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Abstract
We consider the following vertex coloring problem. We are given an undirected graph

G = (V, E), where each vertex v is associated with a penalty rejection cost rv. We need
to choose a subset of vertices, V ′, and to �nd a proper coloring of the induced subgraph
of G over V ′. We are interested in both the number of colors used to color the vertices of
V ′, and in the total rejection cost of all other vertices. The goal is to minimize the sum of
these two amounts. In this paper we consider both the online and the o�ine versions of
this problem. In the online version, vertices arrive one at a time, revealing the rejection
cost of the current vertex and the set of edges connecting it to previously revealed vertices.
We also consider the classical online coloring problem on bounded degree graphs and on
(k + 1)-claw free graphs.

1 Introduction
Given an undirected graph G = (V, E), a coloring of G is an assignment of colors to the
vertices such that two adjacent vertices are assigned distinct colors. I.e., a coloring is a
function c : V → Z+ such that if (i, j) ∈ E then c(i) 6= c(j). In the o�ine coloring
problem, the goal is to �nd a coloring of G where the number of used colors, maxi∈V c(i), is
minimized. This problem is well-known to be NP-hard for general input graphs (see problem
[GT4] in [4]), however it can be solved in polynomial time when the input graph is perfect
(using the ellipsoid method, see [10]). The minimum number of colors that are necessary in
order to color G, is called the chromatic number of G and it is denoted by χ(G). For a coloring
c, denote by n(c,G) the number of distinct colors that are used by c.

We de�ne the coloring with rejections problem, which is a new generalization of the
standard coloring problem, as follows. We are given an undirected graph G = (V, E), where
each vertex v ∈ V is associated with a non-negative penalty rejection cost rv. The goal is to
�nd a subset V ′ ⊆ V , and a coloring c of G[V ′] that is the induced subgraph of G over V ′, so
as to minimize the sum of the number of used colors (in the coloring of G[V ′]) and the total
rejection cost of all the vertices in V \ V ′. I.e., the goal function is n(c,G[V ′]) +

∑
v∈V \V ′ rv.
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That is, one is penalized for adding a color and for rejecting a vertex; by normalizing we
assume that the former penalty is 1.

If we can color (in polynomial time) every induced subgraph of G using a minimum number
of colors, then our goal is to �nd a vertex set V ′ and a coloring of G[V ′] that minimizes
χ(G[V ′]) +

∑
v∈V \V ′ rv.

The use of a penalty function for failing to serve some clients is a common practice in
combinatorial optimization problems. For example, this is the motivation behind the de�nition
of the prize-collecting Steiner tree and the prize-collecting traveling salesperson problems (in
both problems we pay a penalty for not connecting a vertex, where in the �rst problem the
goal is to construct a tree that spans some vertices, and in the second problem the goal is to
construct a cycle over some vertex set). For an earlier work on these problems see for example
[5].

Since there is no approximation algorithm for graph coloring of general graphs, unless
P=NP, and moreover, there is no competitive online algorithm even for very limited graph
classes (such as trees), and as the coloring problem with rejections generalizes the standard
coloring problem, we consider both problems, both in the o�ine and online settings on special
classes of graphs, where one can hope to achieve a �nite approximation ratio and a �nite
competitive ratio.

In an online setting, vertices arrive one by one, and we need to deal with an arriving vertex
before seeing any future vertices. In the online coloring with rejections problem, when
a vertex arrives the following information is revealed. Its rejection cost, and the edges that
connect this new vertex to all the previously introduced vertices (but no information regarding
edges to the future vertices is given at this time). We need to decide whether we would like
to accept the new vertex (i.e., to add it to the vertex set V ′) or to reject it. If the algorithm
decides to accept the new vertex, then it needs to color it using one of the existing colors
or using a new color (and in this case we say that the algorithm opens a new color). In the
online coloring problem we simply do not reveal the rejection cost of a vertex (as such a
notion is unde�ned for the standard coloring problem, or we can alternatively assume in�nite
rejection costs for all vertices in this case).

The maximum weight k-colorable subgraph problem is the following related prob-
lem. The input to this problem consists of an integer number k and an undirected graph
G = (V, E), where each vertex v has a non-negative weight wv. The goal is to pick a subset
V ′ ⊆ V , such that there exists a coloring c of G[V ′] with k colors, and among all such sub-
sets, the value

∑
v∈V ′ wv is maximized. Yannakakis and Gavril [12] showed that this problem

is NP-hard on split graphs when k is part of the input, and it is polynomially solvable on
interval graphs. This was done by formulating the problem as an integer Linear Program on
the vertices versus cliques constraint matrix, which is totally unimodular. If all weights are
equal, we obtain the maximum size k-colorable subgraph problem, that was shown to
be polynomial for comparability and co-comparability graphs by Frank [3].

The online coloring problem is well-studied (see Kierstead [8] for a survey). Gyárfás and
Lehel [6] showed that for every positive integer k and every online algorithm A, there exists a
tree Tk on 2k−1 vertices, with maximum degree k − 1, such that A must use at least k colors
when coloring Tk. They also showed that for trees, the First-Fit algorithm denoted as FF
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(the FF algorithm assigns for each vertex the minimum color that can be used to color the
vertex) is best possible among all possible online algorithms (in terms of the competitive ratio).
Bar-Noy, Motwani and Naor [1] showed that First-Fit is a 2-competitive online algorithm for
coloring line graphs, and that any online algorithm has a competitive ratio of at least two
(and hence First-Fit is the best possible online algorithm for coloring line graphs).

For an algorithm A, we denote its cost by A as well. The cost of an optimal o�ine
algorithm that knows the complete sequence of vertices is denoted by OPT. In this paper we
consider the absolute competitive ratio and the absolute approximation ratio criteria. For an
online algorithm we use the term competitive ratio whereas for an o�ine algorithm we use
the term approximation ratio. The competitive ratio of A is the in�mum R such that for any
input, A ≤ R ·OPT. If the competitive ratio of an online algorithm is at most C we say that
it is C-competitive. The approximation ratio of a polynomial time o�ine algorithm is de�ned
similarly to be the in�mum R such that for any input, A ≤ R ·OPT. If the approximation
ratio of a polynomial time o�ine algorithm is at most R we say that it is a R-approximation.

A perfect graph is a graph G such that for every induced subgraph G′ of G, the chromatic
number of G′ equals its maximum clique size. A split graph is a graph whose vertices can
be partitioned into two subsets I and K such that I is an independent set and K induces a
complete graph. Note that the complement of a split graph is a split graph, and every split
graph is a perfect graph. A (k+1)-claw free graph is a graph that does not contain an induced
subgraph that is a star with k + 1 leaves, and a claw-free graph is a 3-claw free graph. By
de�nition, every claw-free graph is also a (k + 1)-claw free graph, for any k > 2. A line graph
G can be modeled by the edges of a second graph H = (VH , EH) such that the vertex set
of G is EH and there is an edge between two vertices of G if the corresponding edges of H

share a common endpoint. Note that both classes of claw-free graphs and line graphs are
not contained in the class of perfect graphs (a simple example of a line graph which is also a
claw-free graph, but is not a perfect graph, is a cycle over �ve vertices).

Our results. In Section 2 we consider the o�ine coloring problem with rejections. Given
a graph class F we show a close relation between the complexity of this problem on F to
the complexity of the maximum weight k-colorable subgraph problem on F . In fact we show
that if the class F is closed under the operation of union with a disjoint �nite clique, then
one problem is polynomially solvable if and only if the other one is polynomially solvable.
Among the sub-classes of the family of perfect graphs discussed in [7], the only graph class
that is not closed under this operation is the class of split graphs. For this family it is
known that the maximum weight k-colorable subgraph problem is NP-hard, and we show that
the coloring problem with rejections on split graphs is NP-hard as well. Then, we turn our
attention to approximation algorithms for this problem. We �rst consider split graphs, we
show an approximation algorithm with an additive error guarantee of one from the optimum,
and then we show how to derive a polynomial time approximation scheme for the coloring
problem with rejections on split graphs. In addition, we present an O(log n)-approximation
algorithm for the coloring problem with rejections on perfect graphs that is based on the
greedy algorithm. In Section 3 we focus on the classical online coloring problem, and analyze
the competitive ratio of the First-Fit algorithm on two graph classes. We show that First-Fit
is a

(
∆+1

2

)
-competitive algorithm for the class of graphs with a maximum vertex degree of at
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most ∆, and we show that the First-Fit algorithm colors a (k + 1)-claw free graph using at
most kOPT − k + 1 colors. We also show that any online algorithm cannot perform better
on these graph classes. In Section 4 we turn to deal with the online coloring problem with
rejections. We �rst show an online algorithm whose competitive ratio is ∆ + 2, for the class
of graphs with maximum degree at most ∆. Thus we show that for bounded degree graphs,
adding the notion of rejections to the problem makes it harder but still tractable. We then
show that there is no online algorithm whose competitive ratio is smaller (in terms of ∆), even
if the input graph is a collection of disjoint cliques. Since the class of (k + 1)-claw free graphs
contains all graphs which are collections of cliques, we get that unlike the bounded degree
problem, adding rejections to this problem makes it much harder . Among the sub-classes
of the family of perfect graphs discussed in [7], the only graph class that does not contain
a disjoint union of cliques is the class of split graphs. Therefore, we conclude the paper by
showing that even for split graphs there is no online algorithm with a �nite competitive ratio.

2 O�ine Coloring with Rejections
In this section we study the o�ine version of the coloring with rejection. We show a close
connection between the tractability of this problem on graph classes F and the tractability of
the problem of computing the maximum weight k-colorable subgraph of graphs that belong
to F . Note that we do not assume that checking if a given graph G belongs to F can be done
in polynomial time.

Theorem 1 Given a graph class F such that F is closed under the operation of union with a
disjoint �nite clique, the o�ine coloring problem with rejections on F is polynomially solvable
if and only if the maximum weight k-colorable subgraph problem on graphs that belong to F is
polynomially solvable.

Proof. Assume that for F it is possible to solve the maximum weight k-colorable subgraph
problem. Then, given an instance of the o�ine coloring with rejections G = (V, E) where
G ∈ F and rejection cost rv, v ∈ V , we apply the following procedure. For each value of k

we compute the maximum weight k-colorable subgraph of G where the weight wv of a vertex
v equals its rejection cost, and denote this subgraph by (Vk, Ek). For each value of k, we
compute the total cost of k and the total rejection cost of the vertices from V \ Vk, and we
pick the solution whose total cost is minimized. In order to analyze the performance of the
resulting algorithm we �x an optimal solution OPT, and consider the iteration in which the
algorithm uses the value of k that equals the correct number of colors that OPT uses. By the
optimality of (Vk, Ek) to the maximum weight k-colorable subgraph problem, we conclude that
the total rejection cost of the vertices in V \ Vk is at most the total rejection cost that OPT
pays. Therefore, the algorithm returns an optimal solution to the coloring with rejections
problem.

Next assume that for the class F , it is possible to compute in polynomial time an optimal
solution to the coloring problem with rejection. Let G = (V,E) and w : V → R+ be an
input instance to the maximum weight k-colorable subgraph problem such that G ∈ F . Let
G′ = (V ′, E′) be the graph resulting from G by augmenting it with a set of k new vertices
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and a clique over them (so G′ is a union of G and a clique of size k). Since G ∈ F and
by the assumption on F , we conclude that G′ ∈ F . Therefore, it is possible to compute in
polynomial time the optimal solution to the coloring with rejections problem for every rejection
cost function, r. Let 0 ≤ ε ≤ 1

1+
P

v∈V w(v) and de�ne a rejection cost function r as follows:
r(v) = 1 if v ∈ V ′ \ V (i.e., if it belongs to the new clique), and otherwise r(v) = ε · w(v).

Consider an optimal solution OPT to the instance of the coloring problem with rejections.
Without loss of generality, OPT does not reject a vertex v ∈ V ′ \ V (this can be assumed
as opening a new color and assigning v to the new color does not increase the total cost).
Therefore, the number of colors that OPT uses is at least k. We next argue that OPT uses
exactly k colors. To see this claim, assume otherwise that OPT uses at least k + 1 colors.
Then, there is a color in OPT such that each vertex that is assigned to this color is from V ,
and therefore by de�nition of ε, the total rejection cost of all the vertices that are assigned to
this color is less than 1. Therefore, rejecting all these vertices rather than opening this color
results in a solution of a strictly smaller cost, which contradicts the optimality of OPT.

Given that OPT uses exactly k colors, it assigns each one of the clique vertices, V ′ \ V ,
to one of these colors, and also assigns a maximum weight k-colorable subgraph of G to these
colors (and the remaining vertices if there are such, are rejected). Since the rejection costs are
simply the scaled original weights, OPT solves also the maximum weight k-colorable subgraph
of G in polynomial time.

We next show that the o�ine coloring with rejection problem is NP-hard even when the
input graph is restricted to be a split graph. Although computing the maximum weight k-
colorable subgraph of a split graph is known to be NP-hard (when k is not �xed), the next
result does not follow from Theorem 1 as split graphs are not closed under the operation of
union with a disjoint clique.

Proposition 2 The o�ine coloring problem with rejections is NP-hard in the strong sense
even when the input graph is restricted to be a split graph.

Proof. We use a reduction from the 3-set packing problem that is the special case of set
packing where each set in the input has at most three elements (see problem [SP3] in [4]).
The input of the 3-set packing problem consists of a collection C of sets where each set has
exactly three elements of a ground set X , and a positive number r. The goal is to test if there
is a sub-collection of r mutually disjoint sets in C. Given such an input we construct a split
graph input to the coloring with rejections problem as follows. The input graph G = (V, E)
is V = C ∪ X (i.e., there is a vertex for each set in C and for each element of the ground set),
the vertices in C induce a complete graph in G, and the vertex set X is an independent set in
G, and for each c ∈ C and x ∈ X there is an edge (c, x) ∈ E if and only if x /∈ c. Note that G

is clearly a split graph. We next de�ne the rejection costs in the following way. For c ∈ C let
rc = 1− 2

|X |+1 , and for x ∈ X let rx = 1
|X |+1 . Note that the resulting instance has polynomial

size even if all the numbers are encoded in unary.
Denote byOPT an optimal solution to the coloring with rejections instance. We �rst argue

that without loss of generality, if OPT colors an independent set I of G using a common color,
then I consists of exactly one vertex c from C, and the three elements x1, x2, x3 ∈ X of c.
Note that I cannot contain two vertices of C since such a pair of vertices are adjacent (and
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this contradicts the independence of I). If I ∩ C = ∅ then I contains at most |X | vertices
with total penalty of at most |X |

|X |+1 < 1. Therefore rejecting all the vertices of I instead of
allocating them a color (that costs one) would result in a strictly smaller cost. Therefore,
I ∩ C = {c}. Since c is adjacent to all the vertices beside the three element vertices x1, x2, x3

such that c = {x1, x2, x3}, then all these three vertices can be colored using the same color
as c. However, if the total penalty of the vertices in I is at most 1, we can reject all these
vertices instead of allocating them a color (that costs one), and by doing so we do not increase
the total cost of the resulting solution. The only case that this cannot be done is the case
where the total penalty of the vertices of I is strictly greater than one, but in this case all
four vertices must participate in I, i.e., I = {c, x1, x2, x3}. As a result, we may assume that if
OPT colors an independent set I of G using a common color, then I consists of exactly one
vertex c from C, and the three elements x1, x2, x3 ∈ X of c.

Note that for each such independent set I that OPT colors (with a common color), OPT
saves a cost of 1

|X |+1 from the total rejection cost of the vertices in I. Therefore, the goal of
the solution is to �nd a maximum size sub-collection of sets in C that are mutually disjoint.
This will clearly solve the 3-set packing instance.

We next show that for a split graph there is an approximation algorithm with an additive
approximation guarantee. We do not require an input split graph to be introduced together
with its realization. However, such a realization is easy to �nd in polynomial time.

Theorem 3 If the input to the o�ine coloring with rejections problem is a split graph, and
the optimal solution OPT has cost OPT, then it is possible to compute in polynomial time a
feasible solution SOL whose cost is at most OPT + 1.

Proof. The �rst step of the algorithm is to compute a decomposition of the input graph G

into an independent set I and a vertex set K such that the induced subgraph of G over K is
a complete graph. Clearly such a decomposition can be found in polynomial time since G is
a split graph.

The algorithm guesses the number of colors that OPT uses. Denote this number by N .
The term �guessing" means performing an exhaustive enumeration of all possibilities from the
polynomial size set {0, 1, 2, . . . , |V |}, and picking the cheapest solution among the resulting
solutions (one solution for each possibility). In the analysis it su�ces to consider the solution
that the algorithm returns in the iteration in which it uses the correct value of N .

SOL uses N + 1 colors. The �rst color is used to color the independent set I of G. The
other N colors are used to color the N most expensive rejection cost vertices from K (one
vertex per each of these N colors).

The total cost that SOL pays is the sum of N + 1 and the total rejection cost. It su�ces
to show that the total rejection cost that OPT pays is at least the total rejection cost that
SOL pays. However, this is clear as each color in OPT can be used to color at most one
vertex from K and therefore OPT pays the rejection cost of at least |K| −N vertices from K
as SOL does. We conclude the proof using the fact that SOL pays the rejection cost for the
cheapest vertices in K.

We next show how to transform the algorithm of Theorem 3 into a polynomial time
approximation scheme.
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Corollary 4 There is a PTAS for approximating the o�ine coloring problem with rejections
on split graphs.

Proof. Let ε > 0. The algorithm guesses the number of colors that OPT uses. Denote this
number by N (again this is done via exhaustive enumeration). If N ≥ 1

ε , then the algorithm
applies the method of Theorem 3 to obtain a solution whose cost is OPT + 1. Since OPT
uses at least 1

ε colors we conclude that OPT + 1 ≤ OPT · (1 + ε). Otherwise, OPT uses a
�xed number of colors (that is at most 1

ε ). In this case we compute the optimal solution to the
maximum weight N -colorable subgraph of G (where the weight of each vertex is its rejection
cost). This procedure can be done in polynomial time (since split graphs are chordal, and by
application of the algorithm of Yannakakis and Gavril [12]). Then, the rejection cost of the
solution returned by the algorithm is at most the total rejection cost of OPT. Therefore, if
N ≤ 1

ε the algorithm returns an optimal solution.
We conclude this section by considering approximation algorithms for perfect graphs. For

the maximum weight k-colorable subgraph problem on perfect graphs there is an easy (1− 1
e )-

approximation algorithm that is based on the greedy algorithm for the maximum coverage
problem. The maximum coverage problem is de�ned as follows: We are given a ground set
E where each element e ∈ E has a weight we, a collection S of subsets of E and an integer
number k. The goal is to �nd a sub-collection S ′ of S of (exactly) k subsets that covers a
maximum total weight of the elements of E (where covering an element means that at least
one of the subsets in S ′ contains the element). It is known (see [9]) that the greedy algorithm
is an (1− 1

e )-approximation algorithm where the greedy algorithm at each iteration adds the
set from S that covers the most total weight of elements that were not covered prior to this
iteration, to the collection S ′ until there are k subsets in S ′. Noting that we can formulate
the maximum weight k-colorable subgraph problem as an instance of the maximum coverage
problem, by letting E be the set of vertices of the input graph, and S be the collection of
independent sets of the graph. Note that the greedy algorithm does not use a list of the
sets in S, but it only needs to compute a maximum weight independent set in a residual
graph (the graph induced by the non-covered vertices), and this can be done in polynomial
time for perfect graphs. So we can apply the greedy algorithm for the maximum coverage
problem where each iteration is implemented in polynomial time (where the time complexity
is polynomial in the size of the input graph).

However, we are not aware of a constant approximation algorithm for the o�ine color-
ing with rejections problem when applied to perfect graphs. We next discuss an O(log n)-
approximation algorithm for this problem.

Theorem 5 There is an O(log n)-approximation algorithm for the o�ine coloring problem
with rejections on perfect graphs.

Proof. We denote the total rejection cost of vertices for which OPT does not pay the
rejection cost (this is the sum of rejection costs of the vertices that OPT colors) by R and
by R the total rejection cost that OPT pays. We also denote by C the number of colors that
OPT uses. The partial cover problem is de�ned as follows. We are given a ground set
E where each element e ∈ E has a weight we, a collection S of subsets of E and a number
W . The goal is to �nd a sub-collection S ′ of S of minimum number of subsets that covers
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a subset of E whose total weight is at least W (where covering an element means that at
least one of the subsets in S ′ contains the element). It is known (see [11]) that the greedy
algorithm is an O(log n)-approximation algorithm for the partial cover problem where the
greedy algorithm at each iteration adds the set from S that covers the most total weight
of elements that were not covered prior to this iteration, to the collection S ′ until the total
weight of covered elements is at least W . Note that we can formulate the o�ine coloring
with rejections problem as an instance of the partial cover problem by letting E be the set of
vertices of the input graph, S be the collection of independent sets of the graph and W = R.
Given this instance note that there is a solution to the partial cover instance that uses at
most C subsets and therefore the greedy algorithm returns a solution with at most O(C log n)
subsets, and the total cost of the solution of the o�ine coloring with rejections is at most
O(C log n) + R ≤ O(log n) · (C + R) = O(log n) ·OPT. So if the exact value of R is known
to us, then the greedy algorithm for the partial cover instance is an O(log n)-approximation
algorithm. To overcome the lack of this information, we consider the following algorithm.

Apply the greedy algorithm for the partial cover instance until all elements are covered,
adding each of the intermediate solutions created at the end of each iteration of the greedy
algorithm, to a solution set denoted by SOL. When the algorithm terminates, return the best
solution from SOL. We note that SOL contains the approximated greedy solutions for the
partial cover instances for all possible values of W . Therefore, picking the cheapest solution
among SOL is superior to the solution created for the correct value of R, and the last solution
is an O(log n)-approximation algorithm.

3 Online Coloring (Without Rejections)
In this section, we consider the classical online coloring problem. We consider two classes
of graphs, (k + 1)-claw free graphs and bounded degree graphs. We show that the First-Fit
algorithm is a best possible online algorithm for both cases.

3.1 (k + 1)-claw free graphs
In this subsection we prove that for (k + 1)-claw free graphs, the First-Fit algorithm is a best
possible online algorithm. Note that the class of line graphs is a proper sub-class of the class
of 3-claw free graphs [2]. Our result extends the result of Bar-Noy, Motwani and Naor [1] for
line graphs.

Theorem 6 The solution returned by the First-Fit algorithm uses at most kOPT − k + 1
colors when applied to (k + 1)-claw free graphs. Moreover, no online algorithm can guarantee
a smaller number of colors.

Proof. We �rst show that the solution returned by First-Fit uses at most kOPT − k + 1
colors. Assume that First-Fit uses t + 1 colors, and let v be a vertex that is colored by
First-Fit using the t + 1-th color. Then, clearly v has at least t neighbors. Since the input
graph is a (k+1)-claw free graph, the maximum size independent set in the induced subgraph
over the neighbors of v, has size at most k. Therefore, OPT must use at least d t

ke colors to
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color the neighbors of v and one additional color to color v. Therefore, if FF = t + 1, then
d t

ke+ 1 ≤ OPT. Therefore,

FF = t + 1 ≤ k ·
(⌈

t

k

⌉
+ 1

)
− k + 1 ≤ k ·OPT− k + 1.

It remains to show the lower bound. We �x a value of k = `, and the cost of the optimal
solution, which we denote by OPT = n + 1. Our lower bound makes use of the following
recursive construction. We de�ne structures of types 1, 2, . . ., where each such structure is a
graph which has a subset of n designated vertices which are called the �top clique�. All other
vertices are also arranged in cliques and are associated with levels. A structure of type 1 is
simply de�ned to be a clique over n vertices, all these vertices are de�ned to be the top clique.
These vertices are also called the level 1 clique. We de�ne a structure of type t recursively
using structures of types ` = 1, 2, . . . , t. To obtain a structure of type t, we construct for every
1 ≤ i ≤ t− 1, n copies of a type i structure. All n(t− 1) structures are pairwise disjoint and
constructed independently from each other. Denote the structures of type i by Si,1, . . . , Si,n.
To combine them all into a type t structure, we construct an additional clique on n vertices,
denoted by v1, . . . , vn. This will be the top clique of the structure. Vertex vj is connected
to all vertices of the top clique in Si,j for all 1 ≤ i ≤ t − 1. The level i cliques of the type
t structure, for 1 ≤ i ≤ t − 1 are all level i cliques of all structures of types 1, . . . , t − 1 (or
actually of types i, . . . , t − 1, since structures of smaller types do not have level i cliques),
which are used in the type t structure. The level t clique of a type t structure is de�ned to be
its top clique.

Next, we de�ne a �superior structure" of type t. This structure is constructed similarly to
a regular type t structure, but instead of a top clique which consists of n vertices, we use a
top clique with n + 1 vertices. Furthermore, we use n + 1 structures of each type 1, . . . , t− 1
instead of n such structures. Note that structures used in a recursive construction are regular
structures and a superior structure is never used as a building block for another structure.

We �rst discuss an optimal coloring of a superior type t structure, and then we show how
to force an online algorithm to use a large number of colors.

We start the coloring from the top level, i.e., from level t of the superior structure. We
color this top clique using all the colors 1, . . . , n + 1. For every 1 ≤ i ≤ t − 1, each vertex
of the top clique is connected to all vertices of the top clique of a (regular) type i structure.
Given such a vertex v of the top clique of the type t structure, that is colored with color c,
the vertices of the tops cliques that it is connected to all of them, are colored using the colors
of {1, . . . , n + 1} − {c}. The other vertices of the structures of smaller types are colored in a
similar way, recursively. Note that when coloring the vertices of a clique, the coloring is always
proper with respect to the induced graph containing all vertices that were already colored.
Thus, we achieve a proper coloring.

We next consider an arbitrary online algorithm. For this algorithm, we construct a graph
which consists of disjoint copies of structures de�ned above, all of types 1, . . . , ` − 1, and
superior structures of type `. We show that it is possible to construct such a graph in a way
that is uses at least n` + 1 colors. Since OPT = n + 1 for every value of t, we get that the
online algorithm uses `(OPT− 1) + 1 = `OPT− ` + 1 colors.
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Since our goal is to show that the online algorithm uses at least n`+1 colors, if at some time
during the construction this amount of colors is used, we can stop the construction right away,
without introducing any further structures. Therefore, we assume that at each intermediate
step, the graph is colored by at most κ = n` colors.

In the �rst step, a large amount M1 of type 1 structures is introduced. Since we are given
κ colors, there are at least M1

κn such structures having the same set of n colors. We call these
colors 1, . . . , n. We call structures colored with this given set of colors �properly colored�. The
structures having a di�erent set of colors are never used again, and remain disconnected from
future parts of the graph. The rest of the construction is done inductively. To build structures
of type t, we assume that we already built a su�cient amount of properly colored structures
of types 1, . . . , t− 1, where a structure of type i is called �properly colored" if it uses a set of
colors whom we call (i−1)n+1, . . . , in, for its top clique. A large amount of type t structures
is constructed (as described above) using properly colored structures of smaller types. Note
that due to the construction, and due to the fact that all structures of smaller types are colored
properly, no new vertex can receive any color among 1, . . . , (t− 1)n. Therefore, there are less
than κn subsets of colored which the algorithm can use to color the top cliques of the type t

structures. If we built Mt structures, then there is a subset of at least Mt
κn top cliques which

use the same subset of colors. We call these colors (t−1)n+1, . . . , tn and proceed to the next
type. In the last type, the arguments are the same but it is enough to build a single type `

structure. Moreover, this structure needs to be superior. Due to the construction and usage
of properly colored structures of types 1, . . . , ` − 1, the top clique of the superior structure
receives n + 1 new colors, which we call (` − 1)n + 1, . . . , n`, n` + 1 and thus the algorithm
uses a total of n` + 1 colors.

Finally, to complete the lower bound construction, we need to show that the resulting
graph is indeed (` + 1)-claw free. We say that a vertex is the center vertex in a k + 1-claw if
it is a vertex connected to k + 1 vertices which form an independent set. Consider a vertex
x which belongs to a structure of type t (regular or superior), and is in a level i clique. We
would like to �nd the size of the largest claw in which x is the center vertex. This independent
set cannot contain neighbors of the same clique, so we need to count the number of distinct
cliques that x is connected to. If x does not belong to a top level structure, i.e., i < ` the
level i is created when a type i structure is constructed. At that time, x is connected to i− 1
cliques. Later, x will be connected to one additional vertex of the top clique of a type i + 1
structure. Thus x participates as the center vertex is a i + 1-claw (we can use one neighbor
from each clique, including the level i clique to which x belongs). Since i + 1 ≤ `, this does
not create a (` + 1)-claw. For a vertex y of the top level, the proof is the same, only no new
levels are added, so the vertex may belong to a `-claw, but not to an ` + 1-claw.

3.2 Bounded degree graphs
In this section we restrict ourselves to input graphs with maximum degree at most ∆, and we
prove that the First-Fit algorithm (FF) is a best possible online algorithm for this case.

Theorem 7 The First-Fit algorithm is a
(

∆+1
2

)
-competitive algorithm for online coloring

of graphs with maximum degree at most ∆, and no online algorithm can guarantee a better
competitive ratio on this graph class.
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Proof. If the First-Fit algorithm uses at least two colors, then the input graph contains at
least one edge, and therefore OPT uses at least two colors. We next note that when the input
graph has maximum degree at most ∆, then the First-Fit algorithm uses at most ∆+1 colors.
Therefore, if the input graph has at least one edge, then the competitive ratio of First-Fit is
at most ∆+1

2 , and otherwise both First-Fit and OPT use exactly one color and in this case
the competitive ratio of First-Fit is also at most ∆+1

2 .
To see that there is no better online algorithm, we can use the above construction in the

proof of Theorem 6, using the value n = 1. In this case, each vertex of level i < ` is connected
to one vertex of every level in 1, . . . , i− 1, and one vertex of level i + 1. A vertex of level ` is
connected to one vertex of every level, including ` (since the structure of that type is superior).
Thus the degree of each vertex is at most `. The number of colors used in the construction
presented above is ` + 1, and OPT = 2, thus we get a lower bound of ∆+1

2 .

Remark 8 Another way to achieve the same lower bound (using a similar construction) for
coloring bounded degree graphs using the First-Fit algorithm, is by adapting the lower bound
construction in [6]. In that paper, a lower bound of Ω(log n) on the competitive ratio of online
coloring of trees is given. One can stop their construction when a new vertex has a degree of
exactly ∆. At this step each vertex has a degree of at most ∆. Moreover, OPT uses only two
colors whereas the online algorithm is forced to use at least ∆+1 colors. Therefore, no online
algorithm can guarantee a competitive ratio smaller than ∆+1

2 .

4 Online Coloring with Rejections
The main result of this section is a (∆ + 2)-competitive algorithm for online coloring with
rejections, where the input graph has a maximum degree of at most ∆, which is best possible
for such graphs.

Theorem 9 There is a (∆ + 2)-competitive algorithm for the online coloring problem with
rejections on graphs with a maximum degree of at most ∆. Moreover, for any δ > 0, there is
no online algorithm whose competitive ratio is at most ∆ + 2− δ for this problem.

Proof. Our algorithm rejects all arriving vertices as long as the total rejection costs does
not exceed one. Then, it opens ∆ + 1 colors and uses the First-Fit algorithm to color all
future vertices (starting from the vertex in which the total rejection costs exceeds one, and
that vertex is the �rst one to be accepted). If the algorithm reaches the point where it opens
∆ + 1 colors, then its total cost is at most ∆ + 2 (as the total rejection cost is at most one).
In this case the cost of an optimal solution must be at least one, since if OPT uses at least
one color, then its cost is at least one, and otherwise it rejects all vertices with total rejection
cost at least one (as our algorithm decided to open the colors).

Otherwise, assume that the algorithm rejects all vertices with a total rejection cost of x,
then x ≤ 1, and an optimal solution also rejects all the vertices with total cost of x (if x = 1
then there may be a di�erent optimal solution which uses a single color and has the same
cost). In this case the competitive ratio is 1 < ∆ + 2.

Assume that there is an online algorithm whose competitive ratio is at most ∆ + 2 − δ.
Let ε > 0 to be de�ned later. We de�ne a sequence {εk}∆+1

k=1 as the (unique) solution for the
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following equations ε1 = ε and for all k = 1, 2, . . . ,∆, the following equation ε·εk =
∑∆+1

j=k+1 εj .
The implicit values of the solution are εi = εi

(1+ε)i−1 , for i ≤ ∆, and ε∆+1 = ε∆+1

(1+ε)∆−1 . Our
construction will have two phases. In both phases we will present vertices of disjoint cliques
one clique after the other. In the �rst phase vertex i of the current clique has rejection cost
ε∆+2−i , and in the second phase vertex i of the current clique has rejection cost ε

∆+2−i

ε . We
stop presenting vertices in the current clique (and move to the next clique) after the �rst time
that the online algorithm has rejected a vertex from the clique. If the algorithm has opened
(at least) ∆ + 1 colors we stop the instance immediately. This means that no clique has more
than ∆ + 1 vertices, since introducing more than ∆ + 1 vertices in the clique means that the
online algorithm did not reject any of the vertices. However, in that case, it must use ∆ + 1
colors to color the clique, and thus the construction terminates at this time. Given an upper
bound of ∆ + 1 on the size of cliques, we get that the largest degree ever used is at most ∆.

The �rst phase lasts as long as the total rejection cost of the instance is at most one. Thus
the last clique in this phase is presented until the total rejection cost is about to become at
least one, and not until the algorithm rejects some vertex. Afterwards, in the next clique that
we present, we move to the second phase. If the total rejection cost that the online algorithm
pays ever exceeds 3(∆ + 2) at some time, we stop the instance immediately, even if the online
algorithm did not open at least ∆ + 1 colors. Note that at least one of the two events must
happen. In each clique of the second phase, where less than ∆ + 1 colors are used by the
algorithm, the algorithm increases its rejection cost by at least ε∆+1

ε . Thus within a �nite
number of cliques either the rejection cost becomes large enough, or at least ∆ + 1 colors are
used.

If we stop the instance already in the �rst phase, then the optimal solution rejects all
vertices. Otherwise, we get to the second phase, and the solution that we consider as an upper
bound on the optimal cost has one color, and it accepts only the last vertex from each clique.
Therefore, if we denote the total rejection cost of the optimal solution by Ropt and the total
rejection cost of the online algorithm by Ronl, then we argue that Ropt ≤ ε2+εRonl ≤ ε+εRonl

is satis�ed. To show this, consider �rst the very last clique of the �rst phase. Excluding the
last vertex of this clique, for which OPT does not need to pay for its rejection cost (since it
accepts and colors it), the clique has a total rejection cost of at most ε. As for all preceding
cliques, OPT pays the rejection cost only for all vertices except for the last one, whereas the
online algorithm pays only for the last vertex, and ε · εk =

∑∆+1
j=k+1 εj holds.

Assume that the instance stops while we are in the �rst phase. Let x denote the total
rejection cost of all the vertices. Then, the optimal solution of the instance is to reject all the
vertices with a total cost of x. The total rejection cost of all the vertices in the last clique
is less than 2ε, and therefore the online algorithm has a total rejection cost of at least x−2ε

1+ε .
Since we stop the instance in the �rst phase the online algorithm has opened ∆ + 1 colors,
and therefore its total cost is ∆ + 1 + x−2ε

1+ε ≥ ∆ + 1 + x − 3ε, where the inequality holds as
x ≤ 1. We next note that for all x ≤ 1 and ε ≤ 1

3 the following holds ∆+1−3ε+x
x ≥ ∆ + 2− 3ε.

Therefore, if ε ≤ δ
3 , and by the assumption that our online algorithm has a competitive ratio

of at most ∆ + 2− δ, we get that the algorithm does not open the ∆ + 1-th color in the �rst
phase. Hence the total rejection cost that the online solution pays for the vertices in the �rst
phase is at least 1−2ε

1+ε .
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Recall that Ronl is the total rejection cost that the online algorithm pays. If Ronl ≥ 3(∆+
2), then Ronl ≤ 3(∆ + 2) + ε. Assume that ε ≤ 1

3(∆+2)+1 , and therefore the competitive ratio
of the resulting algorithm is at least Ronl

1+Ropt
≥ Ronl

1+ε+εRonl
≥ Ronl

1+ε+1 , where the last inequality
holds as ε ·Ronl ≤ ε · (3(∆ + 2) + 1) ≤ 1. Therefore, the competitive ratio of the algorithm is
at least Ronl

3 ≥ 3(∆+2)
3 = ∆ + 2, and this contradicts the fact that the competitive ratio of the

algorithm is at most ∆ + 2− δ. Therefore, the total rejection cost that the online algorithm
pays satis�es 1−2ε

1+ε ≤ Ronl ≤ 3(∆ + 2), and the algorithm pays an additional ∆ + 1 units of
cost for opening at least ∆ + 1 colors.

Therefore, the total cost paid by the online algorithm is at least ∆+1+ 1−2ε
1+ε ≥ ∆+2−3ε ≥

∆+2− δ
2 (assuming ε < δ

6), and the total cost paid byOPT is at most 1+Ropt ≤ 1+ε+εRonl ≤
1+ε · (7+3∆). The competitive ratio of the online algorithm is at least ∆+2− δ

2
1+ε·(7+3∆) . Note that

this last quantity should be at most ∆ + 2 − δ. However, for ε < δ
2(7+3∆)(∆+2−δ) , the above

constraint does not hold, and we reach a contradiction.
As a corollary, we get that there is no competitive online algorithm for graphs with ar-

bitrarily large vertex degrees. Note that our lower bound of Theorem 9 applies to a disjoint
union of cliques (with arbitrary size, so these are not bounded degree graphs).

Corollary 10 There is no competitive online algorithm for the online coloring problem with
rejections, even if the input graph is a disjoint union of cliques.

Proof. We use the proof of Theorem 9, and note that where the maximum degree can be
arbitrarily large the lower bound is arbitrarily large.

Since a disjoint union of cliques is a (k+1)-claw free graph, for any k ≥ 2, we get that there
is no constant competitive algorithm for the coloring problem with rejections of (k + 1)-claw
free graphs. Thus, despite the similar behavior of the two classes of graphs, (k + 1)-claw free
graphs and bounded degree graphs, with respect to the standard online coloring problem, the
online coloring problem with rejections separates these two classes.

The conclusion of Corollary 10 does not apply to split graphs as a union of two (or more)
disjoint cliques is not a split graph. We note that the o�ine problem on split graphs has
a polynomial time approximation scheme (and thus is approximable very well), whereas the
online problem cannot be tackled. We next present a lower bound for split graphs.

Theorem 11 There is no competitive online algorithm for the online coloring problem with
rejections on split graphs.

Proof. Assume that there is an online algorithm with competitive ratio ρ (where ρ is a �xed
constant). We present a sequence of vertices, each of them has a rejection cost of ε = 1

2ρ , with
the following properties.

The vertex set K, which is going to be the clique of the split graph, is the set of vertices
that the online algorithm accepts. The set I, which will be the independent set of the split
graph, is the complement set of vertices, i.e., the rejected vertices of the algorithm. Each
new vertex v is adjacent to all the vertices from the clique set K that arrived previously (and
therefore we can decide afterwards if v is added to K or to I, and this decision depends upon
the action of the algorithm). If the algorithm decides to accept v, it must use a new color for
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it (as all the previously accepted vertices are adjacent to v), and then we will add v to K. If
the algorithm decides to reject v, then we add v to I (and therefore it will not be adjacent to
any future vertex). Using the partition into I and K we conclude that the optimal solution
can always color I using a single color, and it can reject all the vertices from K with a total
cost 1+ |K| ·ε. The total cost of the online algorithm is |I| ·ε+ |K|, this holds since all vertices
of K are colored, K is a clique, and thus a total of |K| colors are used for this purpose.

First, assume that the algorithm accepts at least 1
ε +1 vertices. Its cost is at least |K| and

the competitive ratio is at least |K|
1+|K|ε > |K|

2|K|ε = 1
2ε = ρ, and this contradicts the fact that

the competitive ratio of the algorithm is ρ.
Otherwise, the algorithm never accepts more than 1

ε vertices. Therefore, at the time when
at least 4

ε2 vertices were introduced to the algorithm, it rejects at least 3
ε2 vertices, and pays

a total rejection cost of at least 3
ε , whereas the optimal solution pays a total rejection cost of

at most ε · (1
ε

)
= 1. Therefore, the total cost of the optimal solution is at most two, and the

competitive ratio in this case is larger than 1
ε = 2ρ > ρ, and this contradicts the assumption

that the competitive ratio of the algorithm is ρ.
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