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Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In

contrast to the competitive ratio, this measure compares two online algorithms directly instead

of using an intermediate comparison with an optimal offline algorithm.

In this paper, we apply the relative worst-order ratio to online algorithms for several common

variants of the bin packing problem. We mainly consider pairs of algorithms that are not dis-

tinguished by the competitive ratio and show that the relative worst-order ratio prefers the

intuitively better algorithm of each pair.
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1 Introduction

The relative worst-order ratio is a quality measure for online algorithms inspired by [2,19], defined

in [4], and refined in [5]. Contrary to the competitive ratio [14,18], the relative worst-order ratio

compares two online algorithms directly instead of using an intermediate comparison with an

optimal offline algorithm. The definitions of the competitive ratio and the relative worst-order

ratio are given in Section 2.

The relative worst-order ratio has previously been used to analyze several different online prob-

lems [3,4,5,6,12,13], and proved useful in identification of good algorithms for many different

online problems. In this paper, we apply the relative worst-order ratio to several common bin

packing problems.

The problems. In standard bin packing [7,16,17] the input is a sequence σ of items of sizes

0 < σ[i] ≤ 1, which are to be packed into unit capacity bins, without exceeding the capacity.

The goal is to minimize the number of bins used. We consider online packing problems. Thus,

the algorithms receive the items one at a time, and have to irrevocably decide which open bin

to place it in or whether to open a new bin for the item.

Online bin packing has various applications in storage, scheduling and resource allocation. Appli-

cations in scheduling come from systems with multiple processors which can be used for limited

durations.

In parametric bin packing [16,17], the sizes of items are bounded from above by 1
t

for some

positive integer t. Thus, for t = 1, the problem is equivalent to standard bin packing.

We further consider a maximization variant called bin covering [1,9,11,8,15]. Here, the goal is to

maximize the number of bins with a total size of items of at least 1.

In open-end bin packing [24] a bin is allowed to contain items of total size larger than 1, as long

the items assigned to the bin, except for the last one, have a total size strictly smaller than 1.

The goal is to minimize the number of bins used.

Finally, we consider two variants where all items have the same size (so all bins can contain the

same number of items), but each item has a color associated with it. In the first model, called

bin coloring [20], the algorithm is allowed to have only a constant number q of open bins at any

time. A bin is open, if it is non-empty but not completely filled. The goal is to minimize the

maximum number of different colors in any bin. In the second problem, called class-constrained
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bin packing [22,23], bins have a fixed number of compartments, and the number of different colors

of items in a given bin cannot exceed this number. The goal is to minimize the number of bins

used.

All these bin packing variants have applications which can be found in the literature [7,9,10].

In particular, parametric bin packing takes into account the fact that typically items, which are

packed into containers, are much smaller than the containers.

Algorithms. A bin packing algorithm is called an Any-Fit algorithm if it opens a new bin

only when the new item does not fit in any open (i.e., non-empty) bin. We study three specific

Any-Fit algorithms, First-Fit (FF), Worst-Fit (WF), and Almost-Worst-Fit (AWF). FF

considers the bins according to the order in which they were opened and places each item in the

first possible bin. WF packs each item in the least filled (non-empty) bin. AWF is a close variant

of WF. If the current item fits in more than one open bin, AWF chooses the second least filled

bin. Otherwise, the algorithm works like WF.

The algorithm Next-Fit (NF) uses a single active bin, and opens a new bin when a new item

cannot be packed in the current active bin. Thus NF is not an Any-Fit algorithm.

We also study the family of Harmonic algorithms defined by Lee and Lee [21]. The Harmonic

algorithms partition the item sizes into intervals, and the items of each interval are packed

separately, using NF.

Previous work. Boyar and Favrholdt [4] studied standard bin packing in terms of the relative

worst-order ratio. They showed that any Any-Fit algorithm is no better than FF and no worse

than WF. They further showed that WRWF,FF = 2 and WRNF,WF = 2. Thus, FF is strictly

better than WF, which is strictly better than NF. Note that, surprisingly, the competitive ratios

of FF and AWF are both equal to 1.7, whereas the competitive ratios of WF and NF are both

2 [16,17].

Our results. We extend the results of [4] to parametric bin packing. In addition, we consider

the algorithm AWF and show that it is strictly worse than FF and strictly better than WF, for

standard bin packing as well as for parametric bin packing.

We further discuss (adaptations of) the Harmonic algorithms for three variants: standard bin

packing, bin covering, and open-end bin packing. For all three problems, we show that all pairs

of algorithms in the class are comparable and their relative worst-order ratios are found. In all

cases, the algorithms that seem to be more clever indeed yield better results, even though the

competitive ratios of the algorithms are equal or not very different.

For bin coloring, two algorithms were suggested by Krumke et al. [20], a natural greedy algorithm

and an algorithm using the NF strategy. The authors show that the greedy algorithm has the

worse competitive ratio, though intuitively it should be the better algorithm. We show that the

greedy algorithm is better in terms of the relative worst-order ratio.

For class-constrained packing, two algorithms of competitive ratio 2 were suggested by Shachnai

and Tamir [22], and each one of them seems to have advantages over the other one. We show

that indeed, these two algorithms are not comparable.

2 Quality Measures

In this section we introduce the quality measures which we use for the comparison of algorithms.

We give simplified definitions that, for the problems studied here, are equivalent to the original

definitions. We first define the competitive ratio.

Definition 1. For any algorithm Alg and any input sequence σ, let Alg(σ) be the value (i.e.,

the cost or the profit) of the solution obtained when running Alg on σ. In particular, let Opt

be an optimal offline algorithm and let Opt(σ) be the value of the best solution for the input.
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Definition 2. Let Alg be an online algorithm defined for an optimization problem.

If the considered problem is a minimization problem, then the competitive ratio of Alg is

R (Alg) = lim
N→∞

 
sup

σ:Opt(σ)≥N

Alg(σ)

Opt(σ)

!
.

If the considered problem is a maximization problem, then the competitive ratio of Alg is

R (Alg) = lim
N→∞

 
sup

σ:Opt(σ)≥N

Opt(σ)

Alg(σ)

!
.

Definition 3. Let Alg be an online algorithm defined for an optimization problem.

If the considered problem is a minimization problem, then the strict competitive ratio of Alg is

SR (Alg) = sup
σ

Alg(σ)

Opt(σ)
.

If the considered problem is a maximization problem, then the strict competitive ratio of Alg is

SR (Alg) = sup
σ

Opt(σ)

Alg(σ)
.

Now we turn to the relative worst-order ratio.

Definition 4. For minimization problems, any algorithm Alg, and any input sequence σ, let

AlgW(σ) be the cost of Alg on its worst permutation of σ, i.e., AlgW(σ) = maxp Alg(p(σ)),

where p is a permutation on |σ| elements. Similarly, for a maximization problem, we define

AlgW(σ) = minp Alg(p(σ)).

Definition 5. Let A and B be two algorithms defined for an optimization problem. If

lim
N→∞

�
inf

σ:BW(σ)≥N

AW(σ)

BW(σ)

�
≥ 1,

or if

lim
N→∞

�
inf

σ:AW(σ)≥N

BW(σ)

AW(σ)

�
≥ 1,

we say that A and B are comparable.

If A and B are comparable, the relative worst-order ratio of A to B is defined as

WRA,B = lim
N→∞

 
sup

σ:BW(σ)≥N

AW(σ)

BW(σ)

!
.

Note that both limits exist since the sequences are monotone. It can be the case, however, that

the limit is infinite.

For a maximization problem, if WRA,B > 1, A and B are comparable in A’s favor, and if

WRA,B < 1, the algorithms are comparable in B’s favor. For a minimization problem, it is the

other way around: if WRA,B > 1, A and B are comparable in B’s favor, and if WRA,B < 1, the

algorithms are comparable in A’s favor.

In Section 5, we analyze a pair of bin coloring algorithms that have previously been analyzed

with the competitive ratio. We show that, according to the competitive ratio, one algorithm is

the better algorithm, and according to the relative worst-order ratio, the other algorithm is the

better one. Such a disagreement between the two measures is only possible, when the optimal

offline solution may depend on the permutation of the input sequence, which is not the case for

standard bin packing and many other variants of bin packing.
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Definition 6. If AW(σ) ≥ BW(σ) for any input σ, or if BW(σ) ≥ AW(σ) for any input σ, then

we say that A and B are strictly comparable.

If A and B are strictly comparable, the strict relative worst-order ratio of A to B is defined as

SWRA,B = sup
σ

AW(σ)

BW(σ)
.

For a maximization problem, if SWRA,B > 1, A and B are strictly comparable in A’s favor, and

if SWRA,B < 1, the algorithms are strictly comparable in B’s favor. For a minimization problem,

it is the other way around: if SWRA,B > 1, A and B are strictly comparable in B’s favor, and if

SWRA,B < 1, the algorithms are strictly comparable in A’s favor.

Definition 5 is equivalent to the one given in [5]. The strict version in Definition 6 appears in

[4,13].

By definition, the relation of one algorithm being comparable to another one is transitive [5], and

the relative worst-order ratio between two algorithms A and B can never exceed the competitive

ratio of A. For the case where the algorithms are compared using the strict relative worst order

ratio, the same results hold (with respect to the strict competitive ratio).

Since packing problems are often studied using asymptotic measures (as in Definition 2), in our

analysis we mostly use Definition 5, that is, compare the outputs for inputs with large enough

costs or profits. The competitive ratios discussed in such cases are according to Definition 2.

However, in Section 5 the bin coloring problem [20] is studied with respect to Definition 6. The

study of bin coloring in [20] uses the strict competitive ratio, as in Definition 3, and we adopt

that approach.

3 Parametric bin packing

In this section we study the standard bin packing problem with the restriction that all item sizes

are at most 1
t
, for some integer t ≥ 1. We first show that, for all t ≥ 1, AWF is strictly better

than WF and strictly worse than FF (Theorems 1 and 2). This contrasts with the competitive

ratio which is the same for AWF and FF. Then we extend results of [4] comparing WF to FF

and NF to the class of Any-Fit algorithms.

As stated in the introduction, it was shown in [4] that, for standard bin packing, all Any-Fit

algorithms are comparable to FF, WF, and NF. Such a result clearly carries over to parametric

bin packing, since for t ≥ 2, parameterized bin packing is a special case of standard bin packing.

We use WRA,B(t) to denote the relative worst-order ratio of the two algorithms A and B for

the parameter t. Throughout the paper, we use the notation 〈s1, s2, . . . , sk〉, k ≥ 1, to denote a

sequence of k items with sizes s1, s2, . . . , sk. For any sequence σ, we let σn denote σ repeated n

times.

Theorem 1. WRWF,AWF(t) =

(
2, for t = 1

t
t−1

, for t ≥ 2

Proof. The results of [4] imply that WF is comparable to AWF in AWF’s favor.

Since the relative worst-order ratio cannot exceed the competitive ratio, the upper bound follows

directly from the competitive ratio of WF, shown by Johnson [16].

For the lower bound, we use an input similar to the one of [16]. We prove the bound for t ≥ 2; the

lower bound for t = 1 is identical to the bound for t = 2. For some large integer n, let ε = 1
t2n

,

and let σ = (〈 1
t
〉t−1〈ε〉)tn. WF packs these tn sets of items using tn bins. No matter how σ is

ordered, AWF maintains the invariant that all ε-items are packed in the first bin and at most

one additional bin is open. Thus, in total, AWF uses at most (t− 1)n + 1 bins. For increasingly

large n, this gives a ratio approaching the competitive ratio of WF [16]. ut

Theorem 2. WRAWF,FF(t) ≥
(

4
3
, for t = 1
2t

2t−1
, for t ≥ 2
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Proof. The results of [4] imply that AWF is comparable to FF in FF’s favor. Hence, we only

need to find a family of input sequences where FF is strictly better than AWF.

We prove the lower bounds for t ≥ 2; the lower bound for t = 1 is identical to the lower

bound for t = 2. For some large integer n, let ε = 1
2t2n

, and consider the input sequence

〈 1
t
〉t−1(〈 1

2t
〉〈 1

t
〉t−1〈ε〉)tn.

Given in this order, for each of the later tn sets of items, AWF puts the item of size 1
2t

in the

latest opened bin, opens a new bin for the next t− 1 items, and puts the ε-item in the previous

bin. In total, AWF uses nt+1 bins. For FF, no matter how the items are ordered, all the ε-items

are placed in the same bin. In total, at most one bin is not completely filled, and FF uses at

most n(t− 1
2
) + 1 bins. For increasingly large n, the ratio approaches 2t

2t−1
from below. ut

Finally, we extend the results of [4], which are given for t = 1, and prove the following two

theorems:

Theorem 3. WRWF,FF(t) = t
t−1

for t ≥ 2.

Proof. For the upper bound, the stated ratio matches the competitive ratio of WF [17]. For the

lower bound, by the previous theorems, we have WRWF,AWF(t) = t
t−1

and WRAWF,FF(t) ≥ 2t
2t−1

.

Hence, by Theorem 11 in [5], we have WRWF,FF(t) ≥ max{ t
t−1

, 2t
2t−1

} = t
t−1

. ut

Theorem 4. For any Any-Fit algorithm A, 2t+2
2t+1

≤ WRNF,A(t) ≤ t
t−1

for t ≥ 2.

Proof. The results of [4] imply that NF is comparable to every Any-Fit algorithm A in A’s favor.

For the upper bound, the stated ratio matches the competitive ratio of NF [17].

For the lower bound, consider the input sequence σ = (〈 1
t+1

〉t〈 1
t
〉〈 1

t+1
〉t−1)n. NF will use 2n

bins.

Now, consider the output of any Any-Fit algorithm A on an arbitrary permutation of the items.

All output bins will contain a total size of `
t(t+1)

, for some integer ` such that t ≤ ` ≤ t(t + 1) =

t2 + t. Let `i be the value of ` for the ith output bin. Since the items are of size at most t+1
t(t+1)

,

all bins except possibly the last have `i ≥ t2.

Using number theory, it can be shown that, for every number t2 + c where c is an integer such

that 0 ≤ c ≤ t− 1, there is a unique combination (x, y), such that xt + y(t + 1) = t2 + c, namely

(t− c, c). For c = t, there are two combinations: (t + 1, 0) and (0, t).

Hence, for c = 0, the combination is (t, 0), and all bins of this type contain items of size 1
t+1

only. If there were two such bins, then the first item of the second would fit in the first bin.

Consequently, there can be at most one bin with `i = t2.

Now, let nc be the number of bins with `i = t2 + c, i.e., with c 1
t
-items and t− c 1

t+1
-items. Since

there are n items of size 1
t

= t+1
t(t+1)

, we have
t−1P
c=1

cnc ≤ n.

The total number of bins used by the Any-Fit algorithm is the sum of the number of bins with

`i ≤ t2, the bins with t2 < `i < t2 + t, and the bins which are completely filled with either only
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1
t

or 1
t+1

items. Thus,

A(σ) ≤ 2 +

t−1X
c=1

nc +

266666
n−

t−1P
c=1

cnc

t

377777+

266666
(2t− 1)n−

t−1P
c=1

(t− c)nc

t + 1

377777
≤ 4 +

t−1X
c=1

nc +

n−
t−1P
c=1

cnc

t
+

(2t− 1)n−
t−1P
c=1

(t− c)nc

t + 1

= 4 +

(2t2 + 1)n + t
t−1P
c=1

nc −
t−1P
c=1

cnc

t2 + t

≤ 4 +

(2t2 + 1)n + t
t−1P
c=1

cnc −
t−1P
c=1

cnc

t2 + t

≤ 4 +
(2t2 + 1)n + (t− 1)n

t2 + t
= 4 +

2t2 + t

t2 + t
n = 4 +

2t + 1

t + 1
n

In the last two inequalities, we use
t−1P
c=1

nc ≤
t−1P
c=1

cnc and
t−1P
c=1

cnc ≤ n. Comparing to the cost of

NF which is 2n we get the required bound. ut

4 Harmonic algorithms

In this section, we study the family of Harmonic algorithms, Harmonici (Hi), for three variants

of bin packing. For all three variants, we find that Hj is better than Hi for i < j. For bin covering

and open-end bin packing, this contrasts with the competitive ratio, which is 2 for all Harmonic

algorithms. For standard bin packing, the relative worst-order ratio agrees with the competitive

ratio in the sense that the competitive ratio also prefers Hj over Hi when 1 < i < j. However, with

the relative worst-order ratio, the difference between Hj and Hi is more pronounced, especially

for H1 and H2 which are not distinguished by the competitive ratio.

4.1 Bin packing

For standard bin packing the family of algorithms Hi, designed by Lee and Lee [21], is defined

as follows. For i ≥ 1, Hi divides the items into i classes. For 1 ≤ j < i, class j consists of all the

items σ[k] of size 1
j+1

< σ[k] ≤ 1
j
. Class i consists of items of size at most 1

i
.

When receiving items, Hi does not mix items from different classes. It keeps exactly one open

bin for each class, and assigns an item to the open bin of its class, if possible. If the item is too

large, a new bin is opened for the class, and the previous one is closed. This means that every

closed bin for class j < i contains j items, and the items of class i are packed using NF.

H1 corresponds to NF, all items are in the same class, and there is a single active bin at any

time. It was shown in [21] that as i tends to infinity, the competitive ratio of these algorithms

tends to 1.691. The competitive ratios of H1 and H2 are 2, but the competitive ratios of all other

algorithms in the class are no larger than 1.75. Thus, it seems that using an algorithm Hi of

relatively large i does not give much advantage over using H3.

In the following, we use the relative worst-order ratio to compare pairs of harmonic algorithms,

and show that the algorithm with the larger index is the better algorithm.

Lemma 1. For any input sequence σ and i < j, HiW(σ) ≥ HjW(σ)− j + i− 1, and thus Hi is

comparable to Hj.
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Proof. Consider any input sequence σ and the packing of σ done by Hj on its worst ordering of

the sequence. We construct a permutation on the items by reordering the bins as follows: First,

all closed bins occur in decreasing order of the class indexes. Next, all the open bins follow in

some order. Now the items are given to Hi in the order they appear in the bins.

Note that each closed class k bin has an empty space of less than 1
k+1

. Hence, for ` ≤ k, no

class ` item fits in a closed class k bin. It follows that Hi packs all closed bins identically to Hj .

Moreover, Hi packs all open bins of class k, 1 ≤ k ≤ i − 1 identically to Hj . Thus, Hi uses at

least as many bins as Hj , except for at most j − i + 1 open bins of classes i, i + 1, . . . , j. ut

It turns out that the relative worst-order ratio of Harmonici to Harmonicj , j > i, is determined

by sequences that consist solely of items that fall in class i when handled by Harmonici, and

using just one more class, the bins would be filled completely. Hence, the ratio depends only on

i:

Theorem 5. For any i < j,

WRHi,Hj =

(
2, for i = 1

i
i−1

, for i ≥ 2

Proof. For the upper bound, consider any input sequence σ. The number of bins containing

items of any class k < i is the same for the two algorithms, regardless of the ordering of the

input. Such bins may only decrease the relative worst-order ratio, and we can therefore assume

that there are no such items. In the case i = 1, the upper bound follows from the competitive

ratio of NF. Consider the case i ≥ 2. Every closed bin packed by Hi containing items of class i,

contains a total size of items of at least i−1
i

. This implies the upper bound.

To prove a lower bound for i = 1, we use the sequence of [4], σ = 〈1, 1
n
〉n, for some large integer

n. For this ordering, H1 packs the items in 2n bins, whereas Hj , for any j ≥ 2, uses n + 1 bins.

If i ≥ 2, consider the sequence σ = (〈 1
i
〉i−1〈 1

n
〉)in, for some large integer n. Using this ordering,

Hi uses in bins, whereas Hj , for any j ≥ i + 1, packs the 1
n
-items separately from the 1

i
-items

and thus uses only n(i− 1) + i bins. ut

4.2 Bin covering

The bin covering problem [1,11,8,15] is in some sense the opposite of the bin packing problem

as we now want to maximize the number of bins containing items of a total size of at least one.

The Harmonic algorithms for this problem are the same as for standard bin packing, except

that a bin is closed only when the total size of the items in the bin reaches at least one.

Assmann et al [1] studied the algorithm Next-Cover (NC) which assigns items to one bin until

it is covered, and only then moves to the next bin. This algorithm has a competitive ratio of

2. Csirik and Totik [11] showed that this is the best possible competitive ratio for the problem.

The same competitive ratio can be achieved by the Harmonic algorithms.

H1 corresponds to NC: All items are in the same class, and the bins are simply filled one by one.

For j < i, Hi uses at most j + 1 items of class j to cover a bin of that class, and applies NC to

class i. Naturally, for any i ≥ 1, Hi has a competitive ratio of 2 as well. This ratio follows from

the fact that covered bins may have items of a total size of almost 2. However, it seems that

even though such cases can occur for Hi, still it only happens in bins containing relatively large

items. Below we find, unsurprisingly, that Hi is increasingly better for increasing i.

Lemma 2. For any input sequence σ and i < j, HiW(σ) ≤ HjW(σ) + j − i + 1, and thus Hi is

comparable to Hj.

Proof. Consider any input sequence σ and the packing of σ done by Hj . At most j − i + 1 bins

containing items of classes i to j are not closed. Move these bins to the end, and give all items

to Hi in the order they appear in the bins. With this permutation of σ, Hi packs all the items

in the same way as Hj except possibly for j − i + 1 bins. ut
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Theorem 6. For any i < j, WRHi,Hj = i+1
i

.

Proof. The upper bound is similar to the one for standard bin packing. The number of bins

covered using items of classes 1, 2, . . . , i− 1 is equal for both algorithms on any permutation of

the input. Thus we can assume that all items have a size of at most 1
i
. No bin receives a total

size of more than 1 + 1
i
, and the upper bound follows.

For the lower bound, consider the input sequence σ = (〈 1
n
〉n−1〈 1

i
〉)in for some large integer n.

For Hi, the items of sizes 1
n

and 1
i

belong to the same class, and using the above ordering Hi fills

each bin to n−1
n

+ 1
i

and covers in bins in total. For Hj , the items of the two sizes belong to two

different classes, hence, no matter how σ is reordered, Hj only just fills all of its bins completely,

yielding n + i(n− 1) covered bins. As n tends to infinity, this gives a ratio of i+1
i

. ut

4.3 Open-end bin packing

In the open-end bin packing problem, first described by Leung and Yang [24], the total size of

items in a bin may exceed 1, as in bin covering. However, unlike bin covering, it is a minimization

problem: The number of bins used should be minimized under the restriction that an item can

be packed in a bin, only if the total size of the items already there is strictly less than 1.

For this problem, the Harmonic algorithms partition the item sizes slightly differently: For Hi

and 0 < j < i, class j contains the items of sizes in [ 1
j+1

, 1
j
). Class i contains items of sizes in

(0, 1
i
), and class 0 contains items of size 1. The algorithm packs the items of class 0 into separate

bins. Thus, a closed bin of class j, 0 < j < i, contains j + 1 items.

All the algorithms Hi have a competitive ratio of 2. However, using the relative worst-order ratio

we show that the algorithms with larger indices are better.

A greedy algorithm NF can be defined again as an algorithm which uses a single active bin, and

packs items into this bin as long as it is possible.

Note that in this case, NF is not exactly the same algorithm as H1. However, we can prove that

they are equivalent in terms of the relative worst-order ratio. Also, note that an item of size one

is always the last item in its bin in any packing.

Lemma 3. For any input sequence σ, H1W(σ) = NFW(σ).

Proof. Consider any input sequence σ. We claim that for NF there exists a worst permutation of

σ in which all items of size one appear in the beginning. Among the worst permutations of σ for

NF, consider a permutation σ′ with a maximum number of items of size one in the beginning.

Assume by contradiction that there is an item of size one which does not appear in the beginning.

Move this item to the beginning and the items packed together with it (if they exist) to the end

of the sequence. As a result, the item of size one is packed in a bin alone so the number of bins

did not decrease, which is a contradiction.

The same is clearly true for H1 (that the items of size one appear in the beginning of some worst

permutation), since the exact location of these items is not important.

For a permutation with the items of size one appearing in the beginning, the packing of NF and

H1 are identical. This proves the lemma. ut

Lemma 4. For any input sequence σ and i < j, HiW(σ) ≥ HjW(σ)− j + i− 1, and thus Hi is

comparable to Hj.

Proof. Consider any input sequence σ and the packing of σ done by Hj . At most j − i + 1 bins

containing items of classes i to j are not closed.

Now, move these bins to the end, and give the items to Hi in the order they appear in the bins.

With this permutation of σ, Hi packs all the items in the same way as Hj except possibly for

j − i + 1 bins. ut

Theorem 7. For any i < j, WRHi,Hj = i+1
i

.
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Proof. The upper bound is similar to the one for standard bin packing. The number of bins

packed using items of classes 1, 2, . . . , i− 1 is equal for both algorithms and for any permutation

on the input. Thus, we can assume that all items have a size of less than 1
i
. Consequently, a bin

can only receive a total size of less than 1 + 1
i
, and the upper bound follows.

For the lower bound, consider the input sequence σ =
�〈 1

n
〉i〈 1

i
− 1

n
〉i�(i+1)n

for some large integer

n. For Hi, all items belong to the same class, and using the above ordering Hi packs the items

of each subsequence into one bin using (i + 1)n bins in total. For Hj , the items of the two sizes

belong to two different classes, hence, no matter how σ is reordered, Hj packs i + 1 larger items

in each bin of that class. The number of bins is therefore at most in + i(i + 1). As n tends to

infinity, this gives a ratio of i+1
i

. ut

5 Bin coloring

In the bin coloring problem first defined by Krumke et al [20], we have q bins each capable of

holding B items. The input sequence consists of items with only one property: their color. The

items must be packed in bins. Each time a bin has been filled a new empty bin takes its place.

The object is to minimize the maximum number of colors in any bin. The problem is motivated

by a real life vehicle packing problem.

The paper [20] defines two algorithms for the problem: One-Bin (OB) simply fills the bins one

by one, whereas Greedy-Fit (GF) places each item in a bin already containing an item of the

same color, if possible, and otherwise in any bin currently containing the least number of colors.

Intuitively, GF should be the better algorithm, but according to the (strict) competitive ratio,

OB is strictly better: OB has a strict competitive ratio of at most (2q − 1) and GF has a strict

competitive ratio of at least 2q [20]. We show that, according to the strict relative worst-order

ratio, GF is better than OB. Interestingly, a related result was given by Hiller and Vredeveld [15]

who showed that GF is better than OB, using probabilistic analysis.

Definition 7. For any input sequence σ, define C(σ) to be the number of different colors oc-

curring in σ.

Lemma 5. For any algorithm Alg and for any input sequence σ,

min
n

B,
lC(σ)

q

mo
≤ AlgW(σ) ≤ min {B, C(σ)} .

Proof. The upper bound of min {B, C(σ)} follows immediately by the definition of the cost

function of the problem.

For the lower bound, let Alg be any algorithm and σ be any input sequence for the problem.

Reorder σ such that the first C(σ) items all have different colors. Consider the packing of these

first C(σ) items. If the algorithm never closes a bin while processing these items, that is, they

are packed into at most q bins, then by the pigeon hole principle, at least dC(σ)/qe items are

packed into a common bin. Otherwise, at least one bin is closed, and this bin contains B items

of distinct colors.

Theorem 8. For any input sequence σ, OBW(σ) = min {B, C(σ)}.
Proof. Let σ be any input sequence. Reorder σ such that the first C(σ) items all have different

colors. This immediately yields the result. ut
Theorem 9. For any input sequence σ, GFW(σ) = min

�
B,
�C(σ)

q

�	
.

Proof. Let σ be any input sequence. By the definition of GF, items are always placed in a bin

with same-colored items or in a bin with the least number of current colors.

No bin can contain items of more than B colors, therefore, if B ≤ dC(σ)/qe, then we are done.

Otherwise, by the pigeon hole principle, if GF needs to pack an item with a color not currently

used in any of its open bins, it always has at least one bin with at most b(C(σ)−1)/qc < dC(σ)/qe
different colors, which can accommodate the item. ut
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By the above theorems, OB and GF are worst, respectively best, possible algorithms for the Bin

Coloring Problem.

Theorem 10. SWROB,GF = min {q, B}.

Proof. By Lemma 5 and Theorem 8, GF is always at least as good as OB on any input sequence.

Hence, we only need to find a familiy of input sequences that maximizes the ratio between the

cost of OB and GF.

Let σi be any input sequence with i different colors. By Lemma 8 and Theorem 9, we have

OBW(σi) = min {B, i}, and GFW(σi) = min {B, di/qe}. We need to find the worst possible i,

max
i∈N

�
OBW(σi)

GFW(σi)

�
= max

i∈N

�
min {B, i}

min {B, di/qe}
�

We can choose the value i = q to obtain the lower bound min {q, B}. Clearly, the worst possible

values are obtained for i being multiples of q. Let i = pq for some positive integer p. Then if

B ≤ p we get the ratio 1, if p < B ≤ pq, we get the ratio B
p

(and in this case B
p
≤ q, B

p
≤ B),

and otherwise, we get the ratio q (and in this case q < B
p
≤ B). ut

6 Class-constrained packing

In the online class-constrained packing problem first described by Shachnai and Tamir [22,23],

we again have to pack items in bins. Items have unit size and are each equipped with a color.

Bins can contain up to at most v items (capacity constraint) and up to at most c different colors

(class constraint). The object is to pack the items using as few bins as possible. Without loss of

generality, in the following we only consider the case when 1 < c < v, otherwise the problem is

trivial.

Two 2-competitive algorithms were presented in [22]:

First-Fit (FF): An item is packed into the first bin that has less than v items, where packing

it would not violate the class constraints.

ColorSets (CS): Denote the colors by 0, 1, 2, . . . , K in the order of their first appearance in

the input sequence.

Partition the colors into sets containing at most c colors such that the tth set, for t ≥ 0,

contains the colors {tc, tc + 1, . . . , tc + c− 1}. CS packs each color set in separate bins.

Even though the two algorithms have the same competitive ratio, it seems obvious that they

work well in different situations. This is reflected in the relative worst-order analysis: they are

not comparable. More precisely, there are situations where one algorithm is essentially twice as

good as the other and situations where it is the other way around.

Lemma 6. For any ε > 0, there exist values of v and c, and an arbitrarily long input sequence

σ, such that CSW(σ) ≥ (2− ε)FFW(σ).

Proof. In the following we only consider the case when v = ck−1, for an integer k > 1. For some

large integer n, consider the input sequence σ consisting of cn colors each occurring k times,

that is, the sequence contains kcn items in total.

No matter in which order the items are given, CS will produce n sets of colors, where the number

of items in each set of colors is ck = v +1, so two bins are used for each set, and 2n bins in total.

For FF, we need to consider all packing options:

Every bin which is full must contain v items. Since there exist only k items of each color, a bin

which contains items of at most c− 1 colors contains less than v items. Thus, a full bin contains

items of exactly c colors, and therefore it must have exactly c − 1 colors with k items and one

color with k − 1 items.

Every bin which is not full (except for possibly the last one) also contains items of c colors, since

otherwise there is no need of opening an additional bin. Note that no color has items in more

than two bins. If the first bin containing items of this color is full, then at most one item is left
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for future packing. Otherwise, if already the first bin is not full, there is only one bin used for

this color.

We assign costs to colors as follows. A color with k items in a full bin gets a cost of c+1
c2

. A color

with k − 1 items in a full bin gets a cost of 1
c2

. A color with at least one item in a non-full bin

(which is not the last bin) gets a cost of 1
c
. Note that this exactly covers the cost of all bins but

the last, since c+1
c2

(c− 1) + 1
c2

= 1, and 1
c

c = 1.

Note also that a color may be assigned more than one cost. Specifically, a color with all items

in one bin gets a cost of at most c+1
c2

, and a color with two bins gets a cost of 1
c2

+ 1
c

= c+1
c2

.

Thus the total number of bins used by FF is at most the sum of costs of colors plus 1, which is

at most cn c+1
c2

+ 1 = n(c+1)
c

+ 1.

For n approaching infinity, the ratio approaches 2c
c+1

from below. This is close to 2 for large c. ut

Lemma 7. For any ε > 0, there exist values of v and c, and an arbitrarily long input sequence

σ, such that FFW(σ) ≥ (2− ε)CSW(σ).

Proof. We consider values of c which divide v, and let k = v
c
. For some large integer n, consider

an input sequence consisting of items using (c−1)cn+1 different colors: Color 0 has (k+c−1)cn

items, and the remaining (c− 1)cn colors each has k items.

A possible bad ordering for FF is the following, where items are given in cn+1 phases: In Phase

i, 0 ≤ i ≤ cn − 1, k + c − 1 items of color 0 are given together with k − 1 items of each of the

colors i + 1, i + 2, . . . , i + c − 1. In the last phase, one item of each color 1, 2, . . . , (c − 1)cn is

given.

FF uses one bin for each of the first cn phases. For the last phase, it uses (c − 1)n bins. This

gives a total of 2cn− n bins.

For CS, independently of the ordering, almost all bins are completely filled. The color set con-

taining color 0 may have a partially empty bin, and the last color set (which contains only c− 1

colors) may have a partially empty bin. In total, the input sequence contains c(c − 1)n + cvn

items, and CS uses at most c(c− 1)n/v + cn + 2 bins.

For any n, the ratio of the two is
2c− 1

c
v
(c− 1) + c + 2

n

.

As v
c

and n tend to infinity, this tends to 2− 1
c
. ut

The previous two lemmas immediately imply the following theorem:

Theorem 11. FF and CS are not comparable using the relative worst-order ratio.
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