin in which it does not fit to be ∞. The items are interested
in being packed in a bin so as to minimize their cost. Thus, item i packed into
Bj in a particular assignment (bj)j∈N will migrate from Bj each time it will
detect another bin Bj′ such that ci(j′, b−i) < ci(j, b−i). This inequality holds for
each j′ such that

∑
k:bk=j′ ak + ai >

∑
k:bk=j ak, thus an item will perform an

improving step each time it will detect a strictly more loaded bin in which it fits.
At a Nash equilibrium, no item can unilaterally reduce its cost by moving to a
different bin. The social cost function that we want to minimize is the number
of used bins.

In the cooperative version of the game, we consider all possible (non-empty)
groups of items A ⊆ N . A group can contain a single item. The cost functions
of the players are defined the same as in the non-cooperative case. Each group
of items is interested to be packed in a way so as to minimize the costs of all
group members. Thus, given a particular assignment, all members of group A
will perform a joint improving step if there is a configuration in which, for each
member, the new bin will admit a strictly greater load than the bin of origin.
The costs of the non-members may be enlarged as a result of this step.



At a Strong Nash equilibrium, no group of items can reduce the costs of its
members by jointly moving to a different bin. The social cost function remains
the same one we consider in the non-cooperative setting.
Measuring the inefficiency of the equilibria. It is well-known that Nash
equilibrium does not always optimize the social cost function. Even in very simple
settings, selfish behavior can lead to highly inefficient outcome. Our bin packing
game is no exception: an equilibrium packing does not necessarily have minimum
cost. Note also that not every optimal solution is an equilibrium.

The quality of an equilibrium is measured with respect to the social optimum.
In the bin packing game, the social optimum is the number of bins used in
a coordinated optimal packing. In the computer science literature, the Price
of Anarchy (PoA) [20, 25] (also referred to as the Coordination Ratio (CR))
and the Price of Stability (PoS ) [3, 2] (also called optimistic price of anarchy)
have become prevalent measures of the quality of the equilibria reached with
uncoordinated selfish players. The Price of Anarchy/ Price of Stability of a game
G are defined to be the ratio between the cost of the worst/best Nash equilibrium
and the social optimum, respectively. Formally,

PoA(G) = sup
s∈NE(G)

SC(s)
OPT (G)

, PoS(G) = inf
s∈NE(G)

SC(s)
OPT (G)

.

The former quantifies the worst possible loss to performance incurred by selfish
uncoordinated agents, and the latter measures the minimum penalty in perfor-
mance required to ensure a stable equilibrium outcome.

The bin packing problem is usually studied via asymptotic measures. The
asymptotic PoA and PoS of the bin packing game BP are defined by

PoA(BP ) = lim sup
OPT (G)→∞

sup
G∈BP

PoA(G), PoS(BP ) = lim sup
OPT (G)→∞

sup
G∈BP

PoS(G).

Recent research by Andelman et al. [1] initiated a study of measures that
separate the effect of the lack of coordination between players from the effect
of their selfishness. The measures considered are the Strong Price of Anarchy
(SPoA) and the Strong Price of Stability (SPoS ). These measures are defined
similarly to the PoA and the PoS, but only Strong equilibria are considered. We
define the Strong Price of Anarchy/ Strong Price of Stability of a game G as the
ratio between the cost of the worst/best Strong Nash equilibrium and the social
optimum, respectively. Formally,

SPoA(G) = sup
s∈SNE(G)

SC(s)
OPT (G)

, SPoS(G) = inf
s∈SNE(G)

SC(s)
OPT (G)

,

As before, we define the asymptotic SPoA and SPoS of the bin packing game
BP by

SPoA(BP ) = lim sup
OPT (G)→∞

sup
G∈BP

SPoA(G)

SPoS(BP ) = lim sup
OPT (G)→∞

sup
G∈BP

SPoS(G).



3 Related work and our contributions

Related work. The application of concepts and techniques borrowed from
Game Theory to various problems in computer science, specifically, to network
problems, was initiated in [20, 25]. Since then, issues like routing [28, 23, 8], band-
width allocation [30], and congestion control [18], to name only a few, have been
analyzed from a Game-Theoretic perspective. The studied models are simplifi-
cation of problems arising in real networks, that seem appropriate for describing
basic network problems. The bin packing problem discussed in this paper be-
longs to a class of problems induced by selfish flow routing in non-cooperative
networks. The first model studied in that context is the KP model introduced by
Koutsoupias and Papadimitriou in [20]. This model features a network consist-
ing of two nodes, a source and a destination, connected by a set of parallel links,
all with the same bandwidth capacity, and a set of selfish users, each wishing
to route a certain amount of flow from the source to the destination. The delay
suffered by each user for utilizing a link equals to total amount of flow routed
through this link. Hence, the more flow routed on a specific link, the longer
the delay. For such a reason, users, which are assumed to be selfish, want to
route their flow on the least loaded link. The goal is minimize the greatest delay.
The resulting problem can be viewed as a selfish job scheduling problem. The
bounds on the PoA for the aforementioned model were initially analyzed both
in pure and mixed strategies setting in [20]. They were later improved by [23],
and definitively characterized in [9, 19]. The existence of pure Nash equilibrium
in this setting was proved in [11]. The cooperative version of the job scheduling
problem was first studied in [1]. The authors proved that job scheduling games
admit Strong equilibria, established the fact that SPoS = 1 as for every in-
stance of the scheduling game there exists an optimal solution which is a Strong
equilibrium, and gave non-tight bounds on the SPoA that were later definitively
characterized in [10]. Since then, many variants and generalizations of this basic
model have been studied, with different network topology, different social costs,
different nature of the flow, etc.. See for example [28, 26, 22].

The selfish bin packing problem defined above can also be interpreted as a
routing problem. Consider a network consisting of two nodes, a source and a des-
tination, connected by a potentially infinite number of parallel links having the
same bandwidth capacity, and a set of users wishing to send a certain amount
of unsplittable flow between the two nodes. To establish a link, one has to pay a
fixed cost which equals the capacity of the link. The cost of each link is shared
among the users routing their flow on that link according to the normalized
fraction of its utilized bandwidth. For such a reason, users, who are assumed
to be selfish, want to route their traffic on the most loaded link. The goal is to
minimize the number of links used. This model resembles the KP model with
different cost and social functions. It was suggested by Bilò in [5].

Bilò [5] was the first to study the bin packing problem under game theoretic
perspective. He proved that the bin packing game admits pure Nash equilibria
and provided non-tight bounds on the Price of Anarchy. He also proved that the
bin packing game converges to a pure Nash equilibrium in a finite sequence of
selfish improving steps, starting from any initial configuration of the items.



The Subset Sum1 algorithm for bin packing we refer to in the sequel of this
paper, is a greedy algorithm that repeatedly solves a one-dimensional knapsack
problem for packing each bin in turn. It was originally suggested by Prim and first
mentioned by Graham [13], who also gave a lower bound of

∑∞
k=1

1
2k−1

= 1.6067
on its asymptotic worst-case performance. An upper bound of 1.6210 was proved
only recently by Caprara and Pferschy in [6].
Our results and organization of the paper. In this paper we consider the
pin packing game, in a variant originally proposed and analyzed by Bilò in [5].
We establish that for every instance of bin packing game there exists an optimal
NE packing where the social cost is equal to the social optimum; in other words,
PoS = 1. We also give improved (and nearly tight) lower and upper bounds on
the PoA of the bin packing game. We extend the results in [5] and show that
bin packing game admits Strong Nash equilibria as well. Moreover, we show that
the aforementioned Subset Sum algorithm in fact produces an assignment that
admits Strong equilibrium. Therefore, we provide an exponential time determin-
istic algorithm with guaranteed (asymptotic) worst-case performance ratio [6]
that actually calculates the Strong Nash assignment for each bin. Interestingly,
the SPoA equals the SPoS, and we prove this value is equal to the approximation
ratio of the Subset Sum algorithm. Thus, we provide bounds on the SPoA and
the SPoS of the game.

Our results for the PoA improve upon previous results of Bilò [5]. The other
concepts were not addressed to the bin packing framework prior to this paper,
to the best of our knowledge. Our contributions can therefore be summarized in
Table 1. Some of the proofs were omitted due to space constraints.

Table 1. Summary of the results.

Lower Bound Upper Bound

PoA
Bilò [5] 1.6 1.6667

Our paper 1.6416 1.6428

SPoA=SPoS Our paper 1.6067 1.6210

PoS Our paper 1 1

4 The Price of Stability

In our first result, we establish that for every instance of the bin packing game
there always exists a packing, among the optimal ones, which is a NE. We do it
by introducing an order relation similar to the one used by Fotakis et al. in [11]
between the different configurations and showing that an optimal packing which
is the “highest” among all optimal packings according to this order is always a
NE. Specifically, in this section we prove the following theorem.

Theorem 1. For every instance of the bin packing game there is a NE packing
which is optimal.
1 Also called fill bin or minimum bin slack in the literature.



Definition 3. For a configuration b, the load vector is an n-tuple
L(b) = (L1(b), L2(b), . . . , Ln(b)), where each component Li(b) is the load of bin
Bi in a packing defined by b.

Definition 4. A vector u = (u1, u2, . . . , un) is greater than v = (v1, v2, . . . , vn)
lexicographically, if there is some k ≥ 1 such that ui = vi for i = 1, . . . k−1, and
uk > vk.

We define a sorted lexicographic order on the configurations via the lexicographic
order on the vectors.

Definition 5. Let b and b′ be two configurations with the corresponding load
vectors L(b) = (L1(b), L2(b), . . . , Ln(b)) and L(b′) = (L1(b′), L2(b′), . . . , Ln(b′)).
A configuration b′ is greater than b lexicographically, if and only if the load vector
L(b′) sorted in non-increasing order is greater lexicographically than L(b), sorted
in non-increasing order. We denote this relation by b′ ÂL b.

The sorted lexicographic order ÂL defines a total order on the configurations.
Next, we show that when an item migrates, we move to a “higher” configuration
in the order.

Lemma 1. The sorted lexicographic order of the load vector always increases
when an item migrates.

Lemma 2. For any instance of the bin packing game, the lexicographically max-
imal optimal packing b∗ is a NE.

Theorem 1 now follows from Lemmas 1 and 2. An immediate conclusion from
Theorem 1 is that the upper bound on the Price of Stability (PoS ) of the bin
packing game is 1. Combined with the fact that PoS(G) ≥ 1 for any G ∈ BP as
no equilibrium point can be better than the social optimum, we conclude that
PoS(BP ) = 1.

5 The Price of Anarchy

We now provide a lower bound for the Price of Anarchy of the bin packing game
and also prove a very close upper bound.

5.1 A lower bound: construction

In this section, we present our main technical contribution, which is a lower
bound on the PoA. We start with presenting a set of items. The set of items
consists of multiple levels. Such constructions are sometimes used to design lower
bounds on specific bin packing algorithms (see e.g., [21]). Our construction differs
from these constructions since the notion of order (in which packed bins are
created) does not exist here, and each bin must be stable with respect to all
other bins. The resulting lower bound on the PoA is different from any bounds
known on the asymptotic approximation ratio of well known algorithms for bin
packing. Since we prove an almost matching upper bound, we conclude that the
PoA is probably not related directly to any natural algorithm. We prove the
following theorem.



Theorem 2. The Price of Anarchy of the bin packing game is at least the sum
of the following series:

∑∞
j=1 2−j(j−1)/2, which is equal to approximately 1.64163.

Proof. Let s > 2 be an integer. We define a construction with s phases of indices
1 ≤ j ≤ s, where the items of phase j have sizes which are close to 1

2j , but can
be slightly smaller or slightly larger than this value.

We let OPT = n, and assume that n is a large enough integer, such that
n > 2s3

. We use a sequence of small values, δi such that δj = 1
(4n)3s−2j . Note that

this implies δj+1 = (4n)2δj for 1 ≤ j ≤ s− 1. We use two sequences of positive
integers rj ≤ n and dj ≤ n, for 2 ≤ j ≤ s, and in addition, r1 = n and d1 = 0.

We define rj+1 = rj−1
2j , for 1 ≤ j ≤ s− 1, and dj+1 = rj − rj+1 = (2j−1)rj+1

2j =
(2j − 1)rj+1 + 1.

Proposition 1. For each 1 ≤ j ≤ s, n
2j(j−1)/2 − 1 < rj ≤ n

2j(j−1)/2 .

Phase 1 simply consists of r1 items of size σ1 = 1
2 + 2(d1 + 1)δ1. For j ≥ 2,

phase j consists of the following 2dj + rj items. There are rj items of size σj =
1
2j +2(dj+1)δj , and for 1 ≤ i ≤ dj , there are two items of sizes πi

j = 1
2j +(2i−1)δj

and θi
j = 1

2j − 2iδj . Note that πi
j + θi

j = 1
2j−1 − δj .

The packing will contain dj bins of level j, for 2 ≤ j ≤ s, and the remaining
bins are of level s + 1, where a bin of level j, contains only items of phases
1, . . . , j.

To show that we can allocate these numbers of bins, and to calculate the

number of level s+1 bins, note that
s∑

j=2

dj = r1−rs = n−rs. Thus, the number

of level s + 1 bins is (at most) rs.
The packing of a bin of a given level is defined as follows. For 2 ≤ j ≤ s, a

level j bin contains one item of each size σk for 1 ≤ k ≤ j − 1, and in addition,
one pair of items of sizes πi

j and θi
j for a given value of i such that 1 ≤ i ≤ dj .

A bin of level s + 1 contains one item of each size σk for 1 ≤ k ≤ j − 1.

Proposition 2. This set of items can be packed into n bins, i.e., OPT ≤ n

We next define an alternative packing, which is a NE. In the sequel, we
apply a modification to the input by removing a small number of items. Clearly,
OPT ≤ n would still hold for the modified input.

Our modification to the input is the removal of items π1
j and θ

dj

j for all
2 ≤ j ≤ s. We construct rj bins for phase j items. A bin of phase j consists of
2j − 1 items, as follows. One item of size σj = 1

2j + 2(di + 1)δi, and 2j−1 − 1
pairs of items of phase j. A pair of items of phase j is defined to be the items
of sizes πi+1

j and θi
j , for some 1 ≤ i ≤ dj − 1. The sum of sizes of this pair of

items is 1
2j + (2i + 1)δj + 1

2j − 2iδj = 1
2j−1 + δj . Using dj = (2j−1 − 1)rj + 1

we get that all phase j items are packed. The sum of items in every such bin is
1− 1

2j−1 + (2j−1 − 1)δj + 1
2j + 2(dj + 1)δj = 1− 1

2j + δj(2j−1 + 1 + 2dj).

Proposition 3. The loads of the bins in the packing defined above are mono-
tonically increasing as a function of the phase.



Proposition 4. The packing as defined above is a valid NE packing.

Finally, we bound the PoA as follows. The cost of the resulting NE is
s∑

j=1

rj .

Using Proposition 1 we get that
s∑

j=1

rj ≥
s∑

j=1

( n
2j(j−1)/2 − 1) and since OPT =

n >> s, we get a ratio of at least
s∑

j=1

2−j(j−1)/2. Letting s tend to infinity as

well results in the claimed lower bound. ut

5.2 An upper bound

To bound the PoA from above, we prove the following theorem.

Theorem 3. For any instance of the bin packing game G ∈ BP : Any NE pack-
ing uses at most 1.64286 · OPT (G) + 2 bins, where OPT (G) is the number of
bins used in a coordinated optimal packing.

6 Bounding the SPoA and the SPoS

The SPoA and the SPoS measures are well defined only when a Strong equi-
librium exists. Our Bin Packing game does not belong to the set of games that
were already shown to admit a Strong equilibrium. Thus, in order to analyze the
SPoA and the SPoS of the Bin Packing game, we must first prove that a Strong
equilibrium exists in our specific setting.

Theorem 4. For each instance of the bin packing game, the set of Strong Nash
equilibria is non-empty.

Proof. We give a constructive proof to this theorem, by providing a deterministic
algorithm that, for each instance of the bin packing game, produces a packing
which admits SNE. This is the well-known Subset Sum algorithm, that proceeds
by filling one bin at a time with a set of items that fills the bin as much as
possible. We will show a stronger result; For the Bin Packing game introduced
above, the set of SNE and the set of outcomes of Subset Sum algorithm coincide.
A proof of this result is given in two parts.

Proposition 5. The output of the Subset Sum algorithm is always a SNE.

Proposition 6. Any SNE is an output of some execution of the Subset Sum
algorithm.

As the Subset Sum algorithm is deterministic, Proposition 5 shows that an SNE
always exists. ut
Now, we would like to show that for the bin packing game, SPoA equals SPoS,
and that this value is equal to the approximation ratio of the Subset Sum al-
gorithm. For shortening notation, from now on, we refer to the Subset Sum
algorithm as to algorithm C, and denote its approximation ratio by RC .



Theorem 5. For the bin packing game introduced above, SPoA = SPoS = RC .

Theorem 5 implies that the problem of bounding the SPoA and the SPoS of the
bin packing game is equivalent to the problem of bounding the approximation
worst-case ratio RC of the well known Subset Sum algorithm for bin packing.
The latter was tackled by Caprara and Pferschy, who used a novel and non-
trivial method to show 1.6067 ≤ RC ≤ 1.6210, thus determining the exact value
of RC within a relative error smaller than 1% (see [6]). This exact value is yet
to be found. We conclude that 1.6067 ≤ SPoS(BP ) = SPoA(BP ) ≤ 1.6210.

7 Summary and conclusions

We have studied the Bin Packing problem, where the items are controlled by
selfish agents, and the cost charged from each bin is shared among all the items
packed into it, both in non-cooperative and cooperative versions. We proved a
tight bound on the PoS and provided improved and almost tight upper and
lower bounds on the PoA of the induced game. We have also provided a simple
deterministic algorithm that computes the SNE assignment for any instance of
the Bin Packing game, and proved that the asymptotic worst-case performance
of this algorithm equals the SPoA and the SPoS values of the game. Two open
problems in that context are closing of the small gaps between upper and lower
bounds for the PoA and the SPoA/SPoS of the bin packing game. The latter,
if achieved, will result in giving a tight bound on the worst-case performance
of the Subset Sum algorithm for bin packing, as we proved these two problems
are equivalent. This probably would not be an easy task, as finding tight bound
on the approximation ratio of the Subset Sum algorithm, though very nearly
approximated by Caprara and Pferschy in [6], remains open problem since 70’s.
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