Online Bin Packing with Resource Augmentation

Leah Epstein Rob van Stee
September 17, 2007

Abstract

In competitive analysis, we usually do not put any restritsion the computational complexity of
online algorithms, although efficient algorithms are pnefd. Thus if such an algorithm were given the
entire input in advance, it could give an optimal solutiom éxponential time). Instead of giving the
algorithm more knowledge about the input, in this paper wesider the effects of giving an online bin
packing algorithm larger bins than the offline algorithmsittiompared to. We give new algorithms for
this problem that combine items in bins in an unusual way avellgounds on their performance which
improve upon the best possible bounded space algorithm. IStegave general lower bounds for this
problem which are nearly matching for bin sizes 2.

1 Introduction

In this paper we investigate the bin packing problem, onb@bldest and most thoroughly studied problems
in computer science [2, 3]. In particular, we investigaie gnoblem using the resource augmentation model,
where the online algorithm has bins of size>= 1 and is compared to an offline algorithm that has bins of
size 1. We show improved upper bounds and general lower Isdondhis problem.

Problem Definition In the classical bin packingproblem, we receive a sequene®f itemspy, pa, ..., pN-
Each item has a fixedizein (0, 1]. In a slight abuse of notation, we uggto indicate both theth item
and its size. We have an infinite supplylmhs each withcapacityl. Each item must be assigned to a bin.
Further, the sum of the sizes of the items assigned to any Ainnot exceed its capacity. A bin énptyif
no item is assigned to it, otherwise itused The goal is to minimize the number of bins used.

In theresource augmentatiomodel [8, 11], one compares the performance of a particldarithm A
to that of the optimal offline algorithm (denoted byT) in an unfair way. The optimal offline algorithm
uses bins of capacity one, wherkis allowed to use bins of capacity> 1. The goal is still to minimize
the numberof bins used.

In the online versions of these problems, each item must be assignedninvtithout knowledge of the
next items. Since it is impossible in general to produce #s possible solution when computation occurs
online, we consider approximation algorithms. Basicallyg want to find an algorithm that incurs cost

*A preliminary version of this paper appears in Proceedirfgb® 2nd Workshop on Approximation and Online Algorithms
(WAOA 2004).

TSchool of Computer Science, The Interdisciplinary Cerderzliya, Israell ea@ dc. ac. i | . Research supported by Israel
Science Foundation (grant no. 250/01).

iDepartment of Computer Science, University of Karlsruhe/@28 Karlsruhe, Germanywanst ee@ r a. uka. de. Re-
search supported by the Netherlands Organization for 8gteResearch (NWO), project number SION 612-061-000.

which is within a constant factor of the minimum possibletcos matter what the input is. This constant
factor is known as the asymptotic performance ratio.

The resource augmentation model was introduced due toltbeviiog drawback of standard competitive
analysis. Competitive analysis compares the performafae anline algorithm, which must pack each item
upon arrival, to that of an omniscient and all-powerful oflialgorithm that gets the input as a set. Resource
augmentation gives more power to the online algorithm, ngakie analysis more general. In particular, it
allows us to exclude instances that crucially depend ontesedoes in the input (in the current paper, the
bin size) and that could give an unrealistically negativawof the performance of an online algorithm.

This approach has also been used to show that certain sisi@duing algorithms have constant com-
petitive ratio for the problems | r;,pmtn| > F; and1 | r;,pmtn| > w;(1 — U;) if they are given a small
amount of resource augmentation [8]. A constant competitiio for these problems is not possible in the
strict online model. Moreover, the strict online model aftequires algorithms which seem unnecessarily
complicated.

A bin-packing algorithm usesounded spack it has only a constant number of bins available to accept
items at any point during processing. These bins are calethbins. Bins which have already accepted
some items, but which the algorithm no longer considers &okmg areclosedbins. While bounded space
algorithms are sometimes desirable, it is often the cagautitiounded space algorithms can achieve lower
performance ratios.

We define the asymptotic performance ratio more precisaly.aFgiven input sequenee and a fixed
bin sizeb, let cosly (o) be the number of bins (of siZg used by algorithmA on o. Let cosfo) be the
minimum possible cost to pack items énusing bins of sizel. Theasymptotic performance ratifor an
algorithm A4 is defined to be

R}, = limsup max
’ n—o00 g

cos{o)

{COSL\,b(U)

cos(o) = n}

Theoptimal asymptotic performance ratie defined to berg 1, = inf 4 R, Our goal is to find for all
values ofb (b > 1) an algorithm with asymptotic performance ratio closé®§p

Previous Results The classic online bin packing problem was first investigdby Ullman [14]. He
showed that the IRST FIT algorithm has performance ratijé. This result was then published in [6]. John-
son [7] showed that the kT FIT algorithm has performance ratio 2. Yao showed theviRED FIRST FIT
has performance ratig). Currently the best known lower bound is 1.54014, due to it Y15].

Defineu; = 2,u;1 = ui(u; — 1) + 1, and hoe = Y o0, uil—l ~ 1.69103. Lee and Lee showed
that the FARMONIC algorithm, which uses bounded space, achieves a perfoeratio arbitrarily close
to hoo [9]. They further showed that no bounded space online dlgarachieves a performance ratio less
thanh., [9]. In addition, they developed theERINED HARMONIC algorithm, which they showed to have a
performance ratio o%% < 1.63597. The next improvements were &b1FIED HARMONIC and MODIFIED
HARMONIC 2. Ramanan, Brown, Lee and Lee showed that these algorithres gerformance ratios of
358 < 1.61562 and 239094 < 1.61217, respectively [12]. Currently, the best known upper boun. 58889
due to Seiden [13].

Bin packing with resource augmentation was first studied byikCand Woeginger [4]. They give an
optimal bounded space algorithm. Naturally, its asymptpgrformance ratio is strictly decreasing as a
function of the bin size of the online algorithm. Some prétiary general lower bounds for bin packing
with resource augmentation were given in [5]. In Section & will compare them to our new lower bounds.

Our Results In this paper, we first present new lower bounds for the ortimepacking problem in the
resource augmentation model by using improved sequenoes.>F2, our lower bounds show that the best
bounded space algorithm is very close to optimal (among wmibed space algorithms).

We use the intuition gained from these lower bounds to devedav algorithms for this model, specif-
ically for the caseb € [1,2). We introduce a general method which extends many previatsidied
algorithms for bin packing. This method takes the onlinedibeb as a parameter. We study four instances
of the general method, each of our algorithms performs veellaf different interval of values df. By
partitioning the intervall, 2) in four sub-intervals and using the most appropriate dlgorion each sub-
interval, we give upper bounds that improve upon the bourats {f4] on the entire interval. That is, these
algorithms are better than the best possible bounded sjmorétam.

Our analysis technique extends the general packing digoranalysis technique developed by Sei-
den [13]. Specifically, unlike previous algorithms whiclckdhe relatively small items by a very simple
heuristic (Next-Fit, or any fit), we combine small items wilinge items in the same bins in order to achieve
good performance (see the algorithms SMH and TMH).

2 Lower bounds - general structure

We first consider the question of lower bounds. Prior to theskywonly a very simple general (non-bounded
space) lower bound for resource-augmented online bin pgakas known [5].

Our method follows along the lines laid down by Liang, Browrda/an Vliet [1, 10, 15]. We give some
unknown online bin packing algorithmd one of & possible different inputs. These inputs are defined as

follows: Leto = s1, s9, ..., s be a sequence d@em sizesuch thal < s; < s9 < -+ < s, < 1. Lete be
a small positive constant. We defiag to be the empty input. Input; consists otr;_; followed byn items
of sizes; + €. Algorithm A is giveno; for somei € {1,..., k}.

A patternwith respect tw is a tuplep = (size(p), p1, . .., px) Where sizép) is a positive real number
andp;,1 < i < k are non-negative integers such t@le p; s; < Sizg(p). Intuitively, a pattern describes
the contents of some bin of capacity gize DefineP (o, 3) to be the set of all patternswith respect t
with size(p) = 3. We write PopT1(0) = P(0,1) andP4(g) = P(0,b). Note that these sets are necessarily
finite. Given an input sequence of items, an algorithm is éefiny the numbers and types of items it places
in each of the bins it uses. Specifically, any online alganitis defined by a functio® : P 4(g) — Rx>o.
The algorithm use®(p) bins containing items as described by the patie/e definep(p) = ®(p)/n.

Consider the functio® that determines the packing used by online algorithmses foro;,. Since A
is online, the packings it uses foi, ..., 01 are completely determined . We assign to each pattern
aclass which is defined as clags) = min{i | p; # 0}. Intuitively, the class tells us the first sequenge
which results in some item being placed into a bin packedrdaug to this pattern. l.e. if the algorithm
packs some bins according to a pattern which has ¢laben these bins will contain one or more items
aftero;. DefineP4(o,i) = {p € Pa(o) | clasgp) < i}. Then if A is determined byp, its cost forg; is
simply n Zpem(m) ¢(p). Since the algorithm must pack every item, we have the folgvgonstraints

n Z o(p)pi > n, forl1 <i<k.
pEP(0)

For a fixedn, definey;(n) to be the optimal offline cost for packing the itemssin The following lemma
gives us a method of computing the optimal offline cost fohesequence:

Lemmal ([5]) For 1 < i < k, x* = lim,,— xi(n)/n exists and is the value of the linear program
Minimizezpepopﬂw) ¢(p) subject tol < ZPEPOPT(Q) ¢(p) pj, for 1 < j < i, over variablesy; and
o(p),p € PopT(0)-

Given the construction of a sequence, we need to evaluate

. . costy(o;)
¢ =min max limsup —————=
A i=l.ok n—oo Xi(N)

Asn — oo, we can replaceg;(n)/n by x;. Once we have the valueg, . .., x}, we can readily compute a
lower bound for our online algorithm:

Lemma 2 The optimal value of the linear prograrMinimizec subject to

1
c > — , forl <i<k;
> = > olp)
pEP.A(Qvl) (1)
1< > op)pi forl <i<k;
PEPA(0)

over variablesc and¢(p),p € P (o), is a lower bound on the asymptotic performance ratio of amine
bin packing algorithm.

Proof. For any fixedn, any algorithmA has someb which must satisfy the second constraint. Furtider,
should assign an integral number of bins to each pattern.eMerythis integrality constraint is relaxed, and
> pePaloi) ¢(p) is 1/n times the cost tod for o; asn — oco. The value ofc is just the maximum of the
performance ratios achieved on, . .., 0. O

3 Lower bound sequences: which inputs are hard to handle?

First of all, it can be seen that items of the fobii + €, wheree > 0 is very small and is an integer, are
difficult to pack by any algorithm in the sense that if you packy items of one such size in a bin, you leave
almostb/i empty space in that bin. Moreover, within this class of iteihsan be seen that the largest items
are the worst in this sense: packing an item of $iz2+ ¢ (and nothing else) into a bin leaves almost half
that bin empty, but packing 99 items of sizél00 + ¢ into a bin leaves only a little less th&n100 empty
space.

It is for these reasons that all our lower bound sequencesisth the smallest items (so that the online
algorithm has to take into account that larger and more dlffitems may appear later, and thus has to
reserve some room for them while packing the ‘easier’ iterms)l use only items of the forkyi + . We
will not explicitly mention the added when discussing various item sizes below.

To determine lower bounds, we first extended the idea of aettyesequence that was also used to
give the best known lower bound for the standard online bitkipg problem [1, 10, 15]. Interestingly,
unlike these papers and the previous paper on resource atgjiae in bin packing [4], it turns out to be
insufficient to simply consider the “standard” greedy semacthat we will define first. More sequence and
arguments are required to get a good lower bound.

A greedy sequence is built as follows. We start by taking @ingdst possible number of the foiny that
is less than 1, whergis a positive integer. 16 € [1,2), this is always the numbeéy2. Then we repeatedly
add the largest possiblgi; (i; is an integer) that fits in the remaining space after pacKingrevious items

4

in a bin of size 1. That s, fob € [1,2), the second iterh/i, has size strictly less than— b/2. We repeat
this until the item found is sufficiently small.

We also use several modified greedy sequences. The reasorthatds that unlike the construction
for bounded space algorithms [4], we need to consider tHenapbffline packing of subsequences and not
only of the complete sequence. For some intervals of valtiéssome greedy itemis/i; are inconvenient
to pack into bins of sizé, and a better lower bound can be proved by choosing such défagently. This
is not an issue in the model without resource augmentatitierevboth algorithms deal with the same bin
size.

The first modified sequence picks the itéfiii, + 1) instead ofb /iy, and continues greedily from that
point. Another natural choice ig/(i2 + 2) instead of/i2, but that does not improve the bounds. A second
modified sequence keeps the first two items picked greédiyandb/i,, but it picksb/ (i3 + 1) as the next
item, and continues greedily. A third version picks both $keond and third item using this non-greedy
method.

The lower bound is then constructed in the standard fasie@nhave constructed a sequence of item
sizesb/2,b/i2,b/is,...,b/i;. We invert the order of this sequence and start with the siststem size. The
inputso; are then constructed as described above, whierehosen in such a way that a set which consists
of one instance of each item can be placed together in a ddnglef size 1.

Forb > 2 we use only the basic greedy sequence.

4 The HARMONIC algorithm and variations

In this section we discuss the importanhkiMONIC algorithm [9] and possible variations on it. In the next
section we will discuss the specific variations oar#1oNIC that we have used in this paper.

The fundamental idea of these algorithms is to first clagsiiyns by size, and then pack an item ac-
cording to its class (as opposed to letting the exact sizeanfle packing decisions). For the classification
of items, we need to partition the interv@l, 1] into subintervals. The standardaRMONIC algorithm uses
n — 1 subintervals of the fornil /(i + 1),1/i] fori = 1,...,n — 1 and one final subintervdl, 1/n]. Each
bin will contain only items from one subinterval (type). rie in subinterval are packed to a bin for
i=1,...,n—1and the items in interval are packed in bins usingeXT FIT.

A disadvantage of KIRMONIC is that items of type 1, that is, the items larger th&@, are packed one
per bin, possibly wasting a lot of space in each single biraviad this large waste of space, later algorithms
used two extra interval endpoints, of the foAn> 1/2 and1— A. Then, some small items can be combined
in one bin together with an item of size (1/2, A]. Items larger tha\ are still packed one per bin as in
HARMONIC. These algorithms furthermore use parametérg = 3,...,n) which represent the fraction
of bins allocated to typéwhere the algorithm will reserve space for item$1/2, A]. The remaining bins
with items of typei still containsd items per bin.

Example MobiFiED HARMONIC (MH) is defined byn = 38 (the number of intervals) anfl = 419/684.

2 _ 1.
« = o

3 _ 1.
[0 = 13
ot = o =0

; 37 —1

= — for6 < < 36;
“ 37(i + 1) ==
AT = o3 =0.

The results of [12] imply that the asymptotic performancgoraf MH is at most% < 1.61562. (In the
original definition,A was used to denote— A.)

In the current paper, we will use as interval endpoints thatp®f the formb/i (as long as they are
below 1) instead ot /7, since items inb/(i + 1), b/i] can be placed exactlyto a bin in an (online) bin of
sizeb. Moreover, sometimes we will also use points of the fakyd — A, 1 — b/2 as interval endpoints, in
order to combine items from different types where they wailerwise waste much space.

Note that forb € [1,2) we always havé/2 < 1. We now consider an algorithtd that uses: basic
intervals (some might be subdivided further):

I = (b/2,1]
P = 0/G+1).b/5] j=2...n-1
% = (0,b/n]

In caseA is used as an endpoint, the interva| = (b/2,1] is partitioned into two subintervals, which
will be denoted by 3® = (b/2, A] andr3™ = (A, 1]. (A will always be chosen larger thapi2.) We will
use two versions of algorithms, that are determined by vendtiey usé — A or 1 — /2 as an additional
endpoint. We denote the largest possible size of an itemeofitiallest type by. This isb/n unlessl’; is
divided further into two subintervals.

Version 1 We use the endpoirit — A (but not the endpoint — 5/2). Let ja be the integer such that
b/(ja +1) < b— A < b/ja. ThenI’? is partitioned into two subintervals, which will be denotey

13 = /(s +1),b — Al and 13 = (b= A,b/ja].

Version 2 We use the endpoint — b/2 (but not the endpoint — A). Let jo be an integer such that
b/(ja+1) <1—-10b/2 <b/ja. Inthis version we always take > ja.

If n > ja+1, thenIf;lA is partitioned into two subintervals, which will be denot@d[j(‘l) = (b/(ja +
1),1—b/2] andI4™ = (1 - b/2,/ja].

Otherwisen4 = ja andI’; is partitioned into the two subinterva[ﬁ(‘l) = (0,1 —10b/2] andlj(g) =
(1-b/2,b/n].

In both versions, the intervals are disjoint and caier]. A assigns each itemtgpedepending on its
size. An item of sizes has typer.4(s) wherer4(s) = j < s € If;‘. Note that eitheR < j < n (j # ja)
orj = A(z) for somel < i < 4.

Note that if we place an item from the intervbﬁ@) in a bin, the amount of space left over is at least
b — A. If possible, we would like to use this space to pack more steho accomplish this, we assign each
item a colorred or blue A attempts to pack red items with ty¢§(2) items. For both versions, all items of
types2,...,ja —1landA(k), k = 1,2,3 (where applicable) are blue. Other items can be either rétuer

To assign colors to items, the algorithm uses two sets ofteosie;,, ..., e, ands;,,..., s,, all of
which are initially zero. The counter;, counts the number of bins for items of typ4), and the counter
s; keeps track of the total number of bins in which we packed stefrtype: for i = ja + 1,...,n. The

counterse; are defined analogously, but only count the number of bingagaing red items of typeA(4) or
i. These bins are also called red themselves.

Forja < i < n, A maintains the invariant; = |a’s; |, i.e. the fraction of bins with typéitems that
contain red items is approximately. Recall that’ is defined only forja < i < n. For each such interval,

6

at least one item can fit in a bin together with an item of sizeas$tA in a bin of sizeb. Moreover, for
version 2 we combine only relatively small items with itenfignterval A(2), so in most cases several items
fit together with theA (2) item.

We now describe how blue and red items are packed. The paokipige items is simple. Far < n,
the number of items with sizes {ib/(i + 1), b/i] which fit in a bin of size) is i. Blue items with such sizes
are placed in a bin, as in the HrRMONIC algorithm. Note that the type of such an item is either A (k)
for somel < k < 4. Small items (type:) which are colored blue are packed into separate bins usimgN
FIT, again as in the HIRMONIC algorithm.

For the red items, we consider the two versions of algoritdefeed before separately.

Version 1 One red item of type\ (4) can be combined with an item of typ¥(2). We definey;, = 1. For
ja < j < n,the number of red items we will assign together with a i) itemis~; = |j(b — A)/b].
For typen, we treat the remaining spaceiof A in bins containing an item of typA(2) as a bin, and use
NEXT FIT to place red items in such bins. Clearly we can fill at IéastA — b/n of this space by small red
items.

Version 2 If n = ja, it means that we combine only the smallest interval witmgeof typeA(2). Then
we can assign at leat- ¢ = 3b/2 — 1 to blue items bins, anbl— A — e = 3b/2 — A — 1 to red items bins.
If n > ja, all the amounts are defined as for version 1, excepyfor= [(b — A)/(1 —/2)].

We explain more precisely the method by which red items ackgmhwith typeA(2) items. When a bin
is opened, it is assigned tageoup. If ¢ = b/n, the bin groups are named:

A(l) (3) A(4),2,3,,...,]A—1,jA+1,...n; (2)
(A(2),1), fora’#0,ja <i<n; (3)
(A(2), %); 4)
(*71)7 for O‘i ?é O1jA <i<mn; (5)
If e =1—10b/2, i.e. the smallest interval was partitioned, the bin groagsnamed:
A(1),A(3),A(4),2,3,...,n—1; (6)
A(2),A4)); (7

(2
(2),%); ®)
A(4)); 9)

Bins from groups in (2) and (6) contain only blue items of thgetthey is named after. The closed bins
all contain the maximum number of items they can have (empthearlier).

If the smallest interval was not partitioned, then far< i < n, a closed bin in groupA(2), i) contains
one typeA(2) item andvy; typei items, and a closed bin in groyg\(2),n) contains one typé\(2) item
and red items of total size at ledst A — b/n. If the smallest interval was partitioned, a closed bin iougr
(A(2),A(4)) contains red items of total size at le8sf2 — A — 1. There is at most one open bin in any of
these groups.

The group(A(2),) contains bins which hold a single blue item of typé2). These bins are all open,
as we hope to add red items to them later.

(
(A
(%,

The group(x, j) contains bins which hold only red items of typeAgain, these bins are all open, but
only one has fewer than; items if j < n. Forj = n only one bin can contain total size of less than
b — A — ¢ of red items of the last interval. We will try to add a typ&2) item to these bins if possible.

We call bins in the last two group classes ((4) and (5), or (&) @)) indeterminate Essentially, the
algorithm tries to minimize the number of indeterminatesbhiwhile maintaining all the aforementioned
invariants. l.e. we try to place red and typg2) items together whenever possible; when this is not
possible we place them in indeterminate bins in hope thgtdhe later be combined.

On arrival of an item, it gets the same color as the previam ibf the same type, if it can also fit into
the same bin. Otherwise, we update the bins counter, anddiegdo the counters, decide which color it
gets.

5 Algorithms in this paper

After describing the general framework, we now describesipecific algorithms that we have designed.
They are all instances of the general algorithm above. Thetfiro algorithms, which deal with the case
b < 4/3, handle the standard greedy lower bound sequence (definBdcition 3) well. The next two
algorithms were designed to handle other input sequentes.bé&/e explain in Section 5.3 why the standard
Harmonic approach is not so useful in the case 4/3.

5.1 Generalized Modified Harmonic (GMH)

This algorithm has the same structure as the regulaDMIED HARMONIC, i.e. n = 38, and the same
values ofa’. The only difference is that the variableis adjusted to ensure that € (b/2,1) for b € [1,2).

Specifically, we letA grow linearly with the bin size until it reaches the value & dddbin size of 2, i.e.
A = 419/684 + 265(b — 1)/684. We applied this algorithm on the intenvdl, 6/5). This algorithm is of
version 1 as we only modif.

5.2 Convenient Modified Harmonic (CMH)

On the interval6/5,4/3), we focus on the items that could be packed together in orieeffin together
with items of type 1, that is, items that are just larger tha2 This was done specifically to handle the
greedyinput sequence, which starts with an item just larger th@mand repeatedly adds an item of the form
b/i; + € such that all items together fit into a bin of size

Our algorithm is of version 1 and does the following. Let

b= L —1b/2J ‘

This means that the largest items that can be packed togettiean item of sizeb/2 in a single bin of
size 1 are in the intervdll/(k + 1), 1/k] (possibly not every size in this interval can be so packedt L
A = (k — 1)b/k. Note that in the interval of we consider, we always have= 3 and henceA = 2b/3.
Note thath — A = b/k and thereford 2() = 0.

Our choice ofA ensures that items of typ®(2), with sizes in(b/2, (k—1)b/k], can be packed very well
together with items of typ&, with sizes in(b/(k + 1), b/k]|, in our case this i$b/4, b/3]. In the discussed
interval we haveb/2 + b/4 < 1, so in the optimal packing such items could also be togethené bin. The

choice ofn = 38 is as in GMH and the values’ are chosen by experimenting. The values we used are

e Q R
ot

([
©>—l|,_.oo|»—t
Bl

)

. 37—
o= 20T for6 < i < 36:
@ 37(i 1 4)° =1=99

3T = o® =0

5.3 Small Modified Harmonic (SMH)

On the interval4/3,12/7 ~ 1.7143), it becomes more important how to pack smaller items (redet).

We defineA = 1, andn = 12. Thus/2() = (. Note that we use the second version of the algorithm,
which means that in marked contrast to all other previouskyned variations on Harmonic that the authors
are aware of, we do not take;, = 0, that is, we pack some of the smallest items together withattge
items.

We illustrate the reason. Consider a bin of s}78. TakingA = 1 leaves a space af/2 in a bin. This
space could be used to accommodate an item ofbgize- 1/2. However, items of size ith/4, b/3], when
packed three to a bin, occupy at ledst4 = 9/8 > 1. Considering an offline packing we can see that such
items do not fit together with an items of typg2). Therefore there is no reason to improve their packing
which is already relatively good.

However, items that do fit together with typdg2) items do need to be packed more carefully (partly red
and partly blue), including the ones from the last intergaice they can be combined in an offline packing.
We determine the largest item type tlztT could pack together with an item {id/2, 1] (i.e. the smallest
such thab/i < 1 —b/2). Larger items are packed according to Harmonic, while etifva of these smaller
items are reserved to be packed together with an item ofAy{@g, i.e. in(b/2,1].

We explain how to fix the values’ for this algorithm in Section 6.2.

5.4 Tiny Modified Harmonic (TMH)

On the interval12/7, 2), it turns out that it is crucial to pack the smallest itemgédrethan with Harmonic.
All other items are packed in their own bins according to Hamin. We use the second version of the
algorithm. We use\ = 1 (so /21 = @) and letn = ja.

In other words, we determine the number of intervals that seein such a way that— b/2 € (b/(n +
1),b/n]. The smallest interval boundary of the foitk is just larger tharl — b/2 (or equal to it). This
ensures that in the optimal packing, only items of the sretiligpe could be packed together with large
items with size in(b/2, 1]. We usex;, = (2b —2)/(4 —b).

It would be possible to improve very slightly using the aljon SMH with more intervals, but the
number of intervals required grows without bounda@pproaches 2, and it becomes infeasible to calculate
all the patterns.

6 Analysis

An algorithm for a given bin sizécan be used without change for any bin size b, and will have the same
performance ratio since for any given sequence, the offlpienal packing and the cost of the algorithm

remain unchanged. This means that the funcfit},+, is monotonically decreasing i This property
allows us to give bounds on an interval §gmplinga large but finite number of points. An upper bound for
the bin sizeb holds forb + ~ for any~ > 0. A lower bound for the bin sizé holds for a bin sizé — ~ for
anyy > 0.

6.1 Weighting functions

The type of algorithm described in Section 4 can be analysadyithe method of weighting systems devel-
oped in [13]. The full generality of weighting systems is nequired here, so we adopt a slightly different
notation than that used in [13], and restrict ourselves tabalass of weighting systems.

A weighting system for an algorithid is a pair(WW 4, V4). W4 andV 4 areweighting functionsvhich
assign each itemp a real number based on its size. The weighting functionsrf@lgorithm.4 are defined
as follows.

If ¢ =1 — b/2, the only value ofx* which is not zero isx’2. The weighting functions are defined as

follows. _
Type of itemp Wa(p) Va(p)
A 1 1
A(2) 1 0
kef{2,3,...,ja—1} 1/k 1/k
AG3) 1is /i
p(l — o) p
A4 , ,
@) 3b/2—1— Aajs 3b/2—1— Aaia
For the cases that= b/n we define the functions differently.
Type of itemp Wa(p) Valp)
A1) 1 1
A(2) 1 0
ke{23,...,ja—1} 1/k 1/k
A(3) N 1/ia
— o’
AW N N
Via®a +Ja(l —aj) Yiata +Ja(l —aj)
. 11—« 1
Felistlom=1} ek + k(1 — k) Yok + k(1 — k)
" p(l—a") p
b—0b/n— Aa" b—0b/n— Aa”

The following lemma follows directly from Lemma 4 of [13]:

Lemma 3 For all o, we have

costy(0) < max {Z Wap), > VA(p)} +O(1).

peo peo

So the cost to4 can be upper bounded by the weight of itemsjrand the weight is independent of the
order of items ino.

We give a short intuitive explanation of the weight funcaand Lemma 3: Consider the final packing
created by an algorithmd on some input. In this final packing, let be the number of bins containing red

10

items, letb; be the number of typ& (2) items, and leb, be the number of bins containing blue items of
type other tham\(2). The total number of bins is justax{r, b1 } + ba = max{r + b, by + ba}. We have
chosen our weighting functions so the},., Wa(p) = b1 + b2 +O(1) and)_ ., Va(p) = r+ b2 + O(1).
In both W4 and V4, the weight of a blue item of type other thdx(2) is just the fraction of a bin that it
occupies.IV 4 counts typeA(2) items, but ignores red item%4 ignores typeA(2) items, but counts bins
containing red items. For a formal proof, we refer the read¢t 3].

Let f be some functiorf : (0,1] — R™.

Definition 6.1 P(f) is the mathematical program: Maximi2€_y f(x) subject toy__ _y x < 1, over
all finite sets of real number&. In an abuse of notation, we also us¥ f) to denote the value of this
mathematical program.

Intuitively, given a weighting functiorf, P(f) upper bounds the amount of weight that can be packed in a
single bin. It is shown in [13] that the performance ratiaffs upper bounded byhax{P (W), P(V4)}.
The value ofP is easily determined using a branch and bound proceduresirailar to those in [13, 5].

6.2 Choice of valuesy’ for SMH

To choose the values of in the algorithm SMH we use the following idea. We would liketalance the
total weight of two particular offline packings. The first of#é packing contains one item of interval2)
and smaller items of typé (here the weight is maximized by considering the weight fiamcl? 4). The
second offline packing contains only items of tyipand we usé’, to determine the maximum weight.

In order to balance these weights, we definegkgansiorof type: to be the maximum ratio of weight
to size of an item of typd. Let EV (i) be the expansion according ¥ and EW (i) be the expansion
according td? 4. We would like to have

EV(i) =1+ (1—b/2) EW ().

This implies

S—0b/2
S—s+1-0/2"
whereS is the minimal occupied area in a closed bin containing ieia$ of typei and s is the minimal
occupied area by red items of intervain a closed bin.

Note that this computation is not entirely accurate forygles, as it is not always possible to fill a bin of
sizel or of sizel — b/2 completely with items of the largest expansion. Howevesjtiterval which affects
the asymptotic performance ratio the mosf(sz].

ol =

6.3 Analysis of TMH

The simple structure of TMH allows an analytical solutionor fhis algorithm, we do not need to solve
mathematical programs, but can instead calculate the dsyimyworst case performance directly, as follows.
For all types but the smallest and the largest, the weighh alean of sizex is at mostc. The reason for
this is that they are packed according to Harmonic, and TMtfitaat least the same number of items per
bin asopPT can. To get a bin of weight more than 1, there must be some ibéthg first or the last type.
The upper bound of the last intervallis- b/2, denoted by. Only items in this interval can be packed
together with a typé\(2) item in one bin.

11

Recall that the algorithm uses a parametet= o/2 that determines how the small items are packed.
The algorithm maintains the invariant that a fractiemf the bins containing small items are red and have
room for a typeA(2) item. The total size of all the small items in such a bin is asté — 1 — <. The rest
of these bins are blue and contain a volume of at Ieast. There are two cases.

Case 1 There is no item of type\(2). If TMH usesk bins to pack all items of typé\(4) (the last
type), thenak bins are red and contain a minimum volumebof 1 — ¢ each;(1 — a)k bins contain a
minimum total volume ob — ¢ of small blue items each. Thusbins contain a total volume of at least
ak(b—1—¢)+ (1 —a)k(b—¢) = k(b— a—¢), in other words each bin contains on average a volume of
at leasth — o — . The worst case is that all the items are small. Since an effiin can contain one unit

of such items, this gives an asymptotic performance ratiy 0f — o —). Note that this is consistent with
the definition of the functiorv4 for this case.

Case 2 There is an item of typé\(2). We are interested in the case that its weight is 1, i.e. imgights
according to the functiom? 4. The large item is of size at least2. The weight in a bin that contains such
an item is maximized by filling up the bin with items of typg4). The remaining space in the offline bin is
exactlyl — b/2. In this case, TMH only needs “to pay” for the blue bins. It kma volume of:(b — o — ¢)
using only(1 — a)k blue bins. The total weight according ¥ 4 is 1 + -2 (1 — b/2).

b—a—e

Balancing the weights gives that the best choice is % and aratiooft /(b —a —¢) = (2b —
8)/(3b* — 10b + 4).

7 Results

As mentioned in Section 6, we can determine valid upper andrilounds on the asymptotic performance
ratio for this problem on any interval by sampling a finite raenof points. In fact, since we have given an
analytical solution for the algorithm TMH, it is not necessto do any sampling for the upper bound on the
interval (12/7, 2.

On the remaining intervals, we used a computer program t@ bk associated mathematical program
‘P for many specific values df (we sampled integer multiples %10—0) and whichever algorithm is used for
that value of.

We also used a computer program to generate lower bounds0fa® Yalues ob between 1 and 2. This
program can be found at http://algo2.iti.uni-karlsruleévdnstee/program/. There were some values of
where all lower bound sequences that we used gave a worse bowed than we had already found for
some higher value df. However, a lower bound af for a valueb, also implies a lower bound af for
all valuesl < b < by as stated before. Therefore, whenever we found a lower bthatdvas worse than
one that was found for some higher valuebpfve instead use this higher bound. This explains the small
intervals in the graph where the lower bound is constant.

Our results are summarized in the two Figures 1 and 2. Thedmtal axis is the size of the online bin,
and the vertical axis is the asymptotic performance ratior. d@mparison, we have included the graph of
the bounded space upper bound (which matches the boundesllepeer bound).

It can be seen that for all bin sizes between 1 and 2, we haen giubstantial improvements on the
bounded space algorithm, which was the best known algoritinthis problem so far. In particular, for
b > 1.6, the upper bound of our algorithms is less than half as mutioved from the (new) lower bound
as the previous (bounded space) upper bound was.

12

The lower bounds from [5] were also significantly improveor. ihstance fob = 6/5, the lower bound
was improved from less than18 to abovel.34, and forb > 3/2, the previous lower bound was less than
0.8.

1.6 +
N
1.5+ '\
N \
\w,
1.4 ™~
\\
\\R
1.3 R\\“\
S
S
1.2 ~ \
—
_\\
1.1 —
\
1.2 14 16 18 2

Figure 1. The lower bound (lowest graph), upper bound (nelddhnd bounded space bound (highest).
Horizontal axis is size of online bin, vertical axis is asyotjg performance ratio.

Figure 2: The lower bound (lowest graph) and bounded spaaecbon[2, 5]. Axes as in previous figure.

13

8 Conclusions

We have improved all known results for bin packing with reseuaugmentation. The remaining gap be-
tween the upper and lower bound is at most 7% foball 1, at most 3% fo > 1.6, and the bounds are
nearly tight forb > 2.

The fact that the online algorithm deals with a different size than the offline algorithm complicates
the design of algorithms. It is in particular critical to tledth sequences that can be packed with very
little loss by the offline algorithm, while other sequencieg lthe standard greedy sequence become less
important since the optimal offline algorithm can not alwagek subsequences of that input well enough
to give a good lower bound.

An interesting observation which follows from our reseaicihat in some cases, it can be helpful to
pack very small items in the input together with large item®me bin. To our knowledge, this is the first
time that this approach has worked for any bin packing prabléis an open problem whether this can help
for standard bin packing too.

References

[1] Donna J. Brown. A lower bound for on-line one-dimensildnia packing algorithms. Technical Report
R-864, Coordinated Sci. Lab., Urbana, lllinois, 1979.

[2] Edward G. Coffman, Michael R. Garey, and David S. Johnséipproximation algorithms for bin
packing: A survey. In D. Hochbaum, editgkpproximation algorithmsPWS Publishing Company,
1997.

[3] Janos Csirik and Gerhard J. Woeginger. On-line packind covering problems. IA. Fiat and
G. J. Woeginger, editor)nline Algorithms: The State of the Art, volume 1442lacture Notes in
Computer Scienggpages 147-177. Springer-Verlag, 1998.

[4] Janos Csirik and Gerhard J. Woeginger. Resource augitiemfor online bounded space bin packing.
Journal of Algorithms44(2):308-320, 2002.

[5] Leah Epstein, Steve S. Seiden, and Rob van Stee. New bdondariable-sized and resource aug-
mented online bin packing. In P. Widmayer, F. Triguero, Rraes, M. Hennessy, S. Eidenbenz, and
R. Conejo, editorsProc. 29th International Colloquium on Automata, Langusgend Programming
(ICALP), volume 2380 otf_ecture Notes in Computer Scienpages 306-317. Springer, 2002.

[6] Michael R. Garey, Ronald L. Graham, and Jeffrey D. UllmaNorst-case analysis of memory allo-
cation algorithms. IrProceedings of the Fourth Annual ACM Symposium on Theoryoaigiting
pages 143-150. ACM, 1972.

[7] David S. Johnson. Fast algorithms for bin packidgComput. Systems S@&:272—-314, 1974.

[8] Bala Kalyanasundaram and Kirk Pruhs. Speed is as pohasfalairvoyance.J. ACM 47:214-221,
2000.

[9] C.C. Lee and D. T. Lee. A simple online bin packing algumit J. ACM, 32:562-572, 1985.

[10] F. M. Liang. A lower bound for online bin packindgnform. Process. Lett10:76—79, 1980.

14

[11] Cynthia Phillips, CIliff Stein, Eric Torng, and Joel WieiOptimal time-critical scheduling via resource
augmentationAlgorithmica pages 163—-200, 2002.

[12] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Onlimephbicking in linear timeJ. Algorithms
10:305-326, 1989.

[13] Steve S. Seiden. On the online bin packing probldournal of the ACM49(5):640-671, 2002.

[14] Jeffrey D. Ullman. The performance of a memory allogatalgorithm. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

[15] André van Vliet. An improved lower bound for online bicking algorithmsinform. Process. Lett.
43:277-284, 1992.

15

